JPS6398855A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS6398855A
JPS6398855A JP24357586A JP24357586A JPS6398855A JP S6398855 A JPS6398855 A JP S6398855A JP 24357586 A JP24357586 A JP 24357586A JP 24357586 A JP24357586 A JP 24357586A JP S6398855 A JPS6398855 A JP S6398855A
Authority
JP
Japan
Prior art keywords
magneto
recording medium
optical disk
garnet
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24357586A
Other languages
Japanese (ja)
Inventor
Keiji Shono
敬二 庄野
Motonobu Kawarada
河原田 元信
Hiroshi Kano
博司 鹿野
Masahiro Nakada
正弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24357586A priority Critical patent/JPS6398855A/en
Publication of JPS6398855A publication Critical patent/JPS6398855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To realize a magneto-optical disk which uses a Faraday effect for reproduction and has improved detection sensitivity by using specific magnetic garnet implanted with metal elements between lattices or grain boundaries as a recording medium. CONSTITUTION:The Bi-substd. magnetic garnet which is implanted with the metal elements between the lattices or the grain boundaries and is expressed by the general formula BixR3-xMyFe5-yO12 (R is Y or a combination f >=1 kinds or more among rare earth element, M is a combination of >=1 kinds or more which can be substd. with Fe, and 1<X<3.0<Y<2) is formed as the magnetic layer on a glass substrate, by which the magneto-optical recording medium is formed. The magneto-optical disk which is improved in the detection sensitivity is realized by using the stable bismuth-subtd. garnet which is a transparent magnetic material and has a large Faraday rotating angle thetaF as the recording medium and making detection by using the Faraday effect.

Description

【発明の詳細な説明】 〔概要〕 感度を向」―シた光磁気ディスクを実現する方法として
格子間或いは結晶粒界に金属元素を注入した一般式Bi
x 1h−x F’lv Fe5−v 012(ここで
、RはY或いは希土類元素のうち一種類又はそれ以上の
組み合わせ、MはFeと置換し得る一種類又はそれ以上
の組み合わせで1 <X <3.0 <Y <2)で表
されるBi置換磁性ガーネットを用いる新しい構成の光
磁気ディスク用記録媒体。
[Detailed Description of the Invention] [Summary] As a method for realizing a magneto-optical disk with improved sensitivity, a general formula Bi in which metal elements are injected into interstitial spaces or grain boundaries is used.
x 1h-x F'lv Fe5-v 012 (here, R is a combination of one or more types of Y or rare earth elements, M is a combination of one or more types that can be replaced with Fe, and 1 <X < A recording medium for a magneto-optical disk with a new configuration using Bi-substituted magnetic garnet represented by 3.0<Y<2).

〔産業上の利用分野〕[Industrial application field]

本発明は光感度を向上した新しい構造の光磁気記録媒体
に関する。
The present invention relates to a magneto-optical recording medium having a new structure with improved photosensitivity.

光磁気ディスクはレーザ光を用いて高密度の情報記録を
行うメモリであり、光ディスクと同様に記録容量が大き
く、非接触で記録・再生を行うことができ、また塵埃の
影響を受けないなど優れた特徴をもっている。
A magneto-optical disk is a memory that uses laser light to record high-density information. Like an optical disk, it has a large storage capacity, can record and read without contact, and is unaffected by dust. It has certain characteristics.

ここで、光ディスクは記録媒体として低融点金属を用い
、情報の記録と再生を穴(ビット)の有無により行う読
み出し専用メモリ (Read 0nly Mem0r
y)を主目的として開発されているのに対し、光磁気デ
ィスクは書き換え可能なメモリ(EraserbIe 
Memory)として開発が進められているものである
Here, an optical disk is a read-only memory that uses a low-melting point metal as a recording medium and records and reproduces information depending on the presence or absence of holes (bits).
y), whereas magneto-optical disks are developed mainly for rewritable memory (EraserbIe).
It is currently being developed as ``Memory''.

〔従来の技術〕[Conventional technology]

光磁気ディスクはプラスチックス或いはガラスからなる
ディスク状の透明基板の上に希土類−遷移金属系の非晶
質合金を真空蒸発法やスパッタ法などで膜形成して垂直
磁化膜からなる記録層を作り、この上に保護膜を設けて
ディスク基板が作られている。
Magneto-optical disks are made by forming a film of an amorphous rare earth-transition metal alloy on a disk-shaped transparent substrate made of plastic or glass by vacuum evaporation or sputtering to create a recording layer consisting of a perpendicularly magnetized film. A disk substrate is manufactured by providing a protective film thereon.

ここで、透明基板としてはポリメチルメタクリレート(
略称PMMA) 、ポリカーボネート(略称PC)のよ
うな透明なプラスチック基板或いはガラス基板が用いら
れている。
Here, polymethyl methacrylate (
A transparent plastic substrate such as PMMA (abbreviation: PMMA), polycarbonate (abbreviation: PC), or a glass substrate is used.

また記録層は先に記したように希土類−遷移金属からな
るフェリ磁性を示す垂直磁化膜からなり、テルビウム・
鉄・コバルト(Tb Fe Co)、ガドリウム・テル
ビウム・鉄(Gd Tb Fe)などで構成され、真空
蒸着法やスパッタ法などを用いて膜形成が行われている
The recording layer is made of a perpendicularly magnetized film showing ferrimagnetism made of a rare earth-transition metal, as described above, and is made of a terbium-transition metal.
It is composed of iron/cobalt (Tb Fe Co), gadolinium/terbium/iron (Gd Tb Fe), etc., and is formed using a vacuum evaporation method, a sputtering method, or the like.

薫た保護膜は酸化珪素(Sin)や窒化珪素(si3s
4)などの無機材料や金属の薄膜を用いて形成されてい
る。
The fragrant protective film is made of silicon oxide (Sin) or silicon nitride (Si3S).
It is formed using thin films of inorganic materials and metals such as 4).

かかる構造をとる光磁気ディスクへの情報の記録は垂直
に磁場を加えている状態で、透明なディスク基板の側か
らレンズで集光したレーザ光を照射し、垂直磁化膜の被
照射部の温度がJ二昇してキュリ一温度に達し、磁場の
方向に磁化反転するのを利用して行われている。
To record information on a magneto-optical disk with such a structure, a laser beam focused by a lens is irradiated from the side of the transparent disk substrate while a vertical magnetic field is applied, and the temperature of the irradiated part of the perpendicularly magnetized film is adjusted. This is done by utilizing the fact that J2 rises to reach the Curie temperature, and the magnetization is reversed in the direction of the magnetic field.

また、情報の消去は記録位置の磁化の方向とは逆の方向
に磁場を加えなからレーザ光を照射して加熱し、ちと通
りの方向に磁化を反転させることにより行っている。
Furthermore, information is erased by applying a magnetic field in the opposite direction to the direction of magnetization at the recorded position, heating the recording position by irradiating it with laser light, and reversing the magnetization in the same direction.

光磁気ディスクはこのような構成をとり、記録媒体とし
てはTb Fe Coのように希土類−遷移金属からな
るフェリ磁性体の合金薄膜を用いカー効果(Kerr 
effect)を用いて再生が行われている。
A magneto-optical disk has such a structure, and uses a thin film of a ferrimagnetic alloy made of a rare earth-transition metal such as TbFeCo as a recording medium, and uses the Kerr effect (Kerr effect).
effect).

ここで、カー効果は直線偏光が磁性体により反射する際
に偏光面が回転する現象を言い、光磁気ディスクの記録
層を構成する垂直cW磁化膜配向方向の違い(情報の記
録状態と消去状態との違い)により偏光面の回転方向が
異なるのを利用して行われているが、回転の度合を表す
性能指数(Figure of Merit )が小さ
く、そのため情報の検出感度が良くないと云う問題があ
る。
Here, the Kerr effect refers to a phenomenon in which the plane of polarization rotates when linearly polarized light is reflected by a magnetic material, and it refers to the difference in the orientation direction of the perpendicular cW magnetized film that constitutes the recording layer of a magneto-optical disk (information recording state and erasing state). This is done by taking advantage of the fact that the direction of rotation of the plane of polarization differs due to the difference between be.

すなわち、性能指数は、 2θ、・R1″ ここで、θえはカー回転角、 Rは反射率、 で表されるが、Tb Fe Coなど希土類−遷移金属
からなる従来の記録媒体の場合、θ3は約0.3°また
Rは0.4〜0.5であり、性能指数は最良の条件でも
0.4程度と少ない。
That is, the figure of merit is expressed as 2θ,・R1″, where θ is the Kerr rotation angle, and R is the reflectance. However, in the case of conventional recording media made of rare earth-transition metals such as Tb Fe Co, θ3 is about 0.3° and R is 0.4 to 0.5, and the figure of merit is as small as about 0.4 even under the best conditions.

そのために、検出感度の向上が必要である。Therefore, it is necessary to improve detection sensitivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来の光磁気ディスクは記録媒体とし
て希土類−遷移金属からなるフェリ磁性体の合金薄膜を
用いて構成され、カー効果を用いて情報の検出が行われ
ているが、1*出感度が低いことが問題である。
As mentioned above, conventional magneto-optical disks are constructed using a thin film of a ferrimagnetic alloy made of rare earth-transition metals as a recording medium, and information is detected using the Kerr effect. The problem is low sensitivity.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記の目的は光磁気ディスクの記録媒体として格子間或
いは結晶粒界に金属元素を注入した一般弐BiXR3−
X Mv Fe5−v 012(ここで、RはY或いは
希土類元素のうち一種類又はそれ以上の組み合わせ、M
はFeと置換し得る一種類又はそれ以上の組み合わせで
1 <X <3.0 <Y <2)を有するBi置換磁
性ガーネットを光磁気記録媒体として使用することによ
り解決することができる。
The above purpose is to use a general BiXR3- in which metal elements are injected into interstitial spaces or grain boundaries as a recording medium for magneto-optical disks.
X Mv Fe5-v 012 (here, R is one or more combinations of Y or rare earth elements, M
can be solved by using as a magneto-optical recording medium a Bi-substituted magnetic garnet having 1 <

〔作用〕[Effect]

本発明は光磁気ディスクの再生法としてカー効果を用い
る代わりにファラデー効果(Faraday effe
c t)を用いることにより検出感度の大幅な向上を図
るものである。
The present invention uses the Faraday effect instead of using the Kerr effect as a reproduction method for magneto-optical disks.
By using ct), detection sensitivity is significantly improved.

ここで、ファラデー効果は透明な磁性体或いは磁場の中
に置かれた透明物質に直線偏光を入射した場合に偏光面
が回転する現象を言い、磁性ガーネットのような透明な
磁性体を光磁気ディスクの記録媒体として用いる場合、
性能指数は同様に2θ、・R1/2 但し、Rは反射膜を付けた場合の基 板の基板側から見た実効的な 反射率、 θFはファラデー回転角 で表されるが、θ、は8°/μm(波長514nm) 
Here, the Faraday effect refers to a phenomenon in which the plane of polarization rotates when linearly polarized light is incident on a transparent magnetic material or a transparent material placed in a magnetic field. When used as a recording medium for
The figure of merit is similarly 2θ, ・R1/2. However, R is the effective reflectance of the substrate viewed from the substrate side when a reflective film is attached, θF is expressed as the Faraday rotation angle, and θ is 8 °/μm (wavelength 514nm)
.

0.5°//11m(波長800nm)とカー回転角に
較べて桁違いに大きく、また自然旋光の場合と異なり、
回転角は光の進行方向を逆にしても同一なので、透明な
磁性体中で直線偏光を反射させると回転角が2倍になる
と云う利点がある。
0.5°//11m (wavelength 800nm), which is an order of magnitude larger than the Kerr rotation angle, and unlike the case of natural optical rotation,
Since the rotation angle is the same even if the traveling direction of the light is reversed, there is an advantage that the rotation angle is doubled when linearly polarized light is reflected in a transparent magnetic material.

本発明は透明な磁性体である磁性ガーネットを記録媒体
として使用し、ファラデー効果を用いて検出を行うもの
である。
The present invention uses magnetic garnet, which is a transparent magnetic material, as a recording medium and performs detection using the Faraday effect.

但し、光磁気ディスクにおける情報の記録と消去はレー
ザ光を記録層に照射した際に照射部の温度が」:昇して
記1.青層を構成する磁気記録媒体が加熱されてキ、:
i+ IJ一温度に近づいて保磁力が減少し、外部磁場
の方向に磁化反転することにより行われることから、記
録媒体はレーザ光の照射により急速に温度上昇する材料
から成っていることが必要である。
However, when recording and erasing information on a magneto-optical disk, when the recording layer is irradiated with laser light, the temperature of the irradiated area rises, as described in 1. The magnetic recording medium constituting the blue layer is heated:
The recording medium must be made of a material whose temperature increases rapidly when irradiated with laser light because the coercive force decreases as the i+ IJ temperature approaches and the magnetization is reversed in the direction of the external magnetic field. be.

然し、通常の磁性ガーネットは光吸収が少なく、そのま
までは情報の記録に大きなパワーが必要となる。
However, ordinary magnetic garnet has low light absorption, and as it is, a large amount of power is required to record information.

本発明はビスマス(Bi)置換ガーネットがファラデー
回転角θ、が大きく、また極めて安定な物質であり、ま
たスパッタ法で形成される膜では多量のBi置換が可能
であり、また保磁力が大きい点に着目した。
The present invention is characterized in that bismuth (Bi)-substituted garnet has a large Faraday rotation angle θ and is an extremely stable substance, and in a film formed by sputtering, a large amount of Bi can be substituted, and it has a large coercive force. We focused on

然し、スパッタ法などを用いて形成されるガーネット膜
は紫外光領域では光吸収は多いもの\、可視光領域では
次第に少なくなり、近赤外の領域では非常に少なくなっ
ている。
However, a garnet film formed using a sputtering method has a large amount of light absorption in the ultraviolet region, but gradually decreases in the visible light region, and very little in the near-infrared region.

一方、光ディスクの照射光源としては小形化と高効率の
点から半導体レーザの使用が適しているが、半導体レー
ザの発振波長は0.8μm付近の近赤外であり、そのた
め光磁気ディスク用記録媒体としては、この波長領域で
光吸収を増加させることが必要である。
On the other hand, semiconductor lasers are suitable for use as irradiation light sources for optical disks in terms of miniaturization and high efficiency, but the oscillation wavelength of semiconductor lasers is near-infrared around 0.8 μm, so the recording medium for magneto-optical disks is Therefore, it is necessary to increase optical absorption in this wavelength region.

ここで、磁性ガーネットの可視から近赤外にかけての光
吸収は主としてaサイトとdサイトの鉄イオン(Fe”
” )に起因して生ずることが知られている。
Here, light absorption in the visible to near-infrared range of magnetic garnet is mainly caused by iron ions (Fe”) at the a- and d-sites.
) is known to occur due to

ここで、aサイトは酸素イオン(0−)からなる八面体
の中心位置を指し、またdサイトは0−からなる四面体
の中心位置を指している。
Here, the a site refers to the center position of an octahedron made of oxygen ions (0-), and the d site refers to the center position of a tetrahedron made of 0-.

さて、磁性ガーネットの可視から近赤外領域での光吸収
を増す方法として、金属元素はこの領域で光吸収が大き
いことからスパッタ法で磁性薄膜を形成する際に金属を
共スパッタして、入れ込むことが考えられるが、この場
合は金属元素はaサイトやdサイトにFe++−と置換
して入ってしまい、この場合はFe″+゛と同様に可視
から近赤外の領域では大きな吸収を示さなくなる。
Now, as a way to increase the optical absorption of magnetic garnet in the visible to near-infrared region, metal elements have a large optical absorption in this region, so when forming a magnetic thin film using the sputtering method, we can co-sputter a metal. However, in this case, the metal element enters the a-site or d-site by replacing Fe++-, and in this case, like Fe''+゛, it has a large absorption in the visible to near-infrared region. will no longer be shown.

そこで、本発明では金属元素を格子間或いは結晶粒界に
入れることによりこの波長領域での吸収を増加させるも
のである。
Therefore, in the present invention, absorption in this wavelength range is increased by introducing a metal element into interstitial spaces or grain boundaries.

このように金属元素を格子間或いは結晶粒界に入れるに
はアルゴン(Ar)などのイオンを用いて注入してもよ
いし、また熱拡散させζ入れ込んでもよい。
In order to introduce the metal element into interstitial spaces or grain boundaries in this way, ions such as argon (Ar) may be used for implantation, or ζ may be introduced by thermal diffusion.

発明者等はBi置換磁性ガーネットがθ1が大きな点に
着目し、一般式Bix R3−X MY Fe5−y 
0+2(ここで、RはY或いは希土類元素のうち一種類
又はそれ以上の組み合わせ、MはFeと置換し得る一種
類又はそれ以上の組み合わせで1<X<3.0<Y〈2
)で表されるBi置換磁性ガーネットの格子間或いは結
晶粒界にイオンビームを用いて金属元素を入れ込むと可
視から近赤外領域にかけて光吸収が増加することを見出
した。
The inventors focused on the fact that Bi-substituted magnetic garnet has a large θ1, and the general formula Bix R3-X MY Fe5-y
0+2 (here, R is one or more combinations of Y or rare earth elements, M is one or more combinations that can be replaced with Fe, and 1<X<3.0<Y<2
It has been found that when a metal element is introduced into the interstitial spaces or grain boundaries of Bi-substituted magnetic garnet represented by ) using an ion beam, light absorption increases from the visible to the near-infrared region.

〔実施例〕〔Example〕

ガラス基板(HOYA製、 NA−40)上に高周波ス
パッタ法により旧、Ga置換のYIG(イツトリウム鉄
ガーネット)膜を0.5 μmの膜厚に形成した。
A Ga-substituted YIG (yttrium iron garnet) film was formed to a thickness of 0.5 μm on a glass substrate (manufactured by HOYA, NA-40) by high-frequency sputtering.

スパッタに用いたガーネットはBizY Ga Fe、
0.2である。
The garnet used for sputtering was BizY Ga Fe,
It is 0.2.

スパッタしたままの膜は非晶質であるので、これを大気
中で650°Cで熱処理して結晶化し、次にこの上に反
射膜としてクローl、(Cr)を0.1 μmの厚さに
スパッタした。
Since the as-sputtered film is amorphous, it is crystallized by heat treatment at 650°C in the air, and then a reflective film of Cr (Cr) is applied to a thickness of 0.1 μm on top of this. It sputtered.

次に、このCr膜にArのイオンビームを照射してCr
元素をYIG膜に注入した。
Next, this Cr film is irradiated with an Ar ion beam to
Elements were implanted into the YIG film.

この照射条件は加速電圧が100KV、イオン電流0゜
1mAであり、この場合のArの注入量は6X10”イ
オン/ cm2である。
The irradiation conditions are an accelerating voltage of 100 KV, an ion current of 0°1 mA, and the amount of Ar implanted in this case is 6×10” ions/cm 2 .

次に、YIG膜から計を除去するためとイオン注入によ
る結晶の乱れを回復するために基板を窒素(N2)気流
中で500°Cで30分間に互って熱処理を行った。
Next, the substrate was heat-treated at 500° C. for 30 minutes in a nitrogen (N2) stream in order to remove the particles from the YIG film and to recover the crystal disorder caused by ion implantation.

このようにガラス基板上に磁性ガーネットを記録層とし
、Crを反射膜とする新しい構成の光磁気ディスクにつ
いて、基板側から波長0.83μmの半導体レーザを照
射して反射率を測定したところ、Crを注入しない光磁
気ディスクの反射率は35%であったのに対し、Crを
注入したちの一反射率は20%であり、磁性ガーネット
の光吸収が増大したことが証明された。
When we measured the reflectance of a magneto-optical disk with a new configuration in which magnetic garnet is used as a recording layer on a glass substrate and Cr is used as a reflective film by irradiating a semiconductor laser with a wavelength of 0.83 μm from the substrate side, we found that Cr The reflectance of the magneto-optical disk without Cr injection was 35%, while the reflectance of the Cr-injected disk was 20%, proving that the optical absorption of magnetic garnet had increased.

次に、スポット径が1μmでパワー101のレーザ光を
照射して記録感度を調べたところ、Crを注入しない光
磁気ディスクにおいては記録可能なパルス幅は0.5μ
sであったのに対し、Crを注入したものは0.15μ
sで記録でき、この結果から1ノ3以下のエネルギーで
記録できることが明らかになった。
Next, we investigated the recording sensitivity by irradiating a laser beam with a spot diameter of 1 μm and a power of 101, and found that the recordable pulse width was 0.5 μm on a magneto-optical disk without Cr injection.
s, whereas the Cr-injected one had a diameter of 0.15μ.
The results showed that it was possible to record with an energy of 1 no 3 or less.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施によりファラデー効果を
使用し、検出感度の向上した新しい構成の光磁気ディス
クの実用化が可能となる。
As described above, by carrying out the present invention, it becomes possible to put into practical use a magneto-optical disk with a new configuration that uses the Faraday effect and has improved detection sensitivity.

Claims (1)

【特許請求の範囲】  透明基板上に形成されている記録層に透明基板を通し
て直線偏光を照射し、垂直配向している磁性膜の磁化反
転の有無による反射光の回転角の向きの違いを利用して
情報を記録し再生する光磁気ディスクにおいて、 該光磁気ディスクの記録媒体として格子間或いは結晶粒
界に金属元素を注入した一般式Bi_XR_3_−_X
M_YFe_5_−_YO_1_2(ここで、RはY或
いは希土類元素のうち一種類又はそれ以上の組み合わせ
、MはFeと置換し得る一種類又はそれ以上の組み合わ
せで1<X<3、0<Y<2)を有するBi置換磁性ガ
ーネットを用いることを特徴とする光磁気記録媒体。
[Claims] A recording layer formed on a transparent substrate is irradiated with linearly polarized light through the transparent substrate, and the difference in the direction of the rotation angle of the reflected light depending on the presence or absence of magnetization reversal of a vertically aligned magnetic film is utilized. In a magneto-optical disk on which information is recorded and reproduced, the general formula Bi_XR_3_-_X is used as a recording medium of the magneto-optical disk, in which a metal element is injected into the interstitial space or at the grain boundary.
M_YFe_5_-_YO_1_2 (here, R is a combination of one or more types of Y or rare earth elements, M is a combination of one or more types that can be replaced with Fe, 1<X<3, 0<Y<2) A magneto-optical recording medium characterized by using a Bi-substituted magnetic garnet having the following properties.
JP24357586A 1986-10-14 1986-10-14 Magneto-optical recording medium Pending JPS6398855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24357586A JPS6398855A (en) 1986-10-14 1986-10-14 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24357586A JPS6398855A (en) 1986-10-14 1986-10-14 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS6398855A true JPS6398855A (en) 1988-04-30

Family

ID=17105868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24357586A Pending JPS6398855A (en) 1986-10-14 1986-10-14 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS6398855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501913A (en) * 1990-11-14 1996-03-26 Nippon Steel Corporation Garnet polycrystalline film for magneto-optical recording medium
US6689456B2 (en) * 2000-02-29 2004-02-10 Hitachi, Ltd. Magnetic recording medium, a manufacturing method thereof, and a magnetic recording unit using thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material
JPS61115259A (en) * 1984-11-12 1986-06-02 Fujitsu Ltd Photomagnetic recording medium
JPS61222109A (en) * 1985-03-27 1986-10-02 Nippon Sheet Glass Co Ltd Manufacture of rare earth iron garner film
JPS62119759A (en) * 1985-11-19 1987-06-01 Nippon Sheet Glass Co Ltd Magneto-optical material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material
JPS61115259A (en) * 1984-11-12 1986-06-02 Fujitsu Ltd Photomagnetic recording medium
JPS61222109A (en) * 1985-03-27 1986-10-02 Nippon Sheet Glass Co Ltd Manufacture of rare earth iron garner film
JPS62119759A (en) * 1985-11-19 1987-06-01 Nippon Sheet Glass Co Ltd Magneto-optical material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501913A (en) * 1990-11-14 1996-03-26 Nippon Steel Corporation Garnet polycrystalline film for magneto-optical recording medium
US6689456B2 (en) * 2000-02-29 2004-02-10 Hitachi, Ltd. Magnetic recording medium, a manufacturing method thereof, and a magnetic recording unit using thereof

Similar Documents

Publication Publication Date Title
EP0051296B1 (en) A thermomagnetic recording medium and a method of thermomagnetic recording
JP2579631B2 (en) Magneto-optical recording method
JPS6148148A (en) Thermooptical magnetic recording medium
US5265073A (en) Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same
US4777082A (en) Optical magnetic recording medium
JPS6398855A (en) Magneto-optical recording medium
Kaneko et al. IRISTER/spl minus/magneto-optical disk for magnetically induced SuperResolution
JPH0350344B2 (en)
JPS63179435A (en) Thin film magnetic recording medium
JPS6332753A (en) Information recording method
JPS6332748A (en) Information recording medium
JPH0350343B2 (en)
JPH0316049A (en) Magneto-optical recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPH07176091A (en) Magneto-optical recording medium cartridge
JPH07320320A (en) Magneto-optical recording medium, recording and reproducing method of magneto-optically recorded information
JPS6148149A (en) Thermooptical magnetic recording medium
JPH02201755A (en) Transmission-type magneto-optical disk
JPS61276152A (en) Production of photomagnetic recording medium
JPS61208650A (en) Photomagnetic recording medium
JPS6345128A (en) Magneto-optical recording medium
JPH01217744A (en) Magneto-optical recording medium
JPS6332750A (en) Information recording medium
JPH02289948A (en) Magneto-optical recording method
JPS60101702A (en) Recording method of photomagnetic recording medium