JPS6148148A - Thermooptical magnetic recording medium - Google Patents

Thermooptical magnetic recording medium

Info

Publication number
JPS6148148A
JPS6148148A JP16898184A JP16898184A JPS6148148A JP S6148148 A JPS6148148 A JP S6148148A JP 16898184 A JP16898184 A JP 16898184A JP 16898184 A JP16898184 A JP 16898184A JP S6148148 A JPS6148148 A JP S6148148A
Authority
JP
Japan
Prior art keywords
layer
film
recording
reproducing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16898184A
Other languages
Japanese (ja)
Inventor
Senji Shimanuki
島貫 専治
Katsutaro Ichihara
勝太郎 市原
Yoshiaki Terajima
喜昭 寺島
Noburo Yasuda
安田 修朗
Hiromichi Kobori
小堀 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16898184A priority Critical patent/JPS6148148A/en
Publication of JPS6148148A publication Critical patent/JPS6148148A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a vertical magnetization film with recording and reproducing characteristics by the method with a small thermal load to a base by adopting a specific ferrimagnetic amorphous alloy film as a reproducing layer and a magnetic film with a low Curie temperature and a large coercive force as a recording layer. CONSTITUTION:Since a ferrimagnetic amorphous alloy film of Tbx(Co1-yMy) having a large magnetooptic effect, that is, large rotary angle and Farady rotating angle and large reflected luminous amount is used as the reproduction layer, the reproducing characteristic is excellent. Further, the recording layer made of a magnetic film low in the Curie temperature is used in combination with the ferrimagnetic amorphous alloy film of the reproducing layer with respect to the recording characteristic, the magnetization inversion of the reproducing layer is caused near the Curie temperature of the recording layer. Thus, the characteristic with higher sensitivity than that of a TbCo film single layer and the same degree as the single layer film of the TbFe film only is attained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、少なくともレーザビームのような光ビームの
照射に基く熱によって情報の記録を行ない、光ビームの
照射によ、って記録された情報を再生する光熱磁気記録
媒体に係り、特に磁性層が記録層と再生層とからなる2
層構造の光熱磁気記録媒体に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention records information using heat based on irradiation with at least a light beam such as a laser beam, and records information recorded by irradiation with a light beam. It relates to a photothermal magnetic recording medium for reproducing a magnetic layer, especially a magnetic layer consisting of a recording layer and a reproducing layer.
The present invention relates to a photothermal magnetic recording medium having a layered structure.

(発明の技術的背景とその問題点) 光ビーム(主としてレーザビーム)の照射によって情報
の記録・再生を行なう記録媒体、いわゆる光ディスクは
、機能から分類すると再生専用型。
(Technical background of the invention and its problems) Recording media on which information is recorded and reproduced by irradiation with light beams (mainly laser beams), so-called optical disks, are categorized based on their functions as read-only types.

DRAW (Dtrect Read After  
Write: 1回書込み可能・消去不能)型、書換え
可能型の3種があり、これらのうち再生専用型とDRA
W型は既に実用化されている。DRAW型の光ディスク
では通常、正確なトラッキングと高速ランダムアクセス
を容易にするための光学ヘッド案内用の溝(以下、プリ
グループという)がディスク基体上に設けられる。また
、再生専用型およびDRAW型のいずれも、ゴミの付着
等による再生エラーを防止するために、光ビームは記録
層の形成されている面とは逆の面、すなわち基体の裏面
側から入射されるようになっている。
DRAW (Dtrect Read After
Write: There are three types: one-time writeable/non-erasable) type and rewritable type. Of these, read-only type and DRA
The W type has already been put into practical use. In a DRAW type optical disk, a groove (hereinafter referred to as a pregroup) for guiding an optical head is usually provided on the disk base to facilitate accurate tracking and high-speed random access. In addition, in both the read-only type and the DRAW type, in order to prevent reproduction errors due to adhesion of dust, the light beam enters from the opposite side to the side where the recording layer is formed, that is, from the back side of the substrate. It has become so.

現在では未だ実用には至っていないが、本発明が対象と
している書換え可能型の光デイスクメモリにおいても上
記のようなプリグループを設けることが望ましく、また
光ビームの入射も基体の裏面側からなされる方式が有利
である。
Although it has not yet been put into practical use, it is desirable to provide a pre-group as described above even in the rewritable optical disk memory to which the present invention is directed, and the light beam is also incident from the back side of the base. method is advantageous.

基体の裏面側から光ビームを入射させるためには、当然
のことながら基体は少なくともこの光ビームに対して、
つまり使用する光ビームの波長領域で透明でなければな
らない。この要求を満たす基体材料としては、具体的に
はガラス系材料が、あるいはPMMA (ポリメチルメ
タクリレート)PC(ポリカーボネイト)、エポキシ等
に代表される1明樹脂系材料の2つが挙げられる。一方
、このような材質の基体にプリグループを形成する方法
としては、ガラス系材料に対しては平坦なガラス円板上
に樹脂を塗布して露光・現像処理する方法と、ガラス円
板を局部的にエツチング処理する方法とがあり、透明樹
脂系材料に対してはプリグループに対応した表面形状を
持つ金型を使用して、射出成型もしくは注型法によりプ
リグループ付基体を作成する方法が挙げられる。
In order to make the light beam enter from the back side of the base, the base naturally has to at least react to this light beam.
In other words, it must be transparent in the wavelength range of the light beam used. Specific examples of substrate materials that meet this requirement include glass-based materials and resin-based materials such as PMMA (polymethyl methacrylate), PC (polycarbonate), and epoxy. On the other hand, methods for forming pre-groups on substrates made of such materials include, for glass-based materials, two methods: coating a flat glass disk with resin, exposing and developing it, and another method using a glass disk locally. For transparent resin materials, there is a method of creating a substrate with pre-groups by injection molding or casting using a mold with a surface shape that corresponds to the pre-groups. Can be mentioned.

上記した2種の基体材料の適否をプリグループの形成も
考慮して比較すれば、量産性、コストの面からは樹脂系
材料を選定するのが有利であり、またディスクを記録・
再生時に高速回転させて使用する際の安全性の面からも
、樹脂系材料の方がガラス系材料に比べ信頼性が高い。
If we compare the suitability of the two types of substrate materials mentioned above, taking into account the formation of pre-groups, we find that resin-based materials are advantageous in terms of mass production and cost.
Resin-based materials are also more reliable than glass-based materials in terms of safety when rotating at high speed during playback.

現実に、再生専用型およびDRAW型光ディスクメモリ
の大半が、基体材料としてポリメチルメタクリレートま
たはポリカーボネイトを使用している。
In fact, most read-only and DRAW optical disk memories use polymethyl methacrylate or polycarbonate as the base material.

基体上に記録、再生および消去が可能な記録層が形成さ
れた書換え可能型光ディスクメモリにおいても、同様な
理由から基体材料としては樹脂系材料を使用することが
望ましい。しかしながら樹脂系材料は気体透過性があり
、吸水率が大きく、さらには耐熱性が悪いという欠点を
有している。
Also in a rewritable optical disk memory in which a recording layer that can be recorded, reproduced, and erased is formed on a substrate, it is desirable to use a resin-based material as the substrate material for the same reason. However, resin-based materials have drawbacks such as gas permeability, high water absorption, and poor heat resistance.

このため、基体上に形成される記録層には耐腐姓性が要
求され、またディスク形成時において基体に熱負荷のか
かる製造プロセスは使用できない。
Therefore, the recording layer formed on the substrate is required to have corrosion resistance, and a manufacturing process that imposes a heat load on the substrate during disk formation cannot be used.

書換え可能型光ディスクメ、モリの具体的構成法はいく
つか提案されているが、最もメモリ効果が安定している
のは、記録層として基体面に対し垂直な方向に磁化容易
軸を有する磁性膜(以下、垂直磁化膜という)を形成し
た光熱磁気記録媒体である。垂直磁化膜を使用した光熱
磁気記録媒体の原理は既に良く知られているように、記
録すべき情報信号によって変調された光ビームを記録層
に照射して局部的にキューリ一温度近傍まで加熱するこ
と、または上記加熱に加えて外部より磁界を印加するこ
とで、情報を垂直磁化膜の磁化反転の形で記録する。一
方、記録された情報の再生は、垂直磁化膜に直線偏光の
光ビームを照射し、垂直磁化膜の磁化反転に基く反射光
の偏光面の回転(極力−回転)や、透過光の偏光面の回
転(ファラデー回転)を検出して行なうものである。
Several specific construction methods have been proposed for rewritable optical disc memory, but the one with the most stable memory effect is a magnetic film that has an axis of easy magnetization perpendicular to the substrate surface as the recording layer. This is a photothermal magnetic recording medium in which a perpendicular magnetization film (hereinafter referred to as a perpendicular magnetization film) is formed. As is already well known, the principle of photothermal magnetic recording media using perpendicularly magnetized films is that a light beam modulated by the information signal to be recorded is irradiated onto the recording layer to locally heat it to around one Curie temperature. Alternatively, information is recorded in the form of magnetization reversal of the perpendicularly magnetized film by applying an external magnetic field in addition to the above heating. On the other hand, to reproduce recorded information, a perpendicularly magnetized film is irradiated with a linearly polarized light beam, and the polarization plane of the reflected light is rotated (as much as possible) based on the magnetization reversal of the perpendicularly magnetized film, and the polarization plane of the transmitted light is This is done by detecting the rotation of (Faraday rotation).

ここで、垂直磁化膜の材料としてはMn3 i多結晶系
材料、Eu−カルコゲナイド系材料、!i性ガーネット
系単結晶材料、および稀土類−遷移金属非晶質合金系材
料(以下、RE−TM系材料と略称、flii土類元素
をRE、i!!移金屈金属をTMと略称する)がある。
Here, the materials for the perpendicular magnetization film include Mn3i polycrystalline material, Eu-chalcogenide material, and so on. i-type garnet-based single crystal materials, and rare earth-transition metal amorphous alloy materials (hereinafter abbreviated as RE-TM-based materials; fii earth elements are abbreviated as RE, and i!!transfer metals are abbreviated as TM). ).

これらのうち、Mn−B1系材料は相変化を起こし易く
、記録マージンが狭い。
Among these, Mn-B1-based materials tend to undergo phase changes and have narrow recording margins.

粒界雑音が大きいという欠点を有し、EU−カルコゲナ
イド系材料は常温で記録ビットが保持できないという欠
点を有し、磁性ガーネット系単結晶材料は製造が困難で
効果な上、樹脂系基体上には現状の技術レベルでは成膜
が不可能という欠点を有している。
EU-chalcogenide materials have the disadvantage of large grain boundary noise; EU-chalcogenide materials have the disadvantage of not being able to retain recorded bits at room temperature; magnetic garnet-based single crystal materials are difficult to manufacture and are not effective; has the disadvantage that it is impossible to form a film at the current technological level.

これに対し、RE−TM系材料は一般的に再生信号のC
/Nに・寄与する極力−効果が小さい、耐腐蝕性が悪い
といった欠点は持っているものの、大面積の基体上へ蒸
着法、スパッタリング法等の量産性のある方法で成膜で
き、またメモリ特性をREとTMの組合せ9組成比によ
って広範囲にわたって制御できるといった長所を有して
いるため最も有望視されており、現在各所で実用化へ向
けて研究・開発が精力的に進められている。RE−TM
系材料におけるREとしてはGd、Tb。
On the other hand, RE-TM materials generally have a C of the reproduced signal.
Although it has drawbacks such as low effectiveness and poor corrosion resistance, it can be formed on large-area substrates by mass-producible methods such as evaporation and sputtering, and it is It is considered the most promising because it has the advantage that its properties can be controlled over a wide range by combining 9 composition ratios of RE and TM, and research and development are currently being actively carried out in various places with the aim of putting it into practical use. RE-TM
Gd and Tb are used as RE in the system materials.

Dyが、またTMとしてはl”e、coがそれぞれ代表
的であり、それらの組合せと組成比によって特性が大幅
に異なる。
Dy is typical, and l''e and co are typical for TM, and the characteristics vary greatly depending on their combination and composition ratio.

RE−TM系材料では一般的に次のことがいえる。まず
記録特性、すなわち半導体レーザ等からの低パワーの光
ビーム照射時に照射部の保磁力が数100[Oel以下
に低下することによる磁化反転が容易に起り得るかどう
かの点に対しては、REについては特にTMがFeの場
合、Dy。
The following can generally be said about RE-TM materials. First, regarding recording characteristics, that is, whether magnetization reversal can easily occur due to the coercive force of the irradiated part decreasing to several hundred Oel or less when irradiated with a low-power light beam from a semiconductor laser, etc., RE Especially when TM is Fe, Dy.

Tb、Gdの順でキューリ一温度が低いため、この順序
で良好である。再生特性、すなわち再生用直線偏光光ビ
ームの照射時の反射光の極力−回転角θKが大きく反射
光量が大きいかどうかという点に対しては、REについ
てはGd、Tb、DVの順でθにの値が大きいという点
から良好であり、TMについてはCO,l”eの順で膜
の光反射率が大きいという理由から良好である。微小記
録ビットの安定性(保持温度における保磁力の大きさ)
に対しては、REについてTb、Dy、Gdの順で良好
である。さらに記録媒体の耐腐蝕性という観点からは、
TMがFeであるよりCOである方が格段に有利であり
、逆に均一特性の垂直磁化膜を大面積にわたり一様に作
製するという観点からは、TMがCOである方がl”e
である場合よりも難しい。
Since the Curie temperature is lower in this order, Tb and Gd are preferred in this order. Regarding reproduction characteristics, that is, whether the rotation angle θK of the reflected light during irradiation with the linearly polarized light beam for reproduction is as large as possible and the amount of reflected light is large, for RE, Gd, Tb, and DV are adjusted to θ in the order of It is good because the value of is large, and TM is good because the light reflectance of the film is large in the order of CO and l"e. Stability of minute recording bits (larger coercive force at holding temperature) difference)
Regarding RE, Tb, Dy, and Gd are good in that order. Furthermore, from the perspective of corrosion resistance of recording media,
It is much more advantageous for the TM to be CO than for Fe, and conversely, from the viewpoint of uniformly producing a perpendicularly magnetized film with uniform characteristics over a large area, it is more advantageous for the TM to be CO than for Fe.
is more difficult than if it were.

このように、単層のRE−7M膜では光熱磁気記録媒体
への要求性能を全て満足することは困難である。この問
題を解決する有効な手段として、特性の異なる2層のR
E−TMIIを積層することが提案されている。RE−
TMIIの2層化による光熱磁気記録・光磁気再生特性
の向上については、例えば文献(1)サイエンスフォー
ラム社発行[光磁気メモリー総合技術集成」第3節 ア
モルファス材料 ■ アモルファス多層膜9交献(2)
J、 Appl 、 Phys 、 55 (6) 、
 15  March1984 、特開昭56−153
546号公報、特開昭57−78652号公報等に開示
されている。
As described above, it is difficult to satisfy all the performance requirements for a photothermal magnetic recording medium with a single layer RE-7M film. As an effective means to solve this problem, two layers of R
It has been proposed to stack E-TMII. RE-
Regarding the improvement of photothermal magnetic recording and magneto-optical reproducing characteristics by double-layering TMII, see, for example, references (1) [Magneto-optical Memory Comprehensive Technology Collection] published by Science Forum, Section 3 Amorphous Materials ■ Amorphous Multilayer Film 9 Reference (2) )
J, Appl, Phys, 55 (6),
15 March1984, JP-A-56-153
This method is disclosed in Japanese Patent Application Laid-open No. 546, Japanese Patent Application Laid-open No. 78652/1983, and the like.

これらの公知例においては、光ビームの入射方向に極力
−効果が大きいGdFe1li、GdC01llを形成
し、それに積層して常温で保磁力の大きいTbFe1l
、DyFe膜を形成した構造のものが具体的に述べられ
ており、記録特性、再生特性、および記録ビットの安定
性が単層のものに比べて改善された結果が報告されてい
る。
In these known examples, GdFe1li and GdC011, which have a large effect as much as possible, are formed in the direction of incidence of the light beam, and TbFe11, which has a large coercive force at room temperature, is laminated thereon.
, a structure in which a DyFe film is formed has been specifically described, and it has been reported that recording characteristics, reproduction characteristics, and stability of recorded bits are improved compared to a structure with a single layer.

しかしながら、このような2層のRE−7M膜を実用的
構成の光熱磁気記録媒体、すなわち望ましくは樹脂系材
料からなる基体と、この基体上に再生層および記録層を
積層した構造の媒体に適用した場合には、例えば再生層
がGdFe膜の場合は基板側から透過する空気中の酸素
によってGdFe膜の酸化が進行するため、寿命の点で
問題がある。GdFe膜に対するこのような問題点を回
避するために、基体とGdFe膜との間に透明保護層を
介在させるという方法が考えられるが、樹脂系材料から
なる基体が熱的に耐え得るような成膜方法によっては大
面積にわたりピンホールのない透明保護層の形成は現状
の技術レベルでは困難であり、ピンホールを通してのg
aの進行に対しては効果がない。また、再生層にGdC
o膜を用いた場合は、寿命の点では極めて有利となる反
面、GdCo膜は成膜方法にバイアス・スパッタリング
法を使用しなければ垂直磁化膜となり1qないため、成
膜中に樹脂基体が熱負荷に耐えられないという問題があ
る。さらに、耐腐蝕性に優れるRE−Co膜では長期間
にわたって記録・再生を繰返すと熱的緩和により垂直磁
気異方性が減少し、情報の記録ができなくなるという問
題もある。
However, it is difficult to apply such a two-layer RE-7M film to a photothermal magnetic recording medium with a practical configuration, that is, a medium having a structure in which a substrate is preferably made of a resin material, and a reproducing layer and a recording layer are laminated on this substrate. In this case, for example, if the reproducing layer is a GdFe film, the oxidation of the GdFe film progresses due to oxygen in the air that permeates from the substrate side, causing a problem in terms of service life. In order to avoid these problems with the GdFe film, it is possible to interpose a transparent protective layer between the substrate and the GdFe film, but it is possible to Depending on the film method, it is difficult to form a pinhole-free transparent protective layer over a large area at the current technological level;
It has no effect on the progression of a. In addition, GdC in the reproduction layer
When using an O film, it is extremely advantageous in terms of lifespan, but on the other hand, a GdCo film becomes a perpendicularly magnetized film without using the bias sputtering method for film formation, so the resin substrate is exposed to heat during film formation. The problem is that it cannot withstand the load. Furthermore, the RE-Co film, which has excellent corrosion resistance, has the problem that when recording and reproducing are repeated over a long period of time, the perpendicular magnetic anisotropy decreases due to thermal relaxation, making it impossible to record information.

このように2層のRE−TMIImによる光熱磁気記録
媒体では、再生層および記録層共に、無バイアスもしく
は低バイアス・スパッタリン・グ法または蒸着法等の成
膜中における基体面への熱負荷の小さい成膜法で容易に
垂直磁化膜とすることができ、しかも光ビームが入射す
る側の再生層が耐腐蝕性に優れるということが要求され
るのであるが、公知の構成ではこのような要求を満たす
ことが困難であった。
In this way, in a photothermal magnetic recording medium using two layers of RE-TMIIm, both the reproducing layer and the recording layer are subject to heat load on the substrate surface during film formation using non-bias or low-bias sputtering or vapor deposition. It is required that a perpendicularly magnetized film can be easily formed using a small film formation method, and that the reproducing layer on the side where the light beam is incident has excellent corrosion resistance, but known configurations do not meet these requirements. It was difficult to meet the requirements.

(発明の目的〕 本発明の目的は、記録特性と再生特性が共に良好であっ
て、垂直磁化膜を基体への熱負荷の小さい方法で成膜で
き、さらに耐腐蝕性や熱的安定性に優れた長寿命の光熱
磁気記録媒体を提供することにある。
(Objective of the Invention) The object of the present invention is to provide a perpendicularly magnetized film with good recording and reproducing characteristics, to form a perpendicularly magnetized film using a method that places little heat load on the substrate, and to have excellent corrosion resistance and thermal stability. The object of the present invention is to provide an excellent long-life photothermal magnetic recording medium.

〔発明の概要〕[Summary of the invention]

本発明は、基体上に該基体面に対して垂直な方向に磁化
容易軸を有する記録層および再生層を積層して構成され
、少なくとも光ビームの照射に基く熱によって情報を記
録し、光ビームの照射によって情報を再生する光熱磁気
記録媒体において、前記再生層がTb)((CO+ −
y My )t−x  (但し、MはB、Affi、C
,Si、Ge、P、Ti、Zr。
The present invention is constructed by laminating a recording layer and a reproducing layer having an axis of easy magnetization in a direction perpendicular to the surface of the substrate on a substrate, and records information by at least heat based on irradiation of a light beam. In a photothermal magnetic recording medium that reproduces information by irradiation with Tb)((CO+ −
y My )t-x (However, M is B, Affi, C
, Si, Ge, P, Ti, Zr.

Hf、V、Nb、Ta、Cr、Mo、W(7)少なくと
も1PIlからなる元素であり、Xは0.1≦x≦Of
、4ノ数、1.to、Q1≦y≦Q、3(7)数)のフ
ェリ磁性非晶質合金膜であり、前記記録層が前記再生層
よりキューリ一温度が低く、且つ保磁力が大きい磁性膜
であることを特徴とする。
Hf, V, Nb, Ta, Cr, Mo, W (7) is an element consisting of at least 1 PIl, and X is 0.1≦x≦Of
, 4 numbers, 1. to, Q1≦y≦Q, 3(7) number), and the recording layer is a magnetic film having a lower Curie temperature and a larger coercive force than the reproducing layer. Features.

ここで、再生層に添加される上記Mの成分は再生層の結
晶化温度を高くして熱的安定性を向上させるなめのもの
である。この場合、yが0.01未満では熱的安定性の
向上が認められず、また0、3を越えると磁気光学効果
が低下するため、上記の範囲にする必要がある。特に、
磁気補償温度が常温以下となる組成では磁気光学効果が
大きく、熱的安定性の改善が著しい。組成としてはTb
/Tb+Goの原子比で0.22以下が適当である。ま
た、Xは0.1未満、あるいは0.4を越えると、再生
層が膜面に垂直な方向に磁化容易軸を有しない状態にな
るため上記の範囲とした。
Here, the component M added to the reproducing layer increases the crystallization temperature of the reproducing layer to improve thermal stability. In this case, if y is less than 0.01, no improvement in thermal stability will be observed, and if y exceeds 0.3, the magneto-optic effect will deteriorate, so it is necessary to keep it within the above range. especially,
A composition in which the magnetic compensation temperature is below room temperature has a large magneto-optical effect, and the thermal stability is significantly improved. The composition is Tb
An appropriate atomic ratio of /Tb+Go is 0.22 or less. Furthermore, if X is less than 0.1 or exceeds 0.4, the reproduction layer will be in a state where it does not have an axis of easy magnetization in the direction perpendicular to the film surface, so it was set in the above range.

一方、再生層より低キユーリ一温度、且つ高保磁力であ
る記録層を構成する磁性膜は、常温での保磁力が1〜2
kOe以上であることが望ましく、且つキューリ一温度
が50℃以上、250℃以下(より好ましくは100℃
以上、200℃以下)であることが望ましい。このよう
な条件を満たす磁性膜としては、例えばTbFe膜。
On the other hand, the magnetic film constituting the recording layer, which has a lower Curie temperature and higher coercive force than the reproduction layer, has a coercive force of 1 to 2 at room temperature.
kOe or more, and the Curi temperature is 50°C or more and 250°C or less (more preferably 100°C
above, and below 200°C). An example of a magnetic film that satisfies these conditions is a TbFe film.

TbFeC0膜、TbGdFe111.TbDyFe膜
、TbGdFeCo膜等を用いることができる。
TbFeC0 film, TbGdFe111. A TbDyFe film, a TbGdFeCo film, etc. can be used.

なお、再生層についてはキューリー湿度(書込み温度)
が100℃以上、200℃以下、また保磁力が0.5k
Oe以下が好ましい。
In addition, for the reproduction layer, Curie humidity (writing temperature)
is 100℃ or higher and 200℃ or lower, and the coercive force is 0.5k.
Oe or less is preferable.

また、本発明は基体の材料が、プリグループの形成が容
易であって、高速回転時の安全性の点でも問題のないポ
リメチルメタクリレ−1−、ポリカーボネイト、エポキ
シ等の透明な樹脂系材料である場合に特に有効である。
In addition, the present invention uses a transparent resin material such as polymethylmethacrylate-1-, polycarbonate, or epoxy, which facilitates the formation of pre-groups and does not pose any safety problems during high-speed rotation. This is particularly effective when

また、本発明においては基体と磁性膜との間に磁気光学
効果をエンファンスさせるような透明な保護層として、
例えば3iQ、SiO2゜TiO2,SnO2,Bi2
O3等の酸化物膜、あるいはS ii N4 、 Af
fiN等の窒化物膜を挿入することも可能である。
In addition, in the present invention, as a transparent protective layer that enhances the magneto-optic effect between the substrate and the magnetic film,
For example, 3iQ, SiO2゜TiO2, SnO2, Bi2
Oxide film such as O3, or S ii N4, Af
It is also possible to insert a nitride film such as fiN.

さらに、本発明における再生層の厚みは100人〜50
0人程度、また記録層の厚みは100人程度以上が適当
である。これら再生層と記録層とは明確な境界を持つ2
層に分けられている必要は必ずしもなく、再生層から記
録層にわたって連続的に組成が変化していてもよい。
Furthermore, the thickness of the reproduction layer in the present invention is 100 to 50 mm.
Appropriately, the number of participants is approximately 0, and the thickness of the recording layer is approximately 100 or more. These reproduction layers and recording layers have a clear boundary.
It does not necessarily have to be divided into layers, and the composition may change continuously from the reproducing layer to the recording layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、再生層として、磁“気光学効果すなわ
ち極力−回転角やファラデー回転角が大きく、反射光m
の大きいTbx (COI−、M、)フェリ磁性非晶質
合金膜を使用しているため、再生特性が良好である。ま
た、記録特性についても再生層のフェリ磁性非晶質合金
膜に、これよりキューリ一温度の低い磁性膜からなる記
録層を組合わせて使用していることによって、再生層の
磁化反転が記録層のキューリ一温度近傍で起こるように
なるため、例えばTbFe1l単層の場合に比べて高感
度で、TbFe1lのみの単層膜を用いた場合と同程度
の良好な特性が得られる。
According to the present invention, the reproduction layer has a magneto-optical effect, that is, a large rotation angle and a Faraday rotation angle, and the reflected light m
Since a ferrimagnetic amorphous alloy film with a large Tbx (COI-, M,) is used, the reproduction characteristics are good. In addition, regarding the recording characteristics, by using the ferrimagnetic amorphous alloy film of the reproducing layer in combination with a recording layer made of a magnetic film with a lower Curie temperature than that of the ferrimagnetic amorphous alloy film, the magnetization reversal of the reproducing layer is caused by the recording layer. Since this occurs near the Curie temperature of , it is possible to obtain higher sensitivity than, for example, in the case of a single layer of TbFe1l, and as good characteristics as in the case of using a single layer of only TbFe11.

さらに、本発明においては再生層および記録層共にGd
Co11lのようなバイアス・スパッタリングでなく、
無バイアス・スパッタリング法や蒸着法といった基体へ
の熱負荷の小さい成膜法を用いて作製できるので、この
種の記録媒体で通常必要とされるプリグループを設は易
いポリメチルメタクリレート、ポリカーボネイト、エポ
キシ等の樹脂系基体を使用することができる。また、こ
のような樹脂系基体は気体透過性が良いため、磁性膜の
腐蝕が問題なるが、本発明によれば例えば樹脂系基体と
して光ビームに対して透明な材料を使用し、再生層と記
録層のうち再生層を基体側に成膜して基体の裏面側から
光ビームを照射して記録。
Furthermore, in the present invention, both the reproduction layer and the recording layer have Gd
Not bias sputtering like Co11l,
Polymethyl methacrylate, polycarbonate, and epoxy materials can be fabricated using film-forming methods that place a small heat load on the substrate, such as non-bias sputtering and vapor deposition, making it easy to create pre-groups that are normally required for this type of recording media. Resin-based substrates such as the following can be used. In addition, since such a resin base has good gas permeability, corrosion of the magnetic film is a problem, but according to the present invention, for example, a material transparent to the light beam is used as the resin base, and the reproduction layer and The reproduction layer of the recording layer is formed on the substrate side, and a light beam is irradiated from the back side of the substrate to record.

再生を行なえば、再生層のフェリ磁性非晶質合金膜の耐
腐蝕性が良好であるため基体を介しての記録層の腐蝕の
おそれがなく、且つ結晶化温度が高いことから長期にわ
たり安定な記録・再生が可能となり、長寿命化が図られ
ることになる。
During reproduction, the ferrimagnetic amorphous alloy film of the reproduction layer has good corrosion resistance, so there is no risk of corrosion of the recording layer through the substrate, and the high crystallization temperature makes it stable over a long period of time. Recording and playback will become possible, and the lifespan will be extended.

〔発明の実施例〕[Embodiments of the invention]

第1因は本発明の一実施例に係る光熱磁気記録媒体の記
録断面図である。第1図において、基体11は例えばポ
リメチルメタクリレート基板であり、この基体11上に
第1の保護層12として例えば5iiN+膜が形成され
、この上に再生層13として例えばTbCoT igI
が形成されている。
The first factor is a recording cross-sectional view of a photothermal magnetic recording medium according to an embodiment of the present invention. In FIG. 1, a substrate 11 is, for example, a polymethyl methacrylate substrate, on which a 5iiN+ film, for example, is formed as a first protective layer 12, and a reproducing layer 13, for example, TbCoT igI, is formed on this substrate 11.
is formed.

そして、再生層13上に記録層14として例えばTbF
e膜ガ形成され、この記録層14の上にさらに第2.1
3の保護層15.16として例えば5isN+膜、高分
子層が順次形成されている。
The recording layer 14 is formed on the reproducing layer 13 by using, for example, TbF.
A film 2.1 is formed on the recording layer 14.
As the protective layers 15 and 16 of No. 3, for example, a 5isN+ film and a polymer layer are sequentially formed.

第2図は本実施例で各層の成膜に使用したスパッタリン
グ装置の概略構成図である。第2図において成lI至と
してのチャンバ20には、ポリメチルメタクリレート基
体21と、これに対向して直径5インチ程度のCOター
ゲットの上にTb。
FIG. 2 is a schematic diagram of the sputtering apparatus used for forming each layer in this example. In FIG. 2, a chamber 20 as shown in FIG.

T1の薄い板状チップを所定の組成になるように所定数
量層いた複合ターゲット22を配置する。
A composite target 22 in which a predetermined number of T1 thin plate chips are layered to have a predetermined composition is arranged.

そして、チャンバ20に接続したガス導入パルプ23と
排気パルプ24によりチャンバ20内の真空度をlXl
0−’Torr以下にした後、チャンバ20内に高純度
のArガスを導入して3X10−”Torrの圧力にし
、高周波電源25から300W程度のRFパワーを印加
してスパッタリングを行ない、基体21上に約500人
のCoTbT igI26を成膜した。
Then, the degree of vacuum inside the chamber 20 is adjusted to lXl by the gas introduction pulp 23 and the exhaust pulp 24 connected to the chamber 20.
After reducing the pressure to 0-'Torr or less, high-purity Ar gas is introduced into the chamber 20 to a pressure of 3X10-'Torr, and RF power of about 300W is applied from the high-frequency power source 25 to perform sputtering, and sputtering is performed on the substrate 21. Approximately 500 CoTbT igI26 films were deposited.

このようにして形成されたCoTbTi膜26の状前2
6線回折で調べたところ、非晶質であった。また、この
膜の組成を分析した結果、T bss (COO,95
T i。1.os )84であった。さらに、磁場中で
偏光装置を用いて磁気カーヒステリシスループを測定し
たところ、この膜は膜面に垂直方向に磁化容易軸を有す
ることが確認され、極力−回転角は0.25”  (波
長λ−633nm ) J−大きく、保磁力は25℃で
1kOe、150℃で0.4kOeであった。また、四
端子法により結晶化温度を測定したところ、470℃で
あり、熱的安定性の良好なことが確認された。
The state of the CoTbTi film 26 formed in this way 2
When examined by 6-ray diffraction, it was found to be amorphous. Moreover, as a result of analyzing the composition of this film, T bss (COO, 95
Ti. 1. os) was 84. Furthermore, when we measured the magnetic Kerr hysteresis loop using a polarizer in a magnetic field, it was confirmed that this film has an axis of easy magnetization perpendicular to the film surface, and the maximum rotation angle is 0.25" (wavelength λ -633 nm) J-large, and the coercive force was 1 kOe at 25 °C and 0.4 kOe at 150 °C.In addition, when the crystallization temperature was measured by the four-terminal method, it was 470 °C, indicating good thermal stability. This was confirmed.

T b z (COI−y M y 、) l−X−の
組成が上、記と異なる例および比較例について同様に実
験を行なって、結晶化温度を測定した。その結果を第1
表に示す。
Similar experiments were conducted on examples and comparative examples in which the composition of T b z (COI-y M y ,) l-X- was different from the above, and the crystallization temperature was measured. The result is the first
Shown in the table.

本発明の実施例に基<Tbx(Cot−、M、)1.−
X膜は、Mを含まない’rbcogtより結晶化温度が
格段に高いことが上記の表から明らかであり、本発明の
有−幼性が裏付けられている。他のMについても同様の
効果が得られた。
Based on the embodiment of the present invention <Tbx(Cot-, M,)1. −
It is clear from the above table that the crystallization temperature of the X film is much higher than that of 'rbcogt which does not contain M, which supports the embryonic properties of the present invention. Similar effects were obtained with other M's.

次に、第1図に示した本発明の一実施例に基く光熱磁気
記録媒体を第2図に示したスパッタリング装置を使用し
て製造するプロセスについて説明する。
Next, a process for manufacturing a photothermal magnetic recording medium based on an embodiment of the present invention shown in FIG. 1 using the sputtering apparatus shown in FIG. 2 will be described.

まず、基体11として光学ヘッドガイド用溝を有する厚
さ1.5IIa、直径305m+のポリメチルメタクリ
レート基板を射出成型法により作製し、これを表面をフ
レオン洗浄し後、第2図のチャンバ20内に21で示す
如くセットした。チャンバ20内にはターゲット22と
してTb、)’−e。
First, a polymethyl methacrylate substrate with a thickness of 1.5IIa and a diameter of 305m+ having a groove for an optical head guide was fabricated by injection molding as the base 11, and after its surface was Freon-cleaned, it was placed in the chamber 20 of FIG. It was set as shown in 21. Inside the chamber 20 are Tb, )'-e as targets 22.

C0TiおよびSi3N+ターゲツトが配置されている
。この状態で、まずガス導入バルブ23と排気バルブ2
4をコントロールしてチャンバ20内の真空度をlXl
0−’Torr以下にした後、チャンバ20内に高純度
のArガスを流!10105cで導入し、チャンバ20
とクライオポンプとの間にあるゲートバルブの開度を調
節してチャンバ20内のガス圧を5x10−3Torr
に保持した。次に、基体21を回転しつつ3i3N+タ
ーゲツトに500WのRFパワーを印加して、20分間
スパッタリングを行ない、基体21上に第1の保護層1
2としての約1000人厚の3i3N+glを形成した
。次に、基体11上に形成された第1の保護層12とし
てのSi3N+IIl上に、TbターゲットとCoTi
合金ターゲットに所定の組成となるように直流電圧を同
時に印加して、2分間スパッタリングを行ない、再生層
13゛として約500人厚のTbCoTi1llを形成
した。この再生層13の上に、同様の方法により記録層
14とL/て約500人厚のTbFe1!を形成し、さ
らに第2の保護層15として約1000人厚のSi3N
+膜を形成した。さらに、これら多層膜が大気と接触す
るのを防ぐために、高分子層(封止層)16をスピンコ
ード法により塗布した。
C0Ti and Si3N+ targets are placed. In this state, first, the gas introduction valve 23 and the exhaust valve 2
4 to control the degree of vacuum in the chamber 20 to lXl.
After reducing the pressure to 0-'Torr or less, flow high-purity Ar gas into the chamber 20! 10105c, chamber 20
The gas pressure in the chamber 20 is adjusted to 5x10-3 Torr by adjusting the opening of the gate valve between the
was held at Next, while rotating the substrate 21, 500 W of RF power was applied to the 3i3N+ target and sputtering was performed for 20 minutes to form a first protective layer 1 on the substrate 21.
A 3i3N+gl with a thickness of about 1000 people as 2 was formed. Next, a Tb target and a CoTi
A direct current voltage was simultaneously applied to the alloy target so as to obtain a predetermined composition, and sputtering was performed for 2 minutes to form a TbCoTi film with a thickness of about 500 layers as the reproducing layer 13'. On top of this reproducing layer 13, a recording layer 14 is formed using a similar method to form a TbFe1 layer with a thickness of about 500 layers. , and furthermore, as a second protective layer 15, a Si3N layer with a thickness of about 1000 layers is formed.
+A film was formed. Furthermore, in order to prevent these multilayer films from coming into contact with the atmosphere, a polymer layer (sealing layer) 16 was applied by a spin code method.

以上のようにして作製された光熱磁気記録媒体をλ−8
30nn+の半導体レーザ、フォーカシングおよびトラ
ッキングサーボ系、信号検出系を備えた光学記録再生シ
ステムにセットし、1800rpmで回転させながら5
oonsecの周期で20Q n5eC幅、8mW、直
径1μ乳のパルス状レーザビームを照射し、且つ記録用
補助磁界300[Oe]を印加して記録ビットを形成し
た後、3mW、直径1μmの連続レーザビームを照射し
、その反射光(@先光)の極力−回転角を検出して記録
ビット信号(情報信号)を再生したところ、再生信号の
C/Nとして55dBが1qられた。
The photothermal magnetic recording medium produced as described above was
It was set in an optical recording and reproducing system equipped with a 30nn+ semiconductor laser, a focusing and tracking servo system, and a signal detection system, and was rotated at 1800 rpm.
After forming a recording bit by irradiating a pulsed laser beam of 20Q n5eC width, 8 mW, and a diameter of 1 μm with a period of oonsec and applying an auxiliary magnetic field for recording of 300 [Oe], a continuous laser beam of 3 mW and a diameter of 1 μm was applied. When the recording bit signal (information signal) was reproduced by detecting the rotation angle as much as possible of the reflected light (@front light), the C/N of the reproduced signal was 1q of 55 dB.

また、記録ビットの形状を偏光顕微鏡で観察したところ
、直径約1μmの円形磁区がコントラスト良く観察され
た。さらに、記録後媒体を恒温恒湿層中に放置し、1ケ
月後、3ケ月後における再生信号のC/N比を測定した
ところ、それぞれ54dB、55dBと、測定誤差内で
初期値と有意差が認められなかった。
Further, when the shape of the recording bit was observed using a polarizing microscope, a circular magnetic domain with a diameter of about 1 μm was observed with good contrast. Furthermore, after recording, the medium was left in a constant temperature and humidity layer, and the C/N ratio of the reproduced signal after one month and three months was measured, and the results were 54 dB and 55 dB, respectively, which were significantly different from the initial value within the measurement error. was not recognized.

本発明は上記した実施例に限定されるものではなく、例
えば実施例では記録層としてTbFe1!を例示したが
、TbFeCo、TbGdFe。
The present invention is not limited to the embodiments described above; for example, in the embodiments, the recording layer is TbFe1! were exemplified, but TbFeCo and TbGdFe.

TbDyFe、TbGdFeCo等の膜を使用した場合
でも同様の効果を得ることができ、要するに再生層より
低キユーリ一温度で、且つ高保磁力の磁性材料であれば
よい。また、実施例では基体として樹脂系材料を示した
が、ガラス、セラミックス等でもよい。さらに、実施例
では基体を透明として基体の裏面側から光ビームを入射
させるようにしたが、基体を不透明とし基体と反対側か
ら光ビームを入射させるようにした光熱磁気記録媒体に
も本発明を適用することができる。その他、本発明は要
旨を逸脱しない範囲で種々変形実施が可能である。
A similar effect can be obtained even when a film such as TbDyFe or TbGdFeCo is used, and in short, any magnetic material that has a lower Curie temperature than the reproducing layer and a high coercive force is sufficient. Further, in the embodiments, a resin material is used as the base material, but glass, ceramics, etc. may also be used. Furthermore, in the embodiment, the substrate is transparent and the light beam is incident from the back side of the substrate, but the present invention can also be applied to a photothermal magnetic recording medium in which the substrate is opaque and the light beam is incident from the side opposite to the substrate. Can be applied. In addition, various modifications can be made to the present invention without departing from the scope thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る光熱磁気記録媒体の構
成を示す断面図、第2図は光熱磁気記録媒体の各層の成
膜に使用するスパッタリング装置の一例を示す断面図で
ある。 11・・・基体、12,15.16・・・保護層、13
・・・再生層、14・・・記録層。
FIG. 1 is a sectional view showing the structure of a photothermal magnetic recording medium according to an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a sputtering apparatus used for forming each layer of the photothermal magnetic recording medium. 11... Base, 12, 15.16... Protective layer, 13
...Reproducing layer, 14...Recording layer.

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に該基体面に対して垂直な方向に磁化容易
軸を有する記録層および再生層を積層して構成され、少
なくとも光ビームの照射に基く熱によって情報を記録し
、光ビームの照射によって情報を再生する光熱磁気記録
媒体において、前記再生層がTb_x(CO_1_−_
yM_y)_1_−_x(但し、MはB、Al、C、S
i、Ge、P、Ti、Zr、Hf、V、Nb、Ta、C
r、Mo、Wの少なくとも1種からなる元素であり、X
は0.1≦x≦0.4の数、yは0.01≦y≦0.3
の数)のフェリ磁性非晶質合金膜であり、前記記録層が
前記再生層よりキューリー温度が低く、且つ保磁力が大
きい磁性膜であることを特徴とする光熱磁気記録媒体。
(1) Consisting of a recording layer and a reproducing layer that have an axis of easy magnetization in a direction perpendicular to the surface of the substrate, which are laminated on a substrate. In a photothermal magnetic recording medium that reproduces information by irradiation, the reproducing layer has Tb_x(CO_1_-_
yM_y)_1_-_x (However, M is B, Al, C, S
i, Ge, P, Ti, Zr, Hf, V, Nb, Ta, C
An element consisting of at least one of r, Mo, and W, and
is a number with 0.1≦x≦0.4, and y is 0.01≦y≦0.3
A photothermal magnetic recording medium, characterized in that the recording layer is a magnetic film having a lower Curie temperature and a larger coercive force than the reproducing layer.
(2)該光熱磁気記録媒体の磁気補償温度が常温以下で
あることを特徴とする特許請求の範囲第1項記載の光熱
磁気記録媒体。
(2) The photothermal magnetic recording medium according to claim 1, wherein the magnetic compensation temperature of the photothermal magnetic recording medium is below room temperature.
(3)前記基体が前記光ビームに対して透明であり、前
記再生層および記録層が該基体上に再生層、記録層の順
で積層されていることを特徴とする特許請求の範囲第1
項記載の光熱磁気記録媒体。
(3) The base is transparent to the light beam, and the reproduction layer and the recording layer are laminated on the base in the order of the reproduction layer and the recording layer.
The photothermal magnetic recording medium described in .
(4)基体が樹脂系材料により形成されていることを特
徴とする特許請求の範囲第1項または第2項記載の光熱
磁気記録媒体。
(4) The photothermal magnetic recording medium according to claim 1 or 2, wherein the substrate is made of a resin material.
JP16898184A 1984-08-13 1984-08-13 Thermooptical magnetic recording medium Pending JPS6148148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16898184A JPS6148148A (en) 1984-08-13 1984-08-13 Thermooptical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16898184A JPS6148148A (en) 1984-08-13 1984-08-13 Thermooptical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6148148A true JPS6148148A (en) 1986-03-08

Family

ID=15878139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16898184A Pending JPS6148148A (en) 1984-08-13 1984-08-13 Thermooptical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6148148A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151806A (en) * 1984-08-21 1986-03-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS6153703A (en) * 1984-08-23 1986-03-17 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62154346A (en) * 1985-12-27 1987-07-09 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62185266A (en) * 1986-02-12 1987-08-13 Canon Inc Optical recording medium
US4710431A (en) * 1986-03-13 1987-12-01 U.S. Philips Corporation Magnetooptical recording element and a magnetooptical recording device
JPS6370944A (en) * 1986-09-12 1988-03-31 Canon Inc Magneto-optical recording medium
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium
JPH01224960A (en) * 1988-03-03 1989-09-07 Nec Corp Magneto-optical recording medium
JPH03111844A (en) * 1989-09-27 1991-05-13 Fuji Photo Film Co Ltd Amplifying and forming method for color image
US5273836A (en) * 1987-04-14 1993-12-28 Yamaha Corporation Magnetooptic recording material
US5340647A (en) * 1988-11-04 1994-08-23 Fuji Photo Film Co., Ltd. Optomagnetic recording medium
US5527605A (en) * 1989-02-16 1996-06-18 Hoechst Aktiengesellschaft Magnetooptic layer and a process for its fabrication

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151806A (en) * 1984-08-21 1986-03-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS6153703A (en) * 1984-08-23 1986-03-17 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
JP2587408B2 (en) * 1985-12-27 1997-03-05 日立マクセル株式会社 Magneto-optical recording medium
JPS62154346A (en) * 1985-12-27 1987-07-09 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62185266A (en) * 1986-02-12 1987-08-13 Canon Inc Optical recording medium
US4710431A (en) * 1986-03-13 1987-12-01 U.S. Philips Corporation Magnetooptical recording element and a magnetooptical recording device
JPS6370944A (en) * 1986-09-12 1988-03-31 Canon Inc Magneto-optical recording medium
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium
US5273836A (en) * 1987-04-14 1993-12-28 Yamaha Corporation Magnetooptic recording material
JPH01224960A (en) * 1988-03-03 1989-09-07 Nec Corp Magneto-optical recording medium
US5340647A (en) * 1988-11-04 1994-08-23 Fuji Photo Film Co., Ltd. Optomagnetic recording medium
US5527605A (en) * 1989-02-16 1996-06-18 Hoechst Aktiengesellschaft Magnetooptic layer and a process for its fabrication
JPH03111844A (en) * 1989-09-27 1991-05-13 Fuji Photo Film Co Ltd Amplifying and forming method for color image

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
US5783320A (en) Magneto-optical recording medium and process for producing the same
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JPS6148148A (en) Thermooptical magnetic recording medium
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
US5666346A (en) Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
US5639563A (en) Magneto-optical recording medium
JPS61196445A (en) Photomagnetic disk
US4777082A (en) Optical magnetic recording medium
JP2550633B2 (en) Photothermal magnetic recording medium
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
KR890004262B1 (en) Optical magnetic disk
JPS6132242A (en) Optothermomagnetic recording medium
JPH0350344B2 (en)
JPS61196444A (en) Photomagnetic disk
JPH0350343B2 (en)
JPS6332748A (en) Information recording medium
JPS6148149A (en) Thermooptical magnetic recording medium
JPS6168748A (en) Photomagnetic recording medium
JPS62172547A (en) Photomagnetic recording medium
JPS6332753A (en) Information recording method
JPS6314344A (en) Information recording medium
JPS6398855A (en) Magneto-optical recording medium
JPH03260939A (en) Magneto-optical recording method and magneto-optical recording medium
JPH06251445A (en) Magneto-optical recording medium and information reproducing method using this medium