JPH08315436A - Magneto-optical recording medium and information recording and reproducing method using that medium - Google Patents
Magneto-optical recording medium and information recording and reproducing method using that mediumInfo
- Publication number
- JPH08315436A JPH08315436A JP11453195A JP11453195A JPH08315436A JP H08315436 A JPH08315436 A JP H08315436A JP 11453195 A JP11453195 A JP 11453195A JP 11453195 A JP11453195 A JP 11453195A JP H08315436 A JPH08315436 A JP H08315436A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic layer
- magnetic
- magneto
- recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光により情報の記録再生を行う光磁気記録媒
体に関し、媒体の高密度化を可能とする光磁気再生方法
および光磁気記録媒体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam by utilizing a magneto-optical effect, and a magneto-optical reproducing method and a magneto-optical recording capable of increasing the density of the medium. It concerns media.
【0002】[0002]
【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。
また近年、この光磁気記録媒体の記録密度を高めて更に
大容量の記録媒体とする要求が高まっている。2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.
Further, in recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to make it a recording medium having a larger capacity.
【0003】この光磁気記録媒体等の光ディスクの線記
録密度は、再生光学系のレーザー波長、対物レンズの開
口数に大きく依存する。すなわち、再生光学系のレーザ
ー波長λと対物レンズの開口数NAが決まるとビームウ
エストの径が決まるため、再生検出可能なマーク周期
は、λ/2NA程度が限界となってしまう。The linear recording density of an optical disk such as the magneto-optical recording medium largely depends on the laser wavelength of the reproducing optical system and the numerical aperture of the objective lens. That is, since the diameter of the beam waist is determined when the laser wavelength λ of the reproduction optical system and the numerical aperture NA of the objective lens are determined, the mark period that can be reproduced and detected is limited to about λ / 2NA.
【0004】一方、トラック密度は、主としてクロスト
ークによって制限されている。このクロストークは、主
として媒体面上でのレーザービームの分布(プロファイ
ル)で決まり、前記マーク周期と同様にλ/2NAの関
数で表される。On the other hand, track density is limited mainly by crosstalk. This crosstalk is mainly determined by the distribution (profile) of the laser beam on the medium surface, and is represented by a function of λ / 2NA, like the mark period.
【0005】したがって、従来の光ディスクで高密度化
を実現するためには、再生光学系のレーザー波長を短く
し、対物レンズの開ロ数NAを大きくする必要がある。
しかしながら、レーザーの波長を短くするのは、素子の
効率低下や発熱などの問題で容易ではなく、また対物レ
ンズの開ロ数を大きくすると、レンズとディスクの距離
が近づき過ぎて衝突などの機械的問題が発生する。その
ため、記録媒体の構成や読み取り方法を工夫し、記録密
度を改善する技術が開発されている。Therefore, in order to realize high density in the conventional optical disk, it is necessary to shorten the laser wavelength of the reproducing optical system and increase the numerical aperture NA of the objective lens.
However, it is not easy to shorten the laser wavelength due to problems such as reduced efficiency of the element and heat generation, and when the numerical aperture of the objective lens is increased, the distance between the lens and the disk becomes too close and mechanical such as collision occurs. The problem occurs. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.
【0006】たとえば特開平3−93056号公報にお
いては、再生層と中間層と記録層からなる媒体を用いて
記録密度の向上を試みている。これは再生層、中間層お
よび記録層を設けた構成の媒体をある線速度で進行させ
ながら光スポットを照射し、その際に生じる媒体の温度
分布のうち、高温領域の再生層の磁化を外部磁界の方向
に一様とし、低温領域の再生層のみが記録層の磁区情報
が転写され再生できるようにして、再生時の符号間干渉
を減少させ、光の回折限界以下の周期の信号を再生可能
とし、記録密度の向上を試みている。For example, Japanese Patent Laid-Open No. 3-93056 attempts to improve the recording density by using a medium composed of a reproducing layer, an intermediate layer and a recording layer. This is because a medium having a reproducing layer, an intermediate layer and a recording layer is irradiated with a light spot while advancing at a certain linear velocity, and in the temperature distribution of the medium generated at that time, the magnetization of the reproducing layer in the high temperature region is The magnetic field information of the recording layer is transferred and reproduced only in the reproducing layer in the low temperature region by making it uniform in the direction of the magnetic field, reducing the intersymbol interference during reproduction, and reproducing the signal with a period less than the light diffraction limit. If possible, we are trying to improve the recording density.
【0007】また、たとえば特開平3−93058号公
報においては、基本的には再生層と記録層からなる媒体
を用いて記録密度の向上を試みている。これは図3に示
すように、再生層1、補助層2、中間層3および記録層
4を設けた構成の媒体をある線速度で進行(進行方向
9)させながら(図3(b))、その媒体に、情報再生
に先立って初期化磁界12により再生層1の磁化の向き
を−方向に揃えて記録層4の磁区情報をマスクした後に
光スポットを照射し、その際に生じる媒体の温度分布
(図3(c))の高温領域で、記録層4の磁区情報を再
生磁界11の補助により再生層1に転写されるようにし
て再生スポットの実効的な大きさを小さくすることによ
り、光の回折限界以下の記録マークを再生可能とし、線
密度および記録密度の向上を図っている。Further, for example, in Japanese Patent Laid-Open No. 3-93058, an attempt is made to improve the recording density by basically using a medium composed of a reproducing layer and a recording layer. As shown in FIG. 3, a medium having a reproducing layer 1, an auxiliary layer 2, an intermediate layer 3 and a recording layer 4 is moved at a certain linear velocity (direction 9 of movement) (FIG. 3 (b)). Prior to the information reproduction, the medium is irradiated with a light spot after masking the magnetic domain information of the recording layer 4 by aligning the magnetization direction of the reproducing layer 1 in the − direction with the initialization magnetic field 12, and By reducing the effective size of the reproducing spot by transferring the magnetic domain information of the recording layer 4 to the reproducing layer 1 with the assistance of the reproducing magnetic field 11 in the high temperature region of the temperature distribution (FIG. 3C). The recording marks below the diffraction limit of light can be reproduced to improve the linear density and the recording density.
【0008】[0008]
【発明が解決しようとする課題】しかしながら前記の特
開平3−93056号公報および特開平3−93058
号公報記載の光磁気記録媒体では、良好なS/N(C/
N)を得るために、記録層の磁区情報を十分マスクでき
る程度に再生層の膜厚を大きくする必要がある。具体的
には、特開平4−255938号公報に記載されている
通り、再生層の膜厚が15nm以下では再生層の下の層
の影響が25%以上出るため超解像再生が不可能とな
り、必要な信号を得るためには20nm、実用的には3
0nm以上の膜厚の再生層が必要となる。このように前
記光磁気記録媒体では、記録層の磁区情報をマスクする
必要があるために、再生層ひいては全磁性層の膜厚を低
減することができない。However, the above-mentioned JP-A-3-93056 and JP-A-3-93058.
In the magneto-optical recording medium described in Japanese Patent Laid-Open Publication No.
In order to obtain N), it is necessary to increase the thickness of the reproducing layer so that the magnetic domain information of the recording layer can be sufficiently masked. Specifically, as described in JP-A-4-255938, when the film thickness of the reproducing layer is 15 nm or less, the influence of the layer below the reproducing layer is 25% or more, and thus super-resolution reproduction becomes impossible. , 20nm to get the required signal, practically 3
A reproducing layer having a film thickness of 0 nm or more is required. As described above, in the magneto-optical recording medium, since it is necessary to mask the magnetic domain information of the recording layer, it is not possible to reduce the film thickness of the reproducing layer and thus the total magnetic layer.
【0009】近年、光磁気記録媒体の線速度を上げて記
録速度を高める要求が高まっているが、磁性層の膜厚が
大きい媒体は全体の熱容量が高いため、記録に大きな光
パワーを要する。半導体レーザー等の光パワーの出力に
は限度があるので、前記光磁気記録媒体はこの要求に応
えることが困難である。また、反射層を設けてエンハン
ス構造としてC/Nを上昇させることができない。In recent years, there has been an increasing demand for increasing the recording speed by increasing the linear velocity of a magneto-optical recording medium. However, a medium having a large magnetic layer thickness has a high heat capacity as a whole, and thus requires a large optical power for recording. Since the output of optical power of a semiconductor laser or the like is limited, it is difficult for the magneto-optical recording medium to meet this demand. Further, it is impossible to increase the C / N as an enhanced structure by providing a reflective layer.
【0010】さらに磁性材料は一般に材料コストの高い
希土類金属を用いることが多く、厚膜の磁性層を用いる
と媒体の材料費が高くなり、安価な光磁気記録媒体を提
供することが難しい。Further, rare earth metals, which are generally high in material cost, are often used as the magnetic material, and when a thick magnetic layer is used, the material cost of the medium becomes high, and it is difficult to provide an inexpensive magneto-optical recording medium.
【0011】従って、前記のような光磁気記録媒体およ
び方法においては、磁気超解像による高密度化を高速記
録と同時に実現し、安価な光磁気記録媒体で提供するこ
とが困難である。Therefore, in the above-described magneto-optical recording medium and method, it is difficult to realize high density recording by magnetic super-resolution at the same time as high-speed recording and provide an inexpensive magneto-optical recording medium.
【0012】また、前記の光磁気記録媒体および方法に
おいては、再生時に外部磁界を印加することが必要であ
り、磁気超解像による高密度化を安価な光磁気記録装置
で提供することが困難である。Further, in the above-described magneto-optical recording medium and method, it is necessary to apply an external magnetic field during reproduction, and it is difficult to provide a high-density magnetic super-resolution with an inexpensive magneto-optical recording device. Is.
【0013】そこで本発明は上記問題に鑑み、磁気超解
像を全磁性層を薄膜化した光磁気記録媒体で実現し、高
速記録が可能で低材料コストの高密度光磁気記録媒体お
よびその媒体を用いた良好な情報記録再生方法を提供す
ることを目的とする。In view of the above problems, the present invention realizes magnetic super-resolution in a magneto-optical recording medium in which all magnetic layers are thinned, and high-speed recording is possible with a high-density magneto-optical recording medium of low material cost and the medium. An object of the present invention is to provide a good information recording / reproducing method using.
【0014】[0014]
【課題を解決するための手段】上記目的は、少なくとも
各々垂直磁化膜からなる第1磁性層、第2磁性層、第3
磁性層が、光の入射面より第1磁性層、第3磁性層、第
2磁性層の順に基板上に積層され、前記第1磁性層と前
記第2磁性層は交換結合した状態では、全体の磁化の向
きが反平行であり、前記3磁性層は反強磁性から強磁性
へと可逆的に転移する室温より高い温度(磁性転移温度
と称する)を持つ磁気相転移材料からなり、室温では前
記第1磁性層と前記第2磁性層とが静磁的に結合しこれ
らの同種の元素の副格子磁気モーメントが逆方向に配向
し、前記第3磁性層が強磁性へと転移する温度以上で
は、交換結合により前記第1磁性層と前記第2磁性層の
同種の元素の副格子磁気モーメントが互いに平行に配向
することを特徴とする光磁気記録媒体によって達成され
る。The above-mentioned object is to provide a first magnetic layer, a second magnetic layer, and a third magnetic layer each of which is at least a perpendicular magnetization film.
The magnetic layer is laminated on the substrate in the order of the first magnetic layer, the third magnetic layer, and the second magnetic layer from the light incident surface, and when the first magnetic layer and the second magnetic layer are exchange-coupled, Magnetization directions are antiparallel, and the three magnetic layers are made of a magnetic phase transition material having a temperature (called magnetic transition temperature) higher than room temperature at which reversible transition from antiferromagnetism to ferromagnetism occurs. Above the temperature at which the first magnetic layer and the second magnetic layer are magnetostatically coupled, the sublattice magnetic moments of these same kind elements are oriented in opposite directions, and the third magnetic layer transitions to ferromagnetism. In the present invention, the magneto-optical recording medium is characterized in that the sublattice magnetic moments of the same element in the first magnetic layer and the second magnetic layer are oriented parallel to each other by exchange coupling.
【0015】さらに本発明は、第2磁性層に情報が記録
された上記の光磁気記録媒体に光スポットを照射して、
該光スポット内の領域で第3磁性層が前記磁性転移温度
より低温である領域では該第3磁性層を反強磁性相と
し、第1磁性層と第2磁性層を静磁結合させて第1磁性
層と第2磁性層の副格子磁化の向きを相互に逆向きと
し、光スポット内の領域で第3磁性層が前記磁性転移温
度以上の温度である領域では第3磁性層を強磁性相と
し、第1磁性層と第2磁性層を交換結合させて、第2磁
性層の磁化情報を磁気光学効果により光学信号に変換し
て、該信号を記録信号として読み出す光磁気記録媒体の
情報記録再生方法を提供する。Further, the present invention irradiates a light spot on the above-mentioned magneto-optical recording medium having information recorded on the second magnetic layer,
In a region where the third magnetic layer has a temperature lower than the magnetic transition temperature in the region within the light spot, the third magnetic layer has an antiferromagnetic phase, and the first magnetic layer and the second magnetic layer are magnetostatically coupled to each other. The directions of the sublattice magnetizations of the first magnetic layer and the second magnetic layer are opposite to each other, and the third magnetic layer is ferromagnetic in the region where the temperature of the third magnetic layer is equal to or higher than the magnetic transition temperature in the region of the light spot. Information of a magneto-optical recording medium in which the first magnetic layer and the second magnetic layer are exchange-coupled with each other, the magnetization information of the second magnetic layer is converted into an optical signal by a magneto-optical effect, and the signal is read as a recording signal. A recording / reproducing method is provided.
【0016】本発明の光磁気記録媒体は、少なくとも各
々垂直磁化膜からなる第1磁性層、第2磁性層および第
3磁性層が、光の入射面より第1磁性層、第3磁性層、
第2磁性層の順に基板上に積層され、第1磁性層と第2
磁性層は交換結合した状態では、全体の磁化の向きが反
平行であり、第3磁性層は反強磁性から強磁性へと可逆
的に転移する磁気相転移材料からなり、室温では第1磁
性層と第2磁性層とが静磁的に結合しこれらの同種の元
素の副格子磁気モーメントが逆方向に配向し、第3磁性
層が強磁性へと転移する温度以上では、交換結合により
第1磁性層と第2磁性層の同種の元素の副格子磁気モー
メントが互いに平行に配向するものである。In the magneto-optical recording medium of the present invention, at least the first magnetic layer, the second magnetic layer, and the third magnetic layer, each of which is a perpendicular magnetization film, have the first magnetic layer, the third magnetic layer, and
The second magnetic layer is laminated on the substrate in this order, and the first magnetic layer and the second magnetic layer are formed.
In the exchange-coupled state, the magnetization direction of the magnetic layer is antiparallel, and the third magnetic layer is made of a magnetic phase transition material that reversibly transitions from antiferromagnetism to ferromagnetism. Above the temperature at which the layer and the second magnetic layer are magnetostatically coupled to each other, the sublattice magnetic moments of these similar elements are oriented in opposite directions, and the third magnetic layer transitions to ferromagnetism. The sublattice magnetic moments of the same element in the first magnetic layer and the second magnetic layer are oriented parallel to each other.
【0017】このため、第1磁性層と第2磁性層は、第
3磁性層が反強磁性相である低温領域では、互いに静磁
的に結合しており、第1磁性層と第2磁性層のそれぞれ
の副格子磁気モーメントが互いに逆向きである。また、
第3磁性層が強磁性相である高温領域では、第3磁性層
を介して第1磁性層と第2磁性層は交換結合するため、
第1磁性層と第2磁性層のそれぞれの副格子磁気モーメ
ントが平行となる。そして、低温では、第1磁性層と第
2磁性層のそれぞれの副格子磁気モーメントが互いに逆
向きであり、これらの層のカー回転角(θk)が見かけ
上0となるようにしてある。このため、本発明の光磁気
記録媒体で再生を行う際には、光スポット内の一部の高
温領域においてのみ第2磁性層に記録された磁化情報が
検出され、光スポット内低温領域においては、レーザー
光が第1磁性層を透過した場合においても第2磁性層の
磁区情報が検出されることがない。従って、前記の特開
平3−93058号公報記載の超解像方法における記録
層の磁区情報のマスキングの必要性はなくなり、再生層
ひいては磁性層全体の膜厚を小さくすることが可能とな
る。よって、本発明の光磁気記録媒体および再生方法で
は、高線速記録が実現でき記録速度が向上し、コストが
低減し、同時に反射膜構成の膜構造にすることもできる
ため、エンハンス効果によるC/N上昇も可能となる。Therefore, the first magnetic layer and the second magnetic layer are magnetostatically coupled to each other in the low temperature region where the third magnetic layer is in the antiferromagnetic phase, and thus the first magnetic layer and the second magnetic layer. The sublattice magnetic moments of the layers are in opposite directions. Also,
In the high temperature region where the third magnetic layer is in the ferromagnetic phase, the first magnetic layer and the second magnetic layer are exchange-coupled via the third magnetic layer,
The sublattice magnetic moments of the first magnetic layer and the second magnetic layer are parallel to each other. At low temperatures, the sublattice magnetic moments of the first magnetic layer and the second magnetic layer are opposite to each other, and the Kerr rotation angle (θk) of these layers is apparently zero. Therefore, when reproducing with the magneto-optical recording medium of the present invention, the magnetization information recorded in the second magnetic layer is detected only in a part of the high temperature region in the light spot, and in the low temperature region in the light spot. Even when the laser beam passes through the first magnetic layer, the magnetic domain information of the second magnetic layer is not detected. Therefore, it is not necessary to mask the magnetic domain information of the recording layer in the super-resolution method described in the above-mentioned Japanese Patent Laid-Open No. 3-93058, and the thickness of the reproducing layer and thus the entire magnetic layer can be reduced. Therefore, in the magneto-optical recording medium and the reproducing method of the present invention, high linear velocity recording can be realized, the recording speed can be improved, the cost can be reduced, and at the same time, a film structure having a reflective film structure can be obtained, so that C / N can be increased.
【0018】また、本出願人は、特開平6−31444
3において、少なくとも再生層と第1磁性層と第2磁性
層からなる光磁気記録媒体を提案しているが、その媒体
と比較しても、本発明の媒体では再生層と第1磁性層を
1つの層としたため、さらに層の数を減らすことができ
る。また、本発明の光磁気記録媒体および再生方法で
は、再生時に外部磁界を印加する必要がないため、磁気
超解像による高密度化を安価な光磁気記録装置で提供す
ることが可能である。The applicant of the present invention has also filed Japanese Patent Application Laid-Open No. 6-31444.
3 proposes a magneto-optical recording medium composed of at least a reproducing layer, a first magnetic layer and a second magnetic layer. Even when compared with the medium, the reproducing layer and the first magnetic layer are included in the medium of the present invention. Since the number of layers is one, the number of layers can be further reduced. Further, according to the magneto-optical recording medium and the reproducing method of the present invention, since it is not necessary to apply an external magnetic field during reproduction, it is possible to provide high density by magnetic super-resolution in an inexpensive magneto-optical recording device.
【0019】[0019]
【作用】以下、図面を用いて本発明の光磁気記録媒体お
よびその媒体を用いた記録および再生の方法について詳
しく説明する。The magneto-optical recording medium of the present invention and the recording / reproducing method using the medium will be described in detail below with reference to the drawings.
【0020】以下、第1磁性層を再生層、第2磁性層を
記録層、第3磁性層を中間層と称して取り扱う。Hereinafter, the first magnetic layer is referred to as a reproducing layer, the second magnetic layer is referred to as a recording layer, and the third magnetic layer is referred to as an intermediate layer.
【0021】本発明の光磁気記録媒体は、図1(a)に
示すように、少なくとも再生層、中間層、記録層を積層
してなるものである。またより特性を向上させるために
さらに反射層を設けると良い。さらに記録層と反射層の
間に誘電体からなる干渉層を設けても良い。この干渉層
を設けると、記録層から反射層に容易に熱が逃げないた
め、低パワーで記録できるエンハンス構造となるため、
C/Nが改善される等のメリットがある。As shown in FIG. 1A, the magneto-optical recording medium of the present invention comprises at least a reproducing layer, an intermediate layer and a recording layer which are laminated. Further, a reflective layer may be further provided in order to further improve the characteristics. Further, an interference layer made of a dielectric material may be provided between the recording layer and the reflective layer. When this interference layer is provided, heat does not easily escape from the recording layer to the reflective layer, so that the enhanced structure allows recording with low power,
There are merits such as improved C / N.
【0022】再生層としては、例えば希土類−鉄族非晶
質合金、例えばGdFeCo、TbFeCo、GdTb
FeCo、GdDyFeCo、NdGdFeCo、Gd
Coなどが望ましい。As the reproducing layer, for example, a rare earth-iron group amorphous alloy, for example, GdFeCo, TbFeCo, GdTb.
FeCo, GdDyFeCo, NdGdFeCo, Gd
Co or the like is preferable.
【0023】中間層は再生層と記録層の間に位置し、室
温では反強磁性で、昇温すると再生層が垂直磁化膜に転
移する温度付近で反強磁性から強磁性へと転移し、室温
になると再び反強磁性体に戻るような可逆的に磁気相転
移する材料からなる。なお反強磁性から強磁性に転移す
る温度と、強磁性から反強磁性に転移する温度は一致し
なくとも良い。そして、光スポット内の低温領域で、中
間層は反強磁性で記録層から再生層への交換力を遮断
し、高温領域では中間層は強磁性となって、交換結合力
を媒介する働きを主に持つ。The intermediate layer is located between the reproducing layer and the recording layer, and is antiferromagnetic at room temperature, and when the temperature rises, it changes from antiferromagnetic to ferromagnetic near the temperature at which the reproducing layer transitions to the perpendicular magnetization film. It consists of a material that reversibly undergoes a magnetic phase transition such that it returns to an antiferromagnetic material at room temperature. The temperature at which the antiferromagnetism transitions to the ferromagnetism and the temperature at which the ferromagnetism transitions to the antiferromagnetism do not have to match. Then, in the low temperature region in the light spot, the intermediate layer is antiferromagnetic and blocks the exchange force from the recording layer to the reproducing layer, and in the high temperature region, the intermediate layer becomes ferromagnetic and functions to mediate the exchange coupling force. Mainly has.
【0024】中間層の材料としては、例えば、FeRh
もしくはMnSbもしくはMnCrSbもしくはHfT
aFeもしくはMnPtを主に含む磁性膜などが良い。
この中でFeRhは、室温以上の磁気相転移温度を持つ
磁性膜を容易に得ることができるので最も望ましい。ま
た磁気相転移温度を調節する等の目的で、FeRhにP
d、Pt、Ir等の添加元素を添加してもよい。中間層
の膜厚は、小さすぎると室温で記録層からの交換力を遮
断するのに不十分で、大きすぎると記録の際にレーザー
パワーが大きくなってしまう。そのため中間層の膜厚は
望ましくは1nm〜15nmが好ましく、さらに好まし
くは4nm〜10nm以下である。また、中間層が反強
磁性から強磁性へと転移する温度は、少なくとも再生時
の光スポット内の最高温度と室温との間にあることが必
要で、具体的には、80℃〜250℃の範囲内、望まし
くは120℃〜200℃の範囲内とする。The material of the intermediate layer is, for example, FeRh.
Or MnSb or MnCrSb or HfT
A magnetic film mainly containing aFe or MnPt is preferable.
Among them, FeRh is most preferable because it can easily obtain a magnetic film having a magnetic phase transition temperature of room temperature or higher. In addition, P is added to FeRh for the purpose of adjusting the magnetic phase transition temperature.
You may add additional elements, such as d, Pt, and Ir. If the thickness of the intermediate layer is too small, it is insufficient to block the exchange force from the recording layer at room temperature, and if it is too large, the laser power during recording becomes large. Therefore, the thickness of the intermediate layer is preferably 1 nm to 15 nm, more preferably 4 nm to 10 nm or less. The temperature at which the intermediate layer transitions from antiferromagnetism to ferromagnetism needs to be at least between the maximum temperature in the light spot during reproduction and room temperature, and specifically, 80 ° C to 250 ° C. And preferably in the range of 120 ° C to 200 ° C.
【0025】また再生層、中間層および記録層は、上記
高温領域においては、光が透過してθkがキャンセルで
きる程度に薄くする必要があり、少なくとも30nm以
下、好ましくは20nm以下、さらに好ましくは15n
mである。In the high temperature region, the reproducing layer, the intermediate layer and the recording layer need to be thin enough to allow light to pass therethrough and cancel θk, and at least 30 nm or less, preferably 20 nm or less, more preferably 15 n.
m.
【0026】次に記録層は、垂直磁気異方性が大きく安
定に磁化状態が保持できるものが好適で、中でも、Tb
FeCo、DyFeCo、TbDyFeCoなどの希土
類−鉄族非晶質合金が最も望ましい。あるいは、ガーネ
ット;Pt/Co、Pd/Coなどの白金族−鉄族周期
構造膜;PtCo、PdCoなどの白金族−鉄族合金な
どを用いても良い。Next, the recording layer is preferably one having a large perpendicular magnetic anisotropy and capable of maintaining a stable magnetization state.
Most preferred are rare earth-iron group amorphous alloys such as FeCo, DyFeCo, TbDyFeCo. Alternatively, a garnet; a platinum group-iron group periodic structure film such as Pt / Co or Pd / Co; a platinum group-iron group alloy such as PtCo or PdCo may be used.
【0027】偏光面の回転が再生層および記録層でキャ
ンセルされるためには、入射側に近い再生層は、偏光面
の回転に及ばす影響が大きいため、再生層および記録層
が同程度の複素屈折率を持つ場合には、記録層に比ベて
薄くすれば良い。In order for the rotation of the plane of polarization to be canceled in the reproduction layer and the recording layer, the reproduction layer near the incident side has a large effect on the rotation of the plane of polarization, so that the reproduction layer and the recording layer have the same degree. When it has a complex refractive index, it may be thinner than the recording layer.
【0028】尚、再生層と中間層と記録層には、Cr、
Al、Ti、Pt、Nbなどの耐食性改善のための元素
添加を行なっても良い。In the reproducing layer, the intermediate layer and the recording layer, Cr,
Elements such as Al, Ti, Pt, and Nb may be added to improve corrosion resistance.
【0029】以下に本発明の記録再生プロセスを説明す
る。The recording / reproducing process of the present invention will be described below.
【0030】まず本発明の光磁気記録媒体の記録層にデ
ータ信号に応じて記録磁区を形成する。記録は一度消去
した後に、記録方向に磁界を印加しながらレーザーパワ
ーを変調して行う。もしくは、外部磁界を印加しながら
レーザーパワーを変調して旧データのうえに新データを
オーバーライト記録する。これらの光変調記録の場合、
光スポット内の所定領域のみが記録層のキュリー温度近
傍になるように記録媒体の線速度を考慮してレーザー光
の強度を決定すれば、光スポットの径以下の記録磁区が
形成でき、その結果、光の回折限界以下の周期の信号を
記録できる。または、記録層がキュリー温度以上になる
ようなパワーのレーザー光を照射しながら外部磁界を変
調してオーバーライト記録をする。この場合は変調速度
を線速度に応じて高速にすれば光スポットの径以下の記
録磁区が形成でき、その結果、光の回折限界以下の周期
の信号を記録できる。First, a recording magnetic domain is formed in the recording layer of the magneto-optical recording medium of the present invention according to a data signal. Recording is performed by once erasing and then modulating the laser power while applying a magnetic field in the recording direction. Alternatively, the laser power is modulated while applying an external magnetic field to overwrite the old data with the new data. For these optical modulation recordings,
If the intensity of the laser beam is determined in consideration of the linear velocity of the recording medium so that only a predetermined area in the light spot is near the Curie temperature of the recording layer, a recording magnetic domain smaller than the diameter of the light spot can be formed. , A signal with a period less than the diffraction limit of light can be recorded. Alternatively, overwrite recording is performed by modulating the external magnetic field while irradiating a laser beam having a power such that the recording layer has a Curie temperature or higher. In this case, if the modulation speed is increased according to the linear velocity, a recording magnetic domain having a diameter smaller than that of the light spot can be formed, and as a result, a signal having a period less than the diffraction limit of light can be recorded.
【0031】次に、本発明の光磁気記録媒体の再生方法
を述ベる。Next, the reproducing method of the magneto-optical recording medium of the present invention will be described.
【0032】本媒体の中間層は磁気相転移材料からなっ
ており、室温を含む低温では反強磁性であり、高温では
強磁性に転移する。そしてこの転移温度は、再生時の光
スポット内の温度範囲内にあるように設定される。この
ため室温から磁気相転移温度までの温度では、中間層は
常に反強磁性体であるため、逆向きのスピンが同数存在
し、記録層からの交換結合力は中間層によって実効的に
遮断される。このため再生時の光スポット内の低温領域
では、再生層と記録層は静磁的に結合し、高温領域では
強磁性の場合には、中間層を介して交換結合をする。な
お、中間層は、転移温度に至るまでは、逆向きの副格子
磁化が同数存在し、全体の磁化が0であるので、この状
態を図2(b)では、空白(斜線部)で示している。The intermediate layer of this medium is made of a magnetic phase transition material, and is antiferromagnetic at low temperatures including room temperature, and becomes ferromagnetic at high temperatures. The transition temperature is set so as to be within the temperature range within the light spot during reproduction. Therefore, from room temperature to the magnetic phase transition temperature, since the intermediate layer is always an antiferromagnetic material, the same number of opposite spins exist, and the exchange coupling force from the recording layer is effectively blocked by the intermediate layer. It For this reason, the reproducing layer and the recording layer are magnetostatically coupled in a low temperature region within the light spot during reproduction, and exchange coupling is performed through the intermediate layer in the high temperature region when they are ferromagnetic. The intermediate layer has the same number of sublattice magnetizations in opposite directions until the transition temperature is reached, and the overall magnetization is 0. Therefore, this state is indicated by a blank (hatched portion) in FIG. 2B. ing.
【0033】また、再生層と記録層はフェリ磁性で優勢
な副格子磁化の種類が異なる(一般にこれをアンチパラ
レルな構成と称する)。より具体的には、例えば再生層
および記録層に希土類(RE)−鉄族(TM)元素合金
を用いる場合、再生層が希土類元素副格子磁化優勢(R
Eリッチ)な磁性層で、記録層が室温で鉄族元素副格子
磁化優勢(TMリッチ)である、もしくはこの逆の構成
とする。このうち、再生層および記録層に希土類(R
E)−鉄族(TM)元素合金を用いる場合、再生層が希
土類元素副格子磁化優勢(REリッチ)な磁性層で、記
録層が室温で鉄族元素副格子磁化優勢(TMリッチ)で
ある構成とした場合の方が、低磁界に記録層に磁化情報
を記録できるので、より望ましい。なお、このアンチパ
ラレルの構成は少なくとも再生時の光スポット内の温度
範囲で達成されることが必要である。The reproducing layer and the recording layer are different in the type of sub-lattice magnetization that is dominant in ferrimagnetism (generally referred to as an antiparallel structure). More specifically, for example, when a rare earth (RE) -iron group (TM) element alloy is used for the reproducing layer and the recording layer, the reproducing layer has a rare earth element sublattice magnetization dominant (R).
The magnetic layer is E-rich), and the recording layer has the iron group element sublattice magnetization predominant (TM-rich) at room temperature, or vice versa. Of these, rare earth (R
When the E) -iron group (TM) element alloy is used, the reproducing layer is a rare earth element sublattice magnetization dominant (RE rich) magnetic layer, and the recording layer is an iron group element sublattice magnetization dominant (TM rich) at room temperature. The structure is more preferable because the magnetization information can be recorded in the recording layer in a low magnetic field. The anti-parallel structure needs to be achieved at least within the temperature range within the light spot during reproduction.
【0034】従って、本発明の光磁気記録媒体を再生す
ると、光スポット内の低温領域では、再生層と記録層は
静磁結合して全体の磁化が平行になって副格子磁化の向
きは互いに逆向きとなり、高温領域では、再生層と記録
層は交換結合して副格子磁化の向きが平行になる。Therefore, when the magneto-optical recording medium of the present invention is reproduced, in the low temperature region within the light spot, the reproducing layer and the recording layer are magnetostatically coupled and the overall magnetization becomes parallel, so that the directions of the sub-lattice magnetizations are mutually opposite. In the opposite direction, the reproducing layer and the recording layer are exchange-coupled in the high temperature region, and the directions of the sublattice magnetization are parallel.
【0035】この様子を図2(b)に示した。図2
(b)では白抜きの矢印が全体の磁化を、黒印の矢印が
副格子磁化の向きを示している。これは、例えば再生層
に希土類元素優勢であり、記録層に鉄族遷移金属優勢で
あるフェリ磁性の希土類−鉄族遷移金属合金を用いた場
合、白抜きの矢印が全体の磁化を、黒印の矢印が鉄族遷
移金属の副格子磁化を示す。This state is shown in FIG. 2 (b). Figure 2
In (b), the white arrow indicates the overall magnetization, and the black arrow indicates the direction of the sublattice magnetization. For example, when a rare earth element-dominant iron-transition metal-dominant ferrimagnetic rare-earth-iron transition metal alloy is used in the reproducing layer and the recording layer, a white arrow indicates the entire magnetization. Indicates the sublattice magnetization of the iron group transition metal.
【0036】ここで低温領域においては、再生層と記録
層はTM副格子磁気モーメントが互いに逆向きに配向し
ているため、基板を透過した光は、まず再生層で偏光面
が回転し、次に記録層で逆向きに回転して光磁気記録装
置に戻る。このため再生層で偏光した偏光面の回転角
が、記録層で偏光した偏光面の回転角と等しくなるよう
にする。そうすると、カー回転角はこれらの層の影響を
受けないこととなる。すなわち、入射光が再生層を透過
しても、磁性層の磁化情報が検出されることはない。こ
のため、マスク温度Tm以下では、信号が検出されな
い。In the low temperature region, since the TM sublattice magnetic moments of the reproducing layer and the recording layer are oriented in mutually opposite directions, the light transmitted through the substrate first has its plane of polarization rotated in the reproducing layer and then Then, the recording layer is rotated in the opposite direction and returned to the magneto-optical recording device. Therefore, the rotation angle of the polarization plane polarized in the reproduction layer is made equal to the rotation angle of the polarization plane polarized in the recording layer. Then, the Kerr rotation angle is not affected by these layers. That is, even if the incident light passes through the reproducing layer, the magnetization information of the magnetic layer is not detected. Therefore, no signal is detected below the mask temperature Tm.
【0037】よって、光スポット内には図2(a)に示
した通り、記録マークが検出されるアパーチャー部分と
記録マークが検出されないマスク部分が生じることとな
る。即ち、実効的に光スポット径が小さくなったことと
なり、従来検出できなかった光スポットより十分小さい
記録マークが検出できるようになる。Therefore, as shown in FIG. 2A, an aperture portion where the recording mark is detected and a mask portion where the recording mark is not detected are generated in the light spot. That is, the diameter of the light spot is effectively reduced, and it is possible to detect a recording mark that is sufficiently smaller than the light spot that could not be detected conventionally.
【0038】そして、本発明の媒体では、幅の狭い高温
領域がアパーチャー領域となるため、隣接のトラックの
情報をも孤立的にマスクすることが可能であるため、線
速度と同時にトラック密度をも高密度化できる。Further, in the medium of the present invention, since the narrow high temperature region becomes the aperture region, it is possible to mask the information of the adjacent tracks in an isolated manner. Higher density can be achieved.
【0039】本発明の光磁気記録媒体は、再生層および
これと同じTM副格子磁気モーメントを持つ層で記録層
の磁化情報をマスクする必要がなくなるので、これらの
層を再生信号が劣化しない程度まで薄くすることができ
る。よって磁性層の膜厚を従来よりも大幅に小さくする
ことが可能となる。In the magneto-optical recording medium of the present invention, it is not necessary to mask the magnetization information of the recording layer with the reproducing layer and the layer having the same TM sublattice magnetic moment as that of the reproducing layer, so that the reproduced signal does not deteriorate in these layers. Can be as thin as. Therefore, the film thickness of the magnetic layer can be significantly reduced as compared with the conventional one.
【0040】なお、静磁結合は、大まかには、記録層の
飽和磁化に比例し、中間層の膜厚に反比例する。このた
め、確実に低温領域において再生層の磁化を磁化反転さ
せるためには、光スポット内の低温領域において、記録
層の飽和磁化を大きくし、また中間層の効果が発揮可能
な限界までその膜厚を低減するとよい。また、記録磁区
(記録マーク)半径が、記録層膜厚に対して大きい場合
には静磁界は弱くなり、記録磁区周辺でしか作用しなく
なるので、記録マーク半径は、膜厚に対して小さくする
ことが有効である。The magnetostatic coupling is roughly proportional to the saturation magnetization of the recording layer and inversely proportional to the film thickness of the intermediate layer. Therefore, in order to reliably reverse the magnetization of the reproducing layer in the low temperature region, the saturation magnetization of the recording layer is increased in the low temperature region in the light spot, and the film reaches the limit at which the effect of the intermediate layer can be exhibited. It is better to reduce the thickness. If the radius of the recording magnetic domain (recording mark) is large with respect to the film thickness of the recording layer, the static magnetic field becomes weak and acts only around the recording magnetic domain. Therefore, the radius of the recording mark is made smaller than the film thickness. Is effective.
【0041】また、入射光が記録層を透過する場合に
は、この光を反射させ戻光量の低下を防ぎ、また入射光
を磁性層と反射層の間でエンハンスさせるために、記録
層の入射面とは反対側に反射層を設けても良い。また反
射層に加えて干渉効果を高めるために、SiN、AlN
x、AlOx、TaOx、SiOx等の誘電体などを干渉層
として設けても良い。この干渉層は、記録層でのθkが
キャンセルでき、また所望の反射率が得られるような膜
厚とする必要がある。もしくは磁界変調オーバーライト
を行う際の磁区形状を改善するなどの目的で熱伝導性を
高めるために熱伝導層を設けても良い。これらの反射層
および熱伝導層はAl、AlTa、AlTi、AlC
r、Cuなどを用いればよい。また反射層は光を十分反
射できる程度に、また反射層と熱伝導層は光パワーが大
き過ぎない程度に薄くする必要がある。熱伝導と反射を
一つの層で行わせることも可能である。さらに、保護膜
として前記誘電体層や高分子樹脂からなる保護コートを
付与しても良い。When the incident light is transmitted through the recording layer, the incident light is reflected on the recording layer in order to reflect the light to prevent the reduction of the returning light amount and enhance the incident light between the magnetic layer and the reflective layer. A reflective layer may be provided on the side opposite to the surface. In addition to the reflective layer, in order to enhance the interference effect, SiN, AlN
A dielectric such as x , AlO x , TaO x , and SiO x may be provided as the interference layer. This interference layer needs to have a film thickness that can cancel θk in the recording layer and obtain a desired reflectance. Alternatively, a heat conductive layer may be provided in order to improve the heat conductivity for the purpose of improving the shape of the magnetic domain when performing the magnetic field modulation overwrite. These reflection layer and heat conduction layer are made of Al, AlTa, AlTi, AlC.
r, Cu or the like may be used. Further, the reflective layer needs to be thin enough to reflect light, and the reflective layer and the heat conductive layer need to be thin so that the optical power is not too large. It is also possible to perform heat conduction and reflection in one layer. Furthermore, a protective coat made of the dielectric layer or polymer resin may be applied as a protective film.
【0042】[0042]
【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り、以下の
実施例に限定されるものではない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
【0043】(実施例1)FeRhの磁気特性を調ベる
ために、直流マグネトロンスパッタ装置を用いてガラス
基板上にFeRhを成膜した。FeRhの組成は、Fe
およびRhの各ターゲットのパワーを制御して、原子比
でFe:Rh=47:53とした。また膜厚は1000
Åとした。また、FeRh成膜後に保護膜としてSiN
を800Å成膜した。Example 1 In order to adjust the magnetic characteristics of FeRh, FeRh was deposited on a glass substrate using a DC magnetron sputtering device. The composition of FeRh is Fe
The power of each target of Rh and Rh was controlled so that the atomic ratio was Fe: Rh = 47: 53. The film thickness is 1000
Å Also, after depositing FeRh, SiN is used as a protective film.
Was deposited to 800 Å.
【0044】このFeRh試料について、振動試料型磁
力計を用いて外部磁界を印加しながら磁化を測定した。
測定の際には、試料をロータリーポンプで1×10-3P
aまで減圧しながら、試料を加熱してその温度を室温か
ら500℃まで上昇させた。このFeRh試料は反強磁
性から強磁性に可逆的に磁気相転移をおこした。昇温時
には、約130℃で磁化が急激に発生し、降温時もほと
んど同じ転移温度であった。またFeRhにIrをRh
に対して5〜10%添加すると、転移温度が添加しない
場合の転移温度と比較して約170℃〜280℃上昇
し、Pdを同じくRhに対して2〜6%添加すると転移
温度は添加しない場合の転移温度と比較して約50℃〜
150℃低下した。またFeRhのRh組成を48〜6
2%の範囲で変えたところ、磁気転移温度はRhの増加
に伴って上昇した。FeRhのRh組成は50〜60%
の範囲が再生時において磁気相転移が生じるので適切で
ある。The magnetization of this FeRh sample was measured using an oscillating sample magnetometer while applying an external magnetic field.
At the time of measurement, use a rotary pump to measure the sample at 1 × 10 -3 P
While reducing the pressure to a, the sample was heated to raise its temperature from room temperature to 500 ° C. This FeRh sample reversibly undergoes a magnetic phase transition from antiferromagnetism to ferromagnetism. Magnetization abruptly occurred at about 130 ° C. when the temperature was raised, and the transition temperature was almost the same when the temperature was lowered. Moreover, Ir is added to FeRh
When 5 to 10% is added, the transition temperature rises by about 170 ° C to 280 ° C as compared with the case where no transition temperature is added, and when Pd is added to 2 to 6% relative to Rh, the transition temperature is not added. When compared to the transition temperature of about 50 ℃ ~
It decreased by 150 ° C. Further, the Rh composition of FeRh is set to 48 to 6
When changed in the range of 2%, the magnetic transition temperature increased with the increase of Rh. The Rh composition of FeRh is 50-60%
The range is suitable because a magnetic phase transition occurs during reproduction.
【0045】次に、このFeRhを中間層に用いて、本
発明の光磁気記録媒体を作成した。まず、直流マグネト
ロンスパッタリング装置に、Si、Gd、Tb、Fe、
Co、Rhの各ターゲットを取り付け、直径130mm
のプリグルーブ付きのガラス基板をターゲットからの距
離が150mmになる位置に設置された基板ホルダーに
固定した後、1×10-5Pa以下の高真空になるまでチ
ャンバー内をクライオポンプで真空排気した。真空排気
しながら、Arガスを0.4Paとなるまでチャンバー
内に導入した後、SiN誘電体層を80nm、GdFe
Co再生層を10nmを成膜した。ついで、FeRh中
間層をFeRhを基板上に5nmの厚さで成膜した。つ
いで、TbFeCo記録層を15nm、SiN干渉層を
30nm、Al反射層を60nm、各々順々に成膜して
図1(b)の構成の本発明の光磁気記録媒体を得た。各
SiN誘電体層成膜時には、Arガスに加えてN2ガス
を導入し、その混合比を調節しながら屈折率が2.2と
なるように反応性スパッタにより成膜した。Next, using this FeRh as an intermediate layer, a magneto-optical recording medium of the present invention was prepared. First, in a DC magnetron sputtering device, Si, Gd, Tb, Fe,
Each target of Co and Rh is attached and the diameter is 130mm
The glass substrate with the pre-groove was fixed to a substrate holder installed at a position where the distance from the target was 150 mm, and then the chamber was evacuated to a high vacuum of 1 × 10 −5 Pa or less with a cryopump. . After evacuation, Ar gas was introduced into the chamber until the pressure reached 0.4 Pa. Then, the SiN dielectric layer was set to 80 nm and GdFe was formed.
A Co reproduction layer having a thickness of 10 nm was formed. Then, an FeRh intermediate layer was formed by depositing FeRh on the substrate to a thickness of 5 nm. Then, a TbFeCo recording layer having a thickness of 15 nm, a SiN interference layer having a thickness of 30 nm, and an Al reflecting layer having a thickness of 60 nm were sequentially formed to obtain a magneto-optical recording medium of the present invention having the structure shown in FIG. 1B. At the time of forming each SiN dielectric layer, N 2 gas was introduced in addition to Ar gas, and reactive sputtering was performed so that the refractive index was 2.2 while adjusting the mixing ratio thereof.
【0046】GdFeCo再生層の組成は、室温でRE
リッチで、補償温度がキュリー温度以上であって、キュ
リー温度は300℃以上となるように設定した。FeR
h中間層の磁気相転移温度は約160℃であった。The composition of the GdFeCo reproducing layer is RE at room temperature.
It was rich and the compensation temperature was set to the Curie temperature or higher, and the Curie temperature was set to 300 ° C. or higher. FeR
The magnetic phase transition temperature of the intermediate layer was about 160 ° C.
【0047】TbFeCo記録層の組成は、室温でTM
リッチ、キュリー温度250℃となるように設定した。The composition of the TbFeCo recording layer is TM at room temperature.
The rich and Curie temperatures were set to 250 ° C.
【0048】次に、この光磁気記録媒体を回転速度26
00rpmで回転させて半径37mmの位置に、記録マ
ーク長が0.40μmとなるように12.5MHzのR
F信号を、また記録マーク長が0.78μmとなるよう
に6.4MHzのRF信号を書き込んだ。この時の媒体
の線速度は10m/sである。その後各々のマーク長で
のC/Nを測定した。光学ヘッドの対物レンズのNAは
0.55、レーザー波長は780nmとした。Then, the magneto-optical recording medium was rotated at a rotation speed of 26.
When rotated at 00 rpm, the R of 12.5 MHz was set at a position of radius 37 mm so that the recording mark length became 0.40 μm.
An F signal and an RF signal of 6.4 MHz were written so that the recording mark length was 0.78 μm. The linear velocity of the medium at this time is 10 m / s. After that, the C / N at each mark length was measured. The NA of the objective lens of the optical head was 0.55, and the laser wavelength was 780 nm.
【0049】次に線速を5m/s(回転速度1300r
pm,半径37mm),15m/s(回転速度3600
rpm,半径40mm)、20m/s(回転速度360
0rpm,半径54mm)、25m/s(回転速度39
80rpm、半径60mm)と段階的に変えて、マーク
長が0.78μmとなるようにそれぞれ3.2MHz,
9.6MHz、12.8MHzの信号を記録し、C/N
が48dBとなる最小記録パワーPwを求めた。再生パ
ワーは、各記録パワーにおいてC/N比が最大となる値
(2.0〜2.5mW)に設定した。Next, the linear velocity is set to 5 m / s (rotational speed 1300 r
pm, radius 37 mm, 15 m / s (rotation speed 3600)
rpm, radius 40 mm, 20 m / s (rotation speed 360
0 rpm, radius 54 mm, 25 m / s (rotation speed 39
80 rpm, radius 60 mm) in steps to obtain a mark length of 0.78 μm, 3.2 MHz, respectively.
Record signals of 9.6MHz and 12.8MHz, C / N
Then, the minimum recording power Pw that gives 48 dB was obtained. The reproduction power was set to a value (2.0 to 2.5 mW) that maximizes the C / N ratio at each recording power.
【0050】次に、この光磁気記録媒体を用いて記録再
生特性を測定した。結果を表1に示した。Next, the recording / reproducing characteristics were measured using this magneto-optical recording medium. The results are shown in Table 1.
【0051】(実施例2)実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上にSiN誘電
体層を80nm、GdFeCo再生層を12nm、Fe
RhIr中間層を6nm、TbFeCo記録層を10n
m、SiN干渉層を30nm、Al反射層を60nm、
各々順々に成膜して図1(b)の構成の本発明の光磁気
記録媒体を得た。(Example 2) Using the same film forming apparatus and film forming method as in Example 1, a SiN dielectric layer of 80 nm, a GdFeCo reproducing layer of 12 nm and Fe were similarly formed on a polycarbonate substrate.
RhIr intermediate layer 6 nm, TbFeCo recording layer 10 n
m, SiN interference layer 30 nm, Al reflective layer 60 nm,
Films were formed in order, and a magneto-optical recording medium of the present invention having the structure shown in FIG. 1B was obtained.
【0052】GdFeCo再生層の組成は、室温でTM
リッチでキュリー温度は300℃以上となるように設定
した。The composition of the GdFeCo reproducing layer is TM at room temperature.
The Curie temperature was set to be rich and 300 ° C. or higher.
【0053】FeRh中間層の組成は、Fe47(Rh
95Ir5)53で磁気相転移温度は約150℃であっ
た。TbFeCo記録層の組成は、室温でREリッチ、
補償温度はキュリー温度以上、キュリー温度250℃と
なるように設定した。The composition of the FeRh intermediate layer is Fe47 (Rh
The magnetic phase transition temperature of 95Ir5) 53 was about 150 ° C. The composition of the TbFeCo recording layer is RE rich at room temperature,
The compensation temperature was set to a Curie temperature or higher and a Curie temperature of 250 ° C.
【0054】次に、この光磁気記録媒体を用いて実施例
1と同様に記録再生特性を測定した。結果を表1に示し
た。Then, using this magneto-optical recording medium, recording and reproducing characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.
【0055】(実施例3)実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上にSiN誘電
体層を80nm、GdFeCo再生層を10nm、Fe
Rh中間層を5nm、DyFeCo記録層を12nm、
SiN干渉層を30nm、Al反射層を60nm、各々
順々に成膜して、図1(b)の構成の本発明の光磁気記
録媒体を得た。GdFeCo再生層の組成は、室温でR
Eリッチ、補償温度はキュリー温度以上、キュリー温度
300℃以上となるように設定した。(Embodiment 3) Using the same film forming apparatus and film forming method as in Embodiment 1, a SiN dielectric layer of 80 nm, a GdFeCo reproducing layer of 10 nm, and Fe were similarly formed on a polycarbonate substrate.
Rh intermediate layer is 5 nm, DyFeCo recording layer is 12 nm,
An SiN interference layer having a thickness of 30 nm and an Al reflection layer having a thickness of 60 nm were sequentially deposited to obtain a magneto-optical recording medium of the present invention having the structure shown in FIG. The composition of the GdFeCo reproducing layer is R at room temperature.
The E-rich and compensation temperatures were set to be the Curie temperature or higher and the Curie temperature 300 ° C. or higher.
【0056】FeRh中間層の磁気相転移温度は約14
0℃であった。The magnetic phase transition temperature of the FeRh intermediate layer is about 14
It was 0 ° C.
【0057】DyFeCo記録層の組成は、室温でTM
リッチでキュリー温度は250℃となるように設定し
た。The composition of the DyFeCo recording layer was TM at room temperature.
The Curie temperature was set to be rich and 250 ° C.
【0058】次に、この光磁気記録媒体を用いて実施例
1と同様に記録再生特性を測定した。結果を表1に示し
た。Then, using this magneto-optical recording medium, recording and reproducing characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.
【0059】(比較例1)実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上にSiN誘電
体層80nm、TbFeCo記録層80nm、SiN保
護層70nmを各々順々に成膜して超解像ではない従来
の光磁気記録媒体を得た。各SiN層の屈折率は2.1
とした。(Comparative Example 1) A SiN dielectric layer 80 nm, a TbFeCo recording layer 80 nm and a SiN protective layer 70 nm were sequentially formed on a polycarbonate substrate in the same manner by using the same film forming apparatus and film forming method as in Example 1. As a film, a conventional magneto-optical recording medium which is not super-resolution is obtained. The refractive index of each SiN layer is 2.1.
And
【0060】TbFeCo記録層の組成は、室温でTM
リッチでキュリー温度は250℃となるように設定し
た。The composition of the TbFeCo recording layer was TM at room temperature.
The Curie temperature was set to be rich and 250 ° C.
【0061】次に、この光磁気記録媒体を用いて実施例
1と同様に記録再生特性を測定した。結果を表1に示し
た。Next, using this magneto-optical recording medium, recording and reproducing characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.
【0062】この従来の媒体では、超解像効果が得られ
なかった。With this conventional medium, the super-resolution effect was not obtained.
【0063】(比較例2)実施例1と同様の成膜機、成
膜方法で、同様にポリカーボネイト基板上にSiN誘電
体層を80nm、GdFeCo再生層を30nm、Tb
FeCo中間層を10nm、TbFeCo記録層を40
nm、SiN保護層を70nmを各々順々に成膜して従
来の超解像光磁気記録媒体を得た。各SiN層の屈折率
は2.1とした。COMPARATIVE EXAMPLE 2 Using the same film forming apparatus and film forming method as in Example 1, a SiN dielectric layer of 80 nm, a GdFeCo reproducing layer of 30 nm, and Tb were similarly formed on a polycarbonate substrate.
FeCo intermediate layer is 10 nm, TbFeCo recording layer is 40 nm
nm and a SiN protective layer having a thickness of 70 nm were sequentially formed to obtain a conventional super-resolution magneto-optical recording medium. The refractive index of each SiN layer was 2.1.
【0064】GdFeCo再生層の組成は、室温でTM
リッチでキュリー温度は300℃以上となるように設定
した。TbFeCo中間層の組成は、室温でTMリッ
チ、キュリー温度140℃となるように設定した。The composition of the GdFeCo reproducing layer is TM at room temperature.
The Curie temperature was set to be rich and 300 ° C. or higher. The composition of the TbFeCo intermediate layer was set to be TM rich at room temperature and a Curie temperature of 140 ° C.
【0065】TbFeCo記録層の組成は、室温でTM
リッチ、キュリー温度250℃となるように設定した。The composition of the TbFeCo recording layer was TM at room temperature.
The rich and Curie temperatures were set to 250 ° C.
【0066】次に、この光磁気記録媒体を用いて実施例
1と同様に記録再生特性を測定した。また、この比較例
2の場合のみ再生時に再生磁界を500 Oe印加し
た。結果を表1に示した。Next, using this magneto-optical recording medium, recording and reproducing characteristics were measured in the same manner as in Example 1. Further, only in Comparative Example 2, a reproducing magnetic field of 500 Oe was applied during reproducing. The results are shown in Table 1.
【0067】比較例1および2の結果を実施例1〜3の
結果と比較すると、本発明の光磁気記録媒体では磁性層
の膜厚が小さくても0.4μmのマーク長でC/Nが4
5dB以上と超解像の記録再生が可能であって、かつ高
線速になっても記録に必要なレーザーパワーが比較例ほ
ど大きくならないことがわかる。また現行の光磁気記録
装置に用いられている半導体レーザーの媒体板面上での
最大出力は約10mWであるため、比較例の従来の光磁
気記録媒体では可能な線速度が最大17m/sである
が、本発明の実施例では25m/s程度まで線速度を向
上させることができ、半導体レーザーの出力がさらに向
上した場合、本発明と従来例との記録感度の差はますま
す広がる傾向のあることが分かる。よって本発明の光磁
気記録媒体は従来例と比較して高速記録が達成できるこ
とが分かる。Comparing the results of Comparative Examples 1 and 2 with the results of Examples 1 to 3, the magneto-optical recording medium of the present invention has a C / N ratio of 0.4 μm even when the thickness of the magnetic layer is small. Four
It can be seen that super-resolution recording / reproduction of 5 dB or more is possible, and the laser power required for recording does not become as large as that of the comparative example even at a high linear velocity. Further, since the maximum output of the semiconductor laser used in the existing magneto-optical recording device on the surface of the medium plate is about 10 mW, the linear velocity possible in the conventional magneto-optical recording medium of the comparative example is 17 m / s at the maximum. However, in the embodiment of the present invention, the linear velocity can be improved up to about 25 m / s, and when the output of the semiconductor laser is further improved, the difference in the recording sensitivity between the present invention and the conventional example tends to become wider. I know there is. Therefore, it is understood that the magneto-optical recording medium of the present invention can achieve high-speed recording as compared with the conventional example.
【0068】[0068]
【表1】 [Table 1]
【0069】[0069]
【発明の効果】本発明の光磁気記録媒体および記録再生
方法を用いれば、磁気超解像が全磁性層を薄膜化した光
磁気記録媒体で実現でき、高速記録が可能な低材料コス
トの高密度光磁気記録媒体および情報再生記録方法の提
供が可能となる。By using the magneto-optical recording medium and the recording / reproducing method of the present invention, the magnetic super-resolution can be realized by the magneto-optical recording medium in which the all-magnetic layer is made thin, and high-speed recording can be performed at a low material cost. It is possible to provide a density magneto-optical recording medium and an information reproducing / recording method.
【図1】本発明の媒体の膜構成を示す模式図であり、
(a)は本発明の媒体の基本構成の図、(b)は本発明
の媒体の1例の構成を示す図である。FIG. 1 is a schematic diagram showing a film structure of a medium of the present invention,
(A) is a figure of the basic composition of the medium of the present invention, and (b) is a figure showing the composition of an example of the medium of the present invention.
【図2】本発明の光磁気再生方法を示す説明図であり、
(a)は光スポット内のアパーチャーとマスクを示す
図、(b)は本発明の光磁気記録媒体の1例の膜構成お
よび再生時の磁化状態を示す図、(c)は再生時の媒体
の温度分布を示した図である。FIG. 2 is an explanatory view showing a magneto-optical reproducing method of the present invention,
(A) is a diagram showing an aperture and a mask in a light spot, (b) is a diagram showing a film structure and a magnetization state during reproduction of an example of the magneto-optical recording medium of the present invention, and (c) is a medium during reproduction. It is the figure which showed the temperature distribution of.
【図3】従来の超解像の光磁気再生方法を示す説明図で
あり、(a)は光スポット内のアパーチャーとマスクを
示した図、(b)は従来の光磁気記録媒体の膜構成及び
再生時の磁化状態を示す図、(c)は再生時の媒体の温
度分布を示した図である。3A and 3B are explanatory diagrams showing a conventional super-resolution magneto-optical reproducing method, FIG. 3A is a diagram showing an aperture and a mask in a light spot, and FIG. 3B is a film structure of a conventional magneto-optical recording medium. FIG. 3C is a diagram showing a magnetization state during reproduction, and FIG. 6C is a diagram showing a temperature distribution of the medium during reproduction.
1 再生層 2 補助層 3 中間層 4 記録層 7 光ビーム 9 媒体の移動方向 10 光ビーム 11 再生磁界の印加方向 12 初期化磁界の印加方向 1 reproducing layer 2 auxiliary layer 3 intermediate layer 4 recording layer 7 light beam 9 medium moving direction 10 light beam 11 reproducing magnetic field applying direction 12 initializing magnetic field applying direction
Claims (6)
磁性層、第2磁性層、第3磁性層が、光の入射面より第
1磁性層、第3磁性層、第2磁性層の順に基板上に積層
され、前記第1磁性層と前記第2磁性層は交換結合した
状態では、全体の磁化の向きが反平行であり、前記3磁
性層は反強磁性から強磁性へと可逆的に転移する室温よ
り高い温度(磁性転移温度と称する)を持つ磁気相転移
材料からなり、室温では前記第1磁性層と前記第2磁性
層とが静磁的に結合しこれらの同種の元素の副格子磁気
モーメントが逆方向に配向し、前記第3磁性層が強磁性
へと転移する温度以上では、交換結合により前記第1磁
性層と前記第2磁性層の同種の元素の副格子磁気モーメ
ントが互いに平行に配向することを特徴とする光磁気記
録媒体。1. A first device comprising at least a perpendicular magnetization film.
A magnetic layer, a second magnetic layer, and a third magnetic layer are laminated on the substrate in the order of the first magnetic layer, the third magnetic layer, and the second magnetic layer from the light incident surface, and the first magnetic layer and the second magnetic layer. In the state where the magnetic layers are exchange-coupled, the directions of the entire magnetization are antiparallel, and the three magnetic layers have a temperature higher than room temperature (referred to as magnetic transition temperature) at which reversible transition from antiferromagnetism to ferromagnetism occurs. The first magnetic layer and the second magnetic layer are magnetostatically coupled to each other at room temperature, and the sublattice magnetic moments of these elements of the same kind are oriented in opposite directions at room temperature. Magneto-optical recording medium characterized in that sublattice magnetic moments of the same kind of elements in the first magnetic layer and the second magnetic layer are oriented parallel to each other by exchange coupling at a temperature above the layer transition to ferromagnetism. .
層が垂直磁化膜に転移する温度付近の温度である請求項
1記載の光磁気記録媒体。2. The magneto-optical recording medium according to claim 1, wherein the magnetic transition temperature of the third magnetic layer is a temperature around the transition temperature of the first magnetic layer to the perpendicular magnetization film.
希土類−鉄族遷移金属合金からなり、それぞれ、室温で
希土類元素優勢の磁性層ならびに室温で鉄族遷移金属優
勢の磁性層であって、第3磁性層がFeRhを主成分と
する磁性層である請求項1または2記載の光磁気記録媒
体。3. The first magnetic layer and the second magnetic layer are made of a ferrimagnetic rare earth-iron group transition metal alloy, and are composed of a rare earth element-dominant magnetic layer at room temperature and an iron group transition metal-dominant magnetic layer at room temperature, respectively. The magneto-optical recording medium according to claim 1 or 2, wherein the third magnetic layer is a magnetic layer containing FeRh as a main component.
金属からなる反射層が設けられている請求項1ないし3
のいずれかに記載の光磁気記録媒体。4. The surface of the second magnetic layer opposite to the light incident side,
A reflective layer made of metal is provided.
The magneto-optical recording medium according to any one of 1.
らなる干渉層が設けられている請求項4記載の光磁気記
録媒体。5. The magneto-optical recording medium according to claim 4, wherein an interference layer made of a dielectric material is provided between the second magnetic layer and the reflective layer.
ないし5のいずれかに記載の光磁気記録媒体に光スポッ
トを照射して、該光スポット内の領域で第3磁性層が前
記磁性転移温度より低温である領域では該第3磁性層を
反強磁性相とし、第1磁性層と第2磁性層を静磁結合さ
せて第1磁性層と第2磁性層の副格子磁化の向きを相互
に逆向きとし、光スポット内の領域で第3磁性層が前記
磁性転移温度以上の温度である領域では第3磁性層を強
磁性相とし、第1磁性層と第2磁性層を交換結合させ
て、第2磁性層の磁化情報を磁気光学効果により光学信
号に変換して、該信号を記録信号として読み出す光磁気
記録媒体の情報記録再生方法。6. The information recorded in the second magnetic layer according to claim 1.
6. The magneto-optical recording medium according to any one of 1 to 5 is irradiated with a light spot, and the third magnetic layer is anti-strengthen in a region where the temperature of the third magnetic layer is lower than the magnetic transition temperature in the region of the light spot. In the magnetic phase, the first magnetic layer and the second magnetic layer are magnetostatically coupled so that the sublattice magnetization directions of the first magnetic layer and the second magnetic layer are opposite to each other. In the region where the temperature of the layer is equal to or higher than the magnetic transition temperature, the third magnetic layer has a ferromagnetic phase, the first magnetic layer and the second magnetic layer are exchange-coupled, and the magnetization information of the second magnetic layer is changed by the magneto-optical effect. An information recording / reproducing method for a magneto-optical recording medium, which is converted into an optical signal and is read out as a recording signal.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11453195A JPH08315436A (en) | 1995-05-12 | 1995-05-12 | Magneto-optical recording medium and information recording and reproducing method using that medium |
US08/644,157 US5717662A (en) | 1995-05-12 | 1996-05-10 | Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11453195A JPH08315436A (en) | 1995-05-12 | 1995-05-12 | Magneto-optical recording medium and information recording and reproducing method using that medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08315436A true JPH08315436A (en) | 1996-11-29 |
Family
ID=14640093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11453195A Pending JPH08315436A (en) | 1995-05-12 | 1995-05-12 | Magneto-optical recording medium and information recording and reproducing method using that medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08315436A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7164623B2 (en) | 2002-02-25 | 2007-01-16 | Fujitsu Limited | Magneto-optical recording medium |
-
1995
- 1995-05-12 JP JP11453195A patent/JPH08315436A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7164623B2 (en) | 2002-02-25 | 2007-01-16 | Fujitsu Limited | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3072812B2 (en) | Magneto-optical recording medium and method of reproducing information from the medium | |
JPH06290496A (en) | Magneto-optical recording medium, reproducing method and reproducing device | |
US5862105A (en) | Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method | |
EP0668586B1 (en) | Magneto-optical recording medium, and information reproducing method using the medium | |
US5717662A (en) | Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium | |
EP0621592B1 (en) | Magnetooptical recording medium, method for producing the same, method for recording or reproducing information in or from the same | |
US5719829A (en) | Magnetooptical recording medium allowing super-resolution, and information reproduction method using the medium | |
JPH08106660A (en) | Magneto-optical recording medium and information reproducing method using same | |
JPH0954993A (en) | Magneto-optical recording medium and reproducing method of information in the medium | |
JP3164975B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
JPH06124500A (en) | Magneto-optical recording medium and playback method of this medium | |
US5663935A (en) | Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase | |
KR100271114B1 (en) | Magneto-optical recording medium and information reproducing method using this medium | |
EP0668585B1 (en) | Information recording method and system using a magneto-optical medium | |
JPH08180482A (en) | Magneto-optical recording medium and information reproducing method using the same | |
JPH08315436A (en) | Magneto-optical recording medium and information recording and reproducing method using that medium | |
JP3476698B2 (en) | Magneto-optical recording medium | |
JP3101462B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
JPH07254176A (en) | Magneto-optical recording medium and method for reproducing information with same medium | |
JP3592399B2 (en) | Magneto-optical recording medium | |
JPH08315438A (en) | Magneto-optical recording medium and information recording and reproducing method using that medium | |
JPH06309729A (en) | Magneto-optical recording medium and method for reproducing information with the same | |
JPH08315439A (en) | Magneto-optical recording medium and information recording and reproducing method using that medium | |
JPH08315437A (en) | Magneto-optical recording medium and information recording and reproducing method using that medium | |
JPH10308043A (en) | Information reproducing method and information reproducing device |