JPH06251445A - Magneto-optical recording medium and information reproducing method using this medium - Google Patents

Magneto-optical recording medium and information reproducing method using this medium

Info

Publication number
JPH06251445A
JPH06251445A JP3813793A JP3813793A JPH06251445A JP H06251445 A JPH06251445 A JP H06251445A JP 3813793 A JP3813793 A JP 3813793A JP 3813793 A JP3813793 A JP 3813793A JP H06251445 A JPH06251445 A JP H06251445A
Authority
JP
Japan
Prior art keywords
layer
film
magneto
magnetic
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3813793A
Other languages
Japanese (ja)
Other versions
JP3101462B2 (en
Inventor
Naoki Nishimura
直樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05038137A priority Critical patent/JP3101462B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE69331924T priority patent/DE69331924T2/en
Priority to EP93306690A priority patent/EP0586175B1/en
Priority to EP01201745A priority patent/EP1143434A3/en
Priority to ES93306690T priority patent/ES2176194T3/en
Publication of JPH06251445A publication Critical patent/JPH06251445A/en
Priority to US08/643,833 priority patent/US5616428A/en
Priority to US08/774,721 priority patent/US5889739A/en
Application granted granted Critical
Publication of JP3101462B2 publication Critical patent/JP3101462B2/en
Priority to US09/820,734 priority patent/USRE38501E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make possible reproduction of magnetic domains smaller than a beam spot diameter and to attain high-density recording by having a first magnetic layer which turns to an intra-surface magnetized film on heating up and a second magnetic layer consisting of a perpendicularly magnetized film. CONSTITUTION:This magneto-optical medium has two layers; the reproducing layer which is the perpendicularly magnetized film at room temp. and turns to the intra- surface magnetized film on heating up and the recording layer which is the perpendicularly magnetized film even at room temp. and on heating up. Information signals are first recorded on the recording layer. The recording is executed by modulating external magnetic fields while irradiating the recording layer with a laser beam of such power at which the recording layer is heated up to its Curie temp. or above or by modulating the laser power while impressing the magnetic fields in a recording direction after once erasing the signals. A need for the initializing magnetic fields is, therefore, eliminated and inter-code interference is suppressed even if bit synchronization is smaller than the beam diameter of the laser beam. Information is thus reproduced with high C/N.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光により情報の記録再生を行う光磁気記録媒
体及び該媒体を用いた情報再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam utilizing a magneto-optical effect and an information reproducing method using the medium.

【0002】[0002]

【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。
2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.

【0003】近年、この光磁気記録媒体の記録密度を高
めて更に大容量の記録媒体とする要求が、高まってい
る。
In recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to make it a recording medium having a larger capacity.

【0004】ところで、光磁気記録媒体等の光ディスク
の線記録密度は、主として再生光学系のレーザー波長、
対物レンズの開口数に大きく依存する。
The linear recording density of an optical disk such as a magneto-optical recording medium is mainly determined by the laser wavelength of the reproducing optical system,
It depends largely on the numerical aperture of the objective lens.

【0005】すなわち再生光学系のレーザー波長λと対
物レンズの開口数NAが決まると、検出限界となるビッ
トの周期はλ/2NAと決まる。
That is, when the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens are determined, the bit period which is the detection limit is determined to be λ / 2NA.

【0006】したがって、従来の光ディスクで高密度化
を実現するためには、再生光学系のレーザー波長を短く
し、対物レンズの開口数NAを大きくする必要がある。
Therefore, in order to realize high density in the conventional optical disk, it is necessary to shorten the laser wavelength of the reproducing optical system and increase the numerical aperture NA of the objective lens.

【0007】しかしながら、レーザー波長や対物レンズ
の開口数の改善にも限度がある。このため、記録媒体の
構成や読み取り方法を工夫し、記録密度を改善する技術
が開発されている。
However, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.

【0008】たとえば、特開平3−93058において
は、再生層と記録層からなる媒体を用いて、外部磁界を
一方向に印加しながら、記録層に保持された信号を再生
層に転写して再生時の符号間干渉を減少させ、光の回折
限界以下の周期の信号を再生可能とし、線記録密度の向
上を試みている。
For example, in Japanese Patent Laid-Open No. 3-93058, a medium composed of a reproducing layer and a recording layer is used, and an external magnetic field is applied in one direction while a signal held in the recording layer is transferred to the reproducing layer for reproduction. We are trying to improve the linear recording density by reducing the intersymbol interference and making it possible to reproduce signals with a period less than the light diffraction limit.

【0009】[0009]

【発明が解決しようとする課題】しかしながら特開平3
−93058記載の光磁気再生方法では、再生の際に再
生層の磁化を外部磁界により一方向に揃えなけらばなら
ない。そのため再生時に磁界を印加することが必要とな
る。このため前記再生方法は、光磁気記録装置が複雑化
し、コストが高くなる等の問題点を有している。
[Patent Document 1] Japanese Unexamined Patent Application Publication No.
In the magneto-optical reproduction method described in -93058, the magnetization of the reproduction layer must be aligned in one direction by an external magnetic field during reproduction. Therefore, it is necessary to apply a magnetic field during reproduction. Therefore, the reproducing method has problems that the magneto-optical recording apparatus becomes complicated and the cost becomes high.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題に鑑
み、再生時に磁界を印加することなく、光の回折限界以
下の周期の信号を再生可能な高密度光磁気記録媒体及び
該媒体を用いた情報再生方法の提供を目的とする。
In view of the above problems, the present invention uses a high density magneto-optical recording medium capable of reproducing a signal having a period equal to or shorter than the diffraction limit of light without applying a magnetic field during reproduction, and a medium using the medium. The purpose is to provide a method of reproducing information that has been used.

【0011】ぞして、上記目的は、室温では垂直磁化
膜、高温領域においては面内磁化膜となる再生層と垂直
磁化膜からなる記録層を有してなる光磁気記録媒体によ
って達成される。
The above object can be achieved by a magneto-optical recording medium having a perpendicular magnetic film at room temperature and a recording layer composed of a perpendicular magnetic film and a reproducing layer which becomes an in-plane magnetic film in a high temperature region. .

【0012】又、室温において垂直磁化膜で、昇温する
と面内磁化膜になる第1磁性層と、垂直磁化膜からなる
第2磁性層を有する光磁気記録媒体を用いて、前記媒体
に光ビ−ムスポットを照射し、前記スポット内の高温部
分においては前記第1磁性層を面内磁化膜とし、低温部
分においては前記第1磁性層を垂直磁化膜とすると共に
前記第2磁性層と交換結合させ、前記第1磁性層の磁化
を前記第2磁性層の情報に基づく磁化の方向に対して安
定な方向にならわし、前記スポット内の前記第1磁性層
の垂直磁化膜部分の影響による前記光ビ−ムの磁気光学
変化を検出することにより情報の再生を行うことによっ
て達成される。
A magneto-optical recording medium having a first magnetic layer, which is a perpendicular magnetic film at room temperature and becomes an in-plane magnetic film when the temperature is raised, and a second magnetic layer made of a perpendicular magnetic film, is used to apply light to the medium. A beam spot is irradiated, the first magnetic layer serves as an in-plane magnetized film in a high temperature portion of the spot, and the first magnetic layer serves as a perpendicular magnetized film in a low temperature portion and the second magnetic layer is formed. Due to exchange coupling, the magnetization of the first magnetic layer is aligned in a stable direction with respect to the magnetization direction based on the information of the second magnetic layer, and the influence of the perpendicular magnetic film portion of the first magnetic layer in the spot is exerted. This is achieved by reproducing the information by detecting the magneto-optical change of the light beam.

【0013】[0013]

【実施例】以下、図面を用いて本発明の光磁気記録媒体
及び該媒体を用いた情報再生方法について詳しく説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The magneto-optical recording medium of the present invention and the information reproducing method using the medium will be described below in detail with reference to the drawings.

【0014】本発明の光磁気記録媒体は、室温で垂直磁
化膜であり、昇温すると面内磁化膜に変化する再生層と
室温及び昇温時においても垂直磁化膜である記録層の2
層を少なくとも有する。尚、前記再生層及び記録層は互
いが垂直磁化膜である時には互いに交換結合する。
The magneto-optical recording medium of the present invention is a perpendicularly magnetized film at room temperature, a reproducing layer which changes into an in-plane magnetized film when heated, and a recording layer which is a vertically magnetized film even at room temperature and at elevated temperature.
Having at least a layer. The reproducing layer and the recording layer are exchange-coupled to each other when they are perpendicularly magnetized films.

【0015】再生層としては、例えば希土類−鉄族非晶
質合金、例えば、GdCo,GdFeCo,GdTbF
eCo,GdDyFeCo,NdGdFeCoなどが望
ましい。好ましくは、磁気異方性が小さいもの、室温と
キュリー温度の間に補償温度があるものが望ましい。
The reproducing layer is, for example, a rare earth-iron group amorphous alloy such as GdCo, GdFeCo, GdTbF.
eCo, GdDyFeCo, NdGdFeCo, etc. are desirable. It is preferable that the magnetic anisotropy is small and the compensation temperature is between room temperature and the Curie temperature.

【0016】又、記録層としては、垂直磁気異方性が大
きいもの、例えば希土類−鉄族非晶質合金、例えば、T
bFeCo,DyFeCo,TbDyFeCoなど、も
しくはガーネット、あるいは、白金族ー鉄族周期構造
膜、例えば、Pt/Co,Pd/Co 白金族−鉄族合金、例えばPt
Co,PdCoなどが望ましい。
The recording layer has a large perpendicular magnetic anisotropy, for example, a rare earth-iron group amorphous alloy such as T.
bFeCo, DyFeCo, TbDyFeCo, etc., or garnet, or a platinum group-iron group periodic structure film, for example, Pt / Co, Pd / Co platinum group-iron group alloy, for example Pt
Co, PdCo, etc. are desirable.

【0017】又、再生層と記録層には、Cr,Al,Ti,Pt,Nb
などの耐食性改善のための元素添加を行なっても良い。
The reproducing layer and the recording layer are made of Cr, Al, Ti, Pt, Nb.
It is also possible to add elements for improving corrosion resistance such as.

【0018】又更に、上記再生層と記録層に加えて、干
渉効果を高めるために、SiN,AlOx,TaOx,SiOx等の誘電体
などを設けても良い。また、熱伝導性改良のためAl,
AlNx,AlTa,AlTi,AlCr,Cuなどを
設けても良い。
Further, in addition to the reproducing layer and the recording layer, a dielectric such as SiN, AlOx, TaOx, SiOx may be provided in order to enhance the interference effect. Also, to improve the thermal conductivity, Al,
AlNx, AlTa, AlTi, AlCr, Cu or the like may be provided.

【0019】又、交換結合力を調節するなどの中間層、
記録補助、再生補助のための補助層を設けても良い。更
に保護膜として前記誘電体層や高分子樹脂からなる保護
コートを付与しても良い。
Further, an intermediate layer for adjusting exchange coupling force,
An auxiliary layer for recording assistance and reproduction assistance may be provided. Further, a protective coat made of the dielectric layer or polymer resin may be provided as a protective film.

【0020】以下に本発明の情報再生方法を説明する。The information reproducing method of the present invention will be described below.

【0021】図1Aに示すように、まず本発明の光磁気
記録媒体の記録層に情報信号を記録する。記録は記録層
がキュリー温度以上になるようなパワーのレーザー光を
照射しながら外部磁界を変調して行うか、もしくは、一
度消去した後に、記録方向に磁界を印加しながらレーザ
ーパワーを変調して行う。もしくは、外部磁界を印加し
ながらレーザーパワーを変調して行なう。
As shown in FIG. 1A, first, an information signal is recorded on the recording layer of the magneto-optical recording medium of the present invention. Recording is performed by irradiating the external magnetic field while irradiating the laser beam with the power such that the recording layer becomes the Curie temperature or higher, or after erasing once, the laser power is modulated while applying the magnetic field in the recording direction. To do. Alternatively, the laser power is modulated while applying an external magnetic field.

【0022】この時、光スポット内の所定領域のみが記
録層のキュリー温度近傍になる様に記録媒体の線速度を
考慮してレーザー光の強度を決定すれば、光スポットの
径以下の記録磁区が形成でき、その結果、光の回折限界
以下の周期の信号を記録できる。
At this time, if the intensity of the laser light is determined in consideration of the linear velocity of the recording medium so that only a predetermined area within the light spot will be near the Curie temperature of the recording layer, the recording magnetic domain not larger than the diameter of the light spot will be recorded. Can be formed, and as a result, a signal having a period equal to or shorter than the diffraction limit of light can be recorded.

【0023】情報再生時には、媒体に再生レーザー光を
照射するが、このとき照射部分の温度が上昇する。媒体
は一定の速さで移動するため、媒体上の温度分布は図3
に示す様に媒体の移動方向の延びた形状となり、光スポ
ット内の一部(光スポットの移動方向に対する後縁部)
が高温となった温度分布となる。
At the time of reproducing information, the medium is irradiated with a reproducing laser beam, and at this time, the temperature of the irradiated portion rises. Since the medium moves at a constant speed, the temperature distribution on the medium is shown in Fig. 3.
As shown in the figure, it becomes a shape that extends in the moving direction of the medium, and part of the inside of the light spot (the trailing edge with respect to the moving direction of the light spot)
Becomes a high temperature distribution.

【0024】ところで単層の磁性薄膜について、飽和磁
化をMS 、垂直磁気異方性定数をKuとした時、 K⊥=Ku−2πMS 2 で定義される実効的垂直磁気異方性定数K⊥により、磁
化の主な向きが決定されることが知られている。ここで
2πMs 2は反磁界エネルギーである。例えば、再生層が
図5で示されるMs、Kuの温度依存性を持つならば、
再生層のMsは再生時には温度が上昇するため、大きく
なる。このため図6で示す様に2πMs2は急激に大き
くなって垂直磁気異方性定数Kuとの大小関係が逆転
し、 K⊥<0 となって面内磁化膜となる。
With respect to a single-layer magnetic thin film, when the saturation magnetization is M S and the perpendicular magnetic anisotropy constant is Ku, the effective perpendicular magnetic anisotropy constant K defined by K⊥ = Ku-2πM S 2 It is known that ⊥ determines the main direction of magnetization. Here, 2πM s 2 is the demagnetizing energy. For example, if the reproducing layer has the temperature dependence of M s and Ku shown in FIG.
The Ms of the reproduction layer increases because the temperature rises during reproduction. Therefore, as shown in FIG. 6, 2πMs 2 rapidly increases and the magnitude relationship with the perpendicular magnetic anisotropy constant Ku is reversed, so that K⊥ <0 and the in-plane magnetized film is obtained.

【0025】即ち、図2で示される様に光スポットの一
部である高温部において再生層の磁化が面内磁化膜とな
る様に、再生時のレ−ザ−光の強度及び線速度を考慮し
て再生層の飽和磁化MS 、垂直磁気異方性定数Kuを設
定しておけば、光スポット内の高温部のみが面内磁化膜
となり、他の部分は垂直磁化膜という状態が実現する。
垂直磁化膜である再生層は記録層と交換結合によって磁
気的に結合されるので、再生層の磁化方向は記録層の情
報に基づく磁化方向に対して安定な方向にならってい
る。即ち、記録層に記録された情報が再生層に転写され
ている。そして、転写されている情報は、再生層の磁気
光学効果(詳しくは再生層から反射されたレ−ザ−光の
磁気光学効果)によって光学信号に変換されて検出され
る。この場合、光スポット内の再生層が面内磁化膜の部
分は磁気光学効果が生じない。
That is, as shown in FIG. 2, the intensity and the linear velocity of the laser light at the time of reproduction are set so that the magnetization of the reproduction layer becomes an in-plane magnetized film in the high temperature portion which is a part of the light spot. If the saturation magnetization M S and the perpendicular magnetic anisotropy constant Ku of the reproducing layer are set in consideration, only the high temperature portion in the light spot becomes the in-plane magnetic film, and the other portions become the perpendicular magnetic film. To do.
Since the reproducing layer, which is a perpendicularly magnetized film, is magnetically coupled to the recording layer by exchange coupling, the magnetization direction of the reproducing layer is stable with respect to the magnetization direction based on the information of the recording layer. That is, the information recorded in the recording layer is transferred to the reproducing layer. Then, the transferred information is converted into an optical signal by the magneto-optical effect of the reproducing layer (specifically, the magneto-optical effect of laser light reflected from the reproducing layer) and detected. In this case, the magneto-optical effect does not occur in the portion where the reproducing layer in the light spot is the in-plane magnetized film.

【0026】尚、上述では再生層と記録層が交換相互作
用により磁気的に結合する場合を述べたが、再生時に記
録層と再生層が静磁結合によって磁気的に結合されると
してもよい。又、この磁性薄膜を垂直磁化膜と直接もし
くは中間層等を介して積層する場合、垂直磁化膜からの
交換結合力、静磁結合力などが働くため、面内磁化とな
る温度領域は高温側にシフトするが、単層膜での面内磁
化転移温度をやや低めに設定しておけば、垂直磁化膜と
積層した場合にも、室温において垂直磁化膜で、高温に
おいて面内磁化膜となる状況が成立する。
Although the reproducing layer and the recording layer are magnetically coupled by the exchange interaction in the above description, the recording layer and the reproducing layer may be magnetically coupled by magnetostatic coupling during reproduction. Also, when this magnetic thin film is laminated directly on the perpendicular magnetization film or through an intermediate layer, etc., since the exchange coupling force and the magnetostatic coupling force from the perpendicular magnetization film work, the temperature region where the in-plane magnetization occurs is the high temperature side. However, if the in-plane magnetization transition temperature of the single-layer film is set slightly lower, it becomes a perpendicular magnetization film at room temperature and becomes an in-plane magnetization film at high temperature even when laminated with a perpendicular magnetization film. The situation holds.

【0027】以上の様に、本発明の光磁気記録媒体を用
いた情報再生方法においては、初期化磁界を必要とせず
に、ビット周期がレーザー光のビーム径よりも小さい場
合においても、符号間干渉が抑えられ、高C/Nで情報
の再生が行える。
As described above, in the information reproducing method using the magneto-optical recording medium of the present invention, even if the bit period is smaller than the beam diameter of the laser beam without requiring an initializing magnetic field, the intersymbol Interference is suppressed, and information can be reproduced with high C / N.

【0028】次に、上述した光磁気記録媒体を改良し、
図1Bで示される再生層と記録層の間に中間層を設けた
場合について述べる。
Next, the above magneto-optical recording medium is improved,
A case where an intermediate layer is provided between the reproducing layer and the recording layer shown in FIG. 1B will be described.

【0029】中間層は、再生層と記録層の間に位置し、
キュリー温度は、室温よりも高く再生層及び記録層のキ
ュリー温度よりも低い。中間層の材料としては、例えば
希土類−鉄族非晶質合金、例えば、TbFe、GdF
e、TbFeCo、GdFeCoもしくはそれらにA
l、Cu、Crなどの非磁性元素を添加したものなどが
挙げられる。
The intermediate layer is located between the reproducing layer and the recording layer,
The Curie temperature is higher than room temperature and lower than the Curie temperatures of the reproducing layer and the recording layer. Examples of the material of the intermediate layer include rare earth-iron group amorphous alloys such as TbFe and GdF.
e, TbFeCo, GdFeCo or A to them
Examples thereof include those to which a non-magnetic element such as 1, Cu and Cr is added.

【0030】この中間層は、図4Aに示す様に、そのキ
ュリー温度に達するまでは再生層に記録層からの交換結
像力を媒介する役割を果たしており、記録層の情報は再
生層に転写される。
As shown in FIG. 4A, this intermediate layer plays a role of mediating the exchange imaging force from the recording layer to the reproducing layer until the Curie temperature is reached, and the information of the recording layer is transferred to the reproducing layer. To be done.

【0031】しかし中間層のキュリー温度に達した高温
部分では、再生層と記録層との交換結合は切断される。
このため、再生層は記録層からの交換結合力が失われる
ため、見かけ上他の部分より垂直磁化異方性定数は小さ
くなる。したがって見かけ上の垂直磁気異方性と反磁界
エネルギーの大小が逆転し、再生層の磁化方向は面内方
向に配向するようになる。
However, in the high temperature portion of the intermediate layer which has reached the Curie temperature, the exchange coupling between the reproducing layer and the recording layer is broken.
For this reason, the exchange coupling force from the recording layer is lost in the reproducing layer, so that the perpendicular magnetization anisotropy constant is apparently smaller than in other portions. Therefore, the magnitude of the apparent perpendicular magnetic anisotropy and the demagnetizing field energy are reversed, and the magnetization direction of the reproducing layer is oriented in the in-plane direction.

【0032】このようにキュリー温度の低い中間層を設
けた場合には、再生層に、単層状態にて昇温すると垂直
磁化膜から面内磁化膜となる特性を示さなくとも(換言
すれば、室温からキュリー温度まで面内磁化膜であって
も)、中間層、記録層との積層状態において、再生層が
室温において垂直磁化膜で昇温すると面内磁化膜となる
状態を実現することも可能となる。このため材料選択の
幅が広がるなどの利点がある。
When the intermediate layer having a low Curie temperature is provided as described above, even if the reproducing layer does not exhibit the characteristic of changing from the perpendicularly magnetized film to the in-plane magnetized film when the temperature is raised in a single layer state (in other words, , Even if it is an in-plane magnetized film from room temperature to the Curie temperature), in the laminated state of the intermediate layer and the recording layer, it is possible to realize a state in which when the temperature of the reproducing layer is increased by the perpendicular magnetized film at room temperature, it becomes the in-plane magnetized film. Will also be possible. Therefore, there is an advantage that the range of material selection is widened.

【0033】このように、図4Bに示す様に再生層の光
スポット内の一部(再生層が面内磁化膜になっていない
部分、即ち低温部分)が垂直磁化膜となっているので、
この部分においては再生層と記録層は交換結合して再生
層には記録層の情報が転写されている。そして、転写さ
れている情報は、再生層の磁気光学効果(詳しくは再生
層から反射されたレ−ザ−光の磁気光学効果)によって
光学信号に変換されて検出される。尚、他の部分は面内
磁化膜となって磁気光学効果が生じないため、より高密
度の記録がなされても良好に高解像をもって再生するこ
とが可能となる。
Thus, as shown in FIG. 4B, part of the light spot of the reproducing layer (the portion where the reproducing layer is not the in-plane magnetized film, that is, the low temperature portion) is the perpendicular magnetized film.
In this portion, the reproducing layer and the recording layer are exchange-coupled, and the information of the recording layer is transferred to the reproducing layer. Then, the transferred information is converted into an optical signal by the magneto-optical effect of the reproducing layer (specifically, the magneto-optical effect of laser light reflected from the reproducing layer) and detected. Since the other portions become in-plane magnetized films and the magneto-optical effect does not occur, it is possible to reproduce with high resolution satisfactorily even if higher density recording is performed.

【0034】以下に実験例をもって本発明を詳細に説明
するが、本発明はその要旨を越えない限り以下の実験例
に限定されるものではない。
The present invention will be described in detail below with reference to experimental examples, but the present invention is not limited to the following experimental examples as long as the gist thereof is not exceeded.

【0035】(実験例1)直流マグネトロンスパッタリ
ング装置に、Si、Tb,Gd,Fe,Coの各タ−ゲ
ットを取り付け、ガラス基板を基板ホルダーに固定した
後、1×10-5Pa以下の高真空になるまでチャンバ−
内をクライオポンプで真空排気した。
(Experimental Example 1) Each target of Si, Tb, Gd, Fe, and Co was attached to a DC magnetron sputtering apparatus, and a glass substrate was fixed to a substrate holder, and then a height of 1 × 10 -5 Pa or less was obtained. Chamber until vacuum
The inside was evacuated with a cryopump.

【0036】真空排気をしながらArガスを0.4Pa
となるまでチャンバ−内に導入した後、SiN層を80
0Å成膜し、ついで再生層としてGdFeCo層400
Å成膜し、次いで記録層としてTbFeCo層を400
Å成膜し、次いで保護膜としてSiN層を700Å成膜
した。
Ar gas is supplied to 0.4 Pa while evacuation is performed.
The SiN layer to 80%
0Å film is formed, and then a GdFeCo layer 400 is formed as a reproducing layer.
Å Film formation, then 400 TbFeCo layer as recording layer
Å was formed, and then a SiN layer was formed as a protective film at 700Å.

【0037】SiN層成膜時にはArガスに加えてN2
ガスを導入し、直流反応性スパッタにより成膜した。
At the time of forming the SiN layer, in addition to Ar gas, N 2
A gas was introduced, and a film was formed by DC reactive sputtering.

【0038】GdFeCo層、TbFeCo層は、G
d,Fe,Co,Tbの各タ−ゲットに直流パワーを印
加して同時スパッタにより成膜し、その組成は、スパッ
タ成膜時の各タ−ゲットのパワ−を変えることにより調
節した。
The GdFeCo layer and the TbFeCo layer are G
Direct-current power was applied to each of the d, Fe, Co, and Tb targets to form a film by co-sputtering, and the composition thereof was adjusted by changing the power of each target during sputtering film formation.

【0039】GdFeCo層の組成は、補償温度が12
0℃でキュリー温度は400℃以上となる様に設定し
た。
The composition of the GdFeCo layer has a compensation temperature of 12
The Curie temperature was set to 400 ° C or higher at 0 ° C.

【0040】TbFeCo層の組成は、補償温度が室温
以下でキュリー温度は200℃となる様に設定した。
The composition of the TbFeCo layer was set so that the compensation temperature was room temperature or lower and the Curie temperature was 200 ° C.

【0041】この積層膜を温度を上げながら、磁界0の
時の残留θK を測定したところ、図6に示した様に15
0℃付近での残留カー回転角が消失し、面内磁化膜とな
ることが確認された。
When the residual θ K when the magnetic field was 0 was measured while raising the temperature of this laminated film, it was 15 as shown in FIG.
It was confirmed that the residual Kerr rotation angle at around 0 ° C disappeared and an in-plane magnetized film was formed.

【0042】(実施例2)次にφ130mmのプリグル
ーブのあるポリカーボネイト基板を装着した以外は実験
例1と同じ膜構成の光磁気記録媒体を作成した。次に、
この光磁気記録媒体を用いて、記録再生特性を測定し
た。
Example 2 Next, a magneto-optical recording medium having the same film structure as in Experimental Example 1 was prepared except that a polycarbonate substrate having a 130 mm diameter pregroove was mounted. next,
Recording and reproducing characteristics were measured using this magneto-optical recording medium.

【0043】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは8
mW、線速度9m/sとして、記録層に5.8〜13M
Hzのキャリア信号を磁界変調方式で書き込み(記録磁
界±300Oe)、C/N比の記録周波数依存性を調べ
た。再生パワーはC/N比が最大となる様に設定した。
結果を表1に示した。
N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. Recording power is 8
5.8 to 13 M on the recording layer at mW and linear velocity of 9 m / s
A carrier signal of Hz was written by a magnetic field modulation method (recording magnetic field ± 300 Oe), and the recording frequency dependence of the C / N ratio was examined. The reproduction power was set so that the C / N ratio was maximized.
The results are shown in Table 1.

【0044】(実施例3)直流マグネトロンスパッタリ
ング装置に、Si、Tb,Gd,Fe,Coの各タ−ゲ
ットを取り付け、プリグル−ブを設けたポリカーボネイ
ト樹脂基板を基板ホルダーに固定した後、1×10-5
a以下の高真空になるまでチャンバ−内をクライオポン
プで真空排気した。
(Embodiment 3) Each target of Si, Tb, Gd, Fe and Co was attached to a DC magnetron sputtering apparatus, and a polycarbonate resin substrate provided with a pre-groove was fixed to a substrate holder and then 1 ×. 10 -5 P
The interior of the chamber was evacuated by a cryopump until a high vacuum of a or less was obtained.

【0045】真空排気をしながらArガスを0.4Pa
となるまでチャンバ−内に導入した後、SiN層を82
0Å成膜し、ついで再生層としてGdFeCo層400
Å成膜し、次いで中間層としてTbFeCoAl層を5
0Å成膜し、次いで記録層としてTbFeCo層を30
0Å成膜し、次いで保護膜としてSiN層を700Å成
膜して、本発明の光磁気記録媒体を作成した。
Ar gas is supplied at 0.4 Pa while evacuation is performed.
And then the SiN layer 82.
0Å film is formed, and then a GdFeCo layer 400 is formed as a reproducing layer.
Å Film formation, then 5 TbFeCoAl layer as an intermediate layer
0 Å film is formed, and then a TbFeCo layer is formed as a recording layer 30
A 0 Å film was formed, and then a 700 Å SiN layer was formed as a protective film to prepare a magneto-optical recording medium of the present invention.

【0046】SiN層成膜時にはArガスに加えてN2
ガスを導入し、直流反応性スパッタにより成膜した。
At the time of forming the SiN layer, N 2 is added in addition to Ar gas.
A gas was introduced, and a film was formed by DC reactive sputtering.

【0047】GdFeCo層、TbFeCo層は、G
d,Fe,Co,Tbの各タ−ゲットに直流パワーを印
加して同時スパッタにより成膜し、その組成は、スパッ
タ成膜時の各タ−ゲットのパワ−を変えることにより調
節した。
The GdFeCo layer and the TbFeCo layer are G
Direct-current power was applied to each of the d, Fe, Co, and Tb targets to form a film by co-sputtering, and the composition thereof was adjusted by changing the power of each target during sputtering film formation.

【0048】GdFeCo再生層は、補償温度が130
℃でキュリー温度は350℃以上となる様に設定した。
The GdFeCo reproducing layer has a compensation temperature of 130.
The Curie temperature was set to 350 ° C. or higher in ° C.

【0049】TbFeCoAl中間層は、補償温度が室
温以下でキュリー温度は150℃となる様に設定した。
The TbFeCoAl intermediate layer was set so that the compensation temperature was not higher than room temperature and the Curie temperature was 150 ° C.

【0050】TbFeCo記録層は、補償温度が室温以
下でキュリー温度は200℃となる様に設定した。
The TbFeCo recording layer was set so that the compensation temperature was room temperature or lower and the Curie temperature was 200 ° C.

【0051】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは
7.8mW、線速度9m/sとして、記録層に5.8〜
12MHzのキャリア信号を2MHzおきに磁界変調方
式で書き込み(記録磁界±300Oe)、C/N比の記
録周波数依存性を調べた。再生パワーはC/N比が最大
となる様に設定した。結果を表1に示した。
N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. The recording power is 7.8 mW and the linear velocity is 9 m / s.
A 12 MHz carrier signal was written every 2 MHz by a magnetic field modulation method (recording magnetic field ± 300 Oe), and the recording frequency dependence of the C / N ratio was examined. The reproduction power was set so that the C / N ratio was maximized. The results are shown in Table 1.

【0052】(比較実施例)再生層を削除し、TbFe
Co記録層を800Åとした以外は実験例2と同様の構
成の光磁気記録媒体を作成し、同様にC/N比の記録周
波数依存性を調べた。結果を表1に示した。表1から、
本発明の方法を採用すると高い記録周波数においても良
好なC/N比が得られることがわかる。
(Comparative Example) TbFe was removed by removing the reproducing layer.
A magneto-optical recording medium having the same structure as in Experimental Example 2 was prepared except that the Co recording layer was set to 800 Å, and the recording frequency dependence of the C / N ratio was similarly examined. The results are shown in Table 1. From Table 1,
It can be seen that when the method of the present invention is adopted, a good C / N ratio can be obtained even at a high recording frequency.

【0053】(実験例4)実施例3と同様の方法で、以
下の膜厚、組成条件の光磁気記録媒体を作成した。
(Experimental Example 4) By the same method as in Example 3, a magneto-optical recording medium having the following film thickness and composition conditions was prepared.

【0054】SiN層を780Å成膜し、ついで再生層
としてGdFeCo層400Å成膜し、次いで中間層と
してTbFeCoSiを100Å成膜し、記録層として
TbFeCo層を300Å成膜し、次いで保護膜として
SiN層を700Å成膜した。
A SiN layer was formed in a thickness of 780 Å, a GdFeCo layer was formed in a thickness of 400 Å as a reproducing layer, TbFeCoSi was formed in an amount of 100 Å as an intermediate layer, a TbFeCo layer was formed in an amount of 300 Å as a recording layer, and then a SiN layer was formed as a protective film. Was deposited to 700Å.

【0055】GdFeCo層の組成は、補償温度が11
0℃でキュリー温度は320℃となる様に設定した。
The composition of the GdFeCo layer has a compensation temperature of 11
The Curie temperature was set to 320 ° C. at 0 ° C.

【0056】TbFeCoSi層の組成は、補償温度が
室温以下でキュリー温度は110℃となる様に設定し
た。
The composition of the TbFeCoSi layer was set so that the compensation temperature was below room temperature and the Curie temperature was 110 ° C.

【0057】TbFeCo層の組成は、補償温度が室温
以下でキュリー温度は200℃となる様に設定した。
The composition of the TbFeCo layer was set so that the compensation temperature was not higher than room temperature and the Curie temperature was 200 ° C.

【0058】作成後に実施例2、3と同様に記録再生特
性を評価した。結果を表1に示した。
After production, the recording / reproducing characteristics were evaluated in the same manner as in Examples 2 and 3. The results are shown in Table 1.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【発明の効果】本発明の光磁気記録媒体及び該媒体を用
いた情報再生方法を用いれば、初期化磁石が不要な簡素
な装置(従来の装置)を用いて、ビームスポット径より
小さい磁区の再生が可能となり、高密度記録の達成が可
能となった。
According to the magneto-optical recording medium of the present invention and the information reproducing method using the medium, a simple device (conventional device) that does not require an initializing magnet can be used to generate a magnetic domain smaller than the beam spot diameter. Playback became possible and high density recording was achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは本発明の光磁気記録媒体の膜構成を示す模
式図 Bは本発明の光磁気記録媒体の膜構成の改良形を示す模
式図
FIG. 1A is a schematic view showing a film structure of a magneto-optical recording medium of the present invention. B is a schematic view showing an improved form of the film structure of a magneto-optical recording medium of the present invention.

【図2】図1A図示の光磁気記録媒体を用いた本発明の
情報再生方法を説明する図
FIG. 2 is a diagram for explaining an information reproducing method of the present invention using the magneto-optical recording medium shown in FIG. 1A.

【図3】媒体移動時の光スポット周辺の媒体の温度分布
を表す模式図
FIG. 3 is a schematic diagram showing a temperature distribution of a medium around a light spot when the medium is moved.

【図4】図1のB図示の光磁気記録媒体を用いた本発明
の情報再生方法を説明する図
FIG. 4 is a diagram illustrating an information reproducing method of the present invention using the magneto-optical recording medium shown in FIG. 1B.

【図5】再生層の2πMs2 と垂直磁気異方性定数Ku
の温度依存性の一例を示した図
FIG. 5: 2πMs 2 of reproducing layer and perpendicular magnetic anisotropy constant Ku
Diagram showing an example of the temperature dependence of

【図6】本発明の光磁気記録媒体のカー回転角の温度依
存性を示した図
FIG. 6 is a graph showing the temperature dependence of the Kerr rotation angle of the magneto-optical recording medium of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室温において垂直磁化膜で、昇温すると
面内磁化膜になる第1磁性層と、垂直磁化膜からなる第
2磁性層を有することを特徴とする光磁気記録媒体。
1. A magneto-optical recording medium comprising a first magnetic layer which is a perpendicular magnetization film at room temperature and which becomes an in-plane magnetization film when heated, and a second magnetic layer which is a perpendicular magnetization film.
【請求項2】 請求項1の光磁気記録媒体において、 前記第1磁性層と第2磁性層の間に前記第1磁性層、第
2磁性層よりキュリ−温度が低い垂直磁化膜からなる第
3磁性層を設けたことを特徴とする光磁気記録媒体。
2. The magneto-optical recording medium according to claim 1, comprising a perpendicular magnetic film having a Curie temperature lower than that of the first magnetic layer and the second magnetic layer between the first magnetic layer and the second magnetic layer. A magneto-optical recording medium having three magnetic layers.
【請求項3】 室温において垂直磁化膜で、昇温すると
面内磁化膜になる第1磁性層と、垂直磁化膜からなる第
2磁性層を有する光磁気記録媒体を用いて、前記媒体に
光ビ−ムスポットを照射し、前記スポット内の高温部分
においては前記第1磁性層を面内磁化膜とし、低温部分
においては前記第1磁性層を垂直磁化膜とすると共に前
記第2磁性層と交換結合させ、前記第1磁性層の磁化を
前記第2磁性層の情報に基づく磁化の方向に対して安定
な方向にならわし、前記スポット内の前記第1磁性層の
垂直磁化膜部分の影響による前記光ビ−ムの磁気光学変
化を検出することにより情報の再生を行うことを特徴と
する光磁気記録媒体の情報再生方法。
3. A magneto-optical recording medium having a perpendicular magnetic film at room temperature, which has a first magnetic layer which becomes an in-plane magnetic film when heated, and a second magnetic layer which is a perpendicular magnetic film. A beam spot is irradiated, the first magnetic layer serves as an in-plane magnetized film in a high temperature portion of the spot, and the first magnetic layer serves as a perpendicular magnetized film in a low temperature portion and the second magnetic layer is formed. Due to exchange coupling, the magnetization of the first magnetic layer is aligned in a stable direction with respect to the magnetization direction based on the information of the second magnetic layer, and the influence of the perpendicular magnetic film portion of the first magnetic layer in the spot is exerted. An information reproducing method for a magneto-optical recording medium, characterized in that information is reproduced by detecting a magneto-optical change of the optical beam.
JP05038137A 1992-08-28 1993-02-26 Magneto-optical recording medium and information reproducing method using the medium Expired - Fee Related JP3101462B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP05038137A JP3101462B2 (en) 1993-02-26 1993-02-26 Magneto-optical recording medium and information reproducing method using the medium
EP93306690A EP0586175B1 (en) 1992-08-28 1993-08-24 A magnetooptical recording medium and information recording and reproducing methods using the recording medium
EP01201745A EP1143434A3 (en) 1992-08-28 1993-08-24 A magnetooptical recording medium and information recording and reproducing methods using the recording medium
ES93306690T ES2176194T3 (en) 1992-08-28 1993-08-24 MAGNETOPOPTIC RECORDING SUPPORT AND RECORDING AND REPRODUCTION METHODS OF INFORMATION USED IN RECORDING SUPPORT.
DE69331924T DE69331924T2 (en) 1992-08-28 1993-08-24 Magneto-optical recording medium and information recording and reproducing method therewith
US08/643,833 US5616428A (en) 1992-08-28 1996-05-07 Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US08/774,721 US5889739A (en) 1992-08-28 1997-01-03 Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US09/820,734 USRE38501E1 (en) 1992-08-28 2001-03-30 Magnetooptical recording medium and information recording and reproducing methods using the recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05038137A JP3101462B2 (en) 1993-02-26 1993-02-26 Magneto-optical recording medium and information reproducing method using the medium

Publications (2)

Publication Number Publication Date
JPH06251445A true JPH06251445A (en) 1994-09-09
JP3101462B2 JP3101462B2 (en) 2000-10-23

Family

ID=12517043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05038137A Expired - Fee Related JP3101462B2 (en) 1992-08-28 1993-02-26 Magneto-optical recording medium and information reproducing method using the medium

Country Status (1)

Country Link
JP (1) JP3101462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945228A (en) * 1996-04-23 1999-08-31 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for reproducing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945228A (en) * 1996-04-23 1999-08-31 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium and method for reproducing thereof

Also Published As

Publication number Publication date
JP3101462B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JPH06290496A (en) Magneto-optical recording medium, reproducing method and reproducing device
US5830589A (en) Magneto-optical recording medium, and information reproducing method using the medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US5656384A (en) Magnetooptical recording medium, method for producing the same, method for recording or reproducing information in or from the same
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
US5666346A (en) Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
KR100271114B1 (en) Magneto-optical recording medium and information reproducing method using this medium
US5774429A (en) Magneto-optical recording medium, and information recording/reproduction method using the medium
US5732049A (en) Magneto-optical recording medium of super-resolution type using in-plane magnetic layer, and information reproducing method using the same medium
JP3101462B2 (en) Magneto-optical recording medium and information reproducing method using the medium
US20030175554A1 (en) Magneto-optic recording medium recordable at ultrahigh recording density
JPH06309729A (en) Magneto-optical recording medium and method for reproducing information with the same
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium
JP2003303456A (en) Magneto-optical recording medium and method for manufacturing the same
JPH06309716A (en) Magneto-optical recording medium and reproducing method using the same
JPH06274958A (en) Magneto-optical recording medium, method for recording and reproducing information using the medium
JP2005050400A (en) Magneto-optical recording medium
JP2000207791A (en) Magnetic storage medium
JPH10308043A (en) Information reproducing method and information reproducing device
JPH08315436A (en) Magneto-optical recording medium and information recording and reproducing method using that medium
JP2000021036A (en) Magnetic recording medium and its reproducing method
JPH10275370A (en) Magneto-optical recording and reproducing method and magneto-optical recording medium
JPH08315435A (en) Magneto-optical recording medium
JPH0935347A (en) Magneto-optical recording medium and reproducing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

LAPS Cancellation because of no payment of annual fees