JPH06124500A - Magneto-optical recording medium and playback method of this medium - Google Patents

Magneto-optical recording medium and playback method of this medium

Info

Publication number
JPH06124500A
JPH06124500A JP18843893A JP18843893A JPH06124500A JP H06124500 A JPH06124500 A JP H06124500A JP 18843893 A JP18843893 A JP 18843893A JP 18843893 A JP18843893 A JP 18843893A JP H06124500 A JPH06124500 A JP H06124500A
Authority
JP
Japan
Prior art keywords
layer
film
signal
temperature
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18843893A
Other languages
Japanese (ja)
Inventor
Naoki Nishimura
直樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18843893A priority Critical patent/JPH06124500A/en
Priority to DE69331924T priority patent/DE69331924T2/en
Priority to EP93306690A priority patent/EP0586175B1/en
Priority to ES93306690T priority patent/ES2176194T3/en
Priority to EP01201745A priority patent/EP1143434A3/en
Publication of JPH06124500A publication Critical patent/JPH06124500A/en
Priority to US08/643,833 priority patent/US5616428A/en
Priority to US08/774,721 priority patent/US5889739A/en
Priority to US09/820,734 priority patent/USRE38501E1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reproduce a magnetic domain which is smaller than the diameter of a beam spot and to eliminate a cross talk by a method wherein, when a signal is replayed, the magnetization of a recording layer is transferred to a playback layer, it is converted into an optical signal by a magneto-optical effect and it is read out. CONSTITUTION:The intensity of a laser beam in a playback operation is set at a temperature Tr at which the effective vertical magnetic anisotropy constant of the temperature rise region of an optical spot is reversed. Then, in a playback layer, a high-temperature region becomes a vertical magnetization film and others are set to the state of an inside-the-face magnetization film. The playback layer which has become the vertical magnetization film is exchange-coupled to a recording layer, and the signal of the recording layer is transferred to the playback layer. The magnetic signal which has been transferred is converted into an optical signal by the magneto-optical effect of the playback layer, and it is detected. In addition, in the playback operation, the boundary temperature between a playback track and an adjacent track is set to be smaller than the temperature Tr. Then, the playback layer in the adjacent track does not become a vertical magnetization film, a recorded signal in the adjacent track is not transferred to the playback layer, and a cross talk can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光により情報の記録再生を行う光磁気記録媒
体及び該媒体の再生方法に関し、特に線記録密度、トラ
ック密度を向上して、媒体の高密度化を可能とする光磁
気記録媒体及び該媒体の再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam by utilizing a magneto-optical effect and a reproducing method of the medium, and more particularly to improving linear recording density and track density. The present invention relates to a magneto-optical recording medium capable of increasing the density of a medium and a reproducing method of the medium.

【0002】[0002]

【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。
2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.

【0003】近年、この光磁気記録媒体の記録密度を高
めて更に大容量の記録媒体とする要求が、高まってい
る。
In recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to make it a recording medium having a larger capacity.

【0004】ところで、光磁気記録媒体等の光ディスク
の線記録密度は、主として再生層のS/Nによって決め
られており、また再生層の信号量は記録されている信号
のビット列の周期と再生光学系のレーザー波長、対物レ
ンズの開口数に大きく依存する。
By the way, the linear recording density of an optical disk such as a magneto-optical recording medium is mainly determined by the S / N of the reproducing layer, and the signal amount of the reproducing layer is the period of the bit string of the recorded signal and the reproducing optics. It largely depends on the laser wavelength of the system and the numerical aperture of the objective lens.

【0005】すなわち再生光学系のレーザー波長λと対
物レンズの開口数NAが決まると、検出限界となるビッ
トの周期fが次の様に決まる。
That is, when the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens are determined, the bit period f which becomes the detection limit is determined as follows.

【0006】f=λ/2NA 一方、トラック密度は、主としてクロストークによって
制限されている。このクロストークは、主として媒体面
上でのレーザービームの分布(プロファイル)で決ま
り、前記ビット周期と同様にλ/2NAの関数で表され
る。
F = λ / 2NA On the other hand, the track density is limited mainly by crosstalk. This crosstalk is mainly determined by the distribution (profile) of the laser beam on the medium surface, and is represented by a function of λ / 2NA as with the bit period.

【0007】したがって、従来の光ディスクで高密度化
を実現するためには、再生光学系のレーザー波長を短く
し、対物レンズの開口数NAを大きくする必要がある。
Therefore, in order to realize high density in the conventional optical disk, it is necessary to shorten the laser wavelength of the reproducing optical system and increase the numerical aperture NA of the objective lens.

【0008】しかしながら、レーザー波長や対物レンズ
の開口数の改善にも限度がある。このため、記録媒体の
構成や読み取り方法を工夫し、記録密度を改善する技術
が開発されている。
However, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.

【0009】たとえば、特開平3−93058において
は、再生層と記録層からなる媒体を用いて、信号の再生
前に再生層の磁化の向きを一方向に揃えた後に、記録層
に保持された信号を再生層に転写して再生時の符号間干
渉を減少させ、光の回折限界以下の周期の信号を再生可
能とし、線記録密度及びトラック密度の向上を試みてい
る。
For example, in Japanese Patent Laid-Open No. 3-93058, a medium composed of a reproducing layer and a recording layer is used, and before the reproduction of a signal, the magnetization direction of the reproducing layer is aligned in one direction, and then the recording layer is held. We are trying to improve the linear recording density and track density by transferring the signal to the reproducing layer to reduce the inter-symbol interference at the time of reproducing and making it possible to reproduce the signal having the period less than the diffraction limit of light.

【0010】[0010]

【発明が解決しようとしている課題】しかしながら、特
開平3−93058記載の光磁気再生方法では、再生層
の磁化をレーザー光が照射する前に一方向に揃えなけら
ばならない。そのため従来の装置に再生層の初期化用磁
石を追加することが必要となる。このため前記再生方法
は、光磁気記録装置が複雑化し、コストが高くなる、小
型化が難しい等の問題点を有している。
However, in the magneto-optical reproducing method described in Japanese Patent Application Laid-Open No. 3-93058, the magnetization of the reproducing layer must be aligned in one direction before being irradiated with laser light. Therefore, it is necessary to add a reproducing layer initialization magnet to the conventional device. Therefore, the reproducing method has problems that the magneto-optical recording device is complicated, the cost is high, and it is difficult to reduce the size.

【0011】[0011]

【課題を解決するための手段】本発明は上記問題に鑑
み、再生層の初期化を不要とすることで、従来用いられ
ている光磁気記録再生装置でも、光の回折限界以下の周
期の信号を再生でき、線密度及びトラック密度の向上を
可能にする光磁気記録媒体及び該媒体の再生方法の提供
を目的とするものである。
In view of the above problems, the present invention eliminates the need for initialization of the reproducing layer, so that even in a conventional magneto-optical recording / reproducing apparatus, a signal with a period less than the diffraction limit of light is used. It is an object of the present invention to provide a magneto-optical recording medium and a reproducing method of the medium, which can reproduce the data and improve the linear density and the track density.

【0012】そして、上記目的は、室温において面内磁
化膜で、昇温すると垂直磁化膜となる第一の磁性層(以
下、再生層と称する)と垂直磁化膜からなる第二の磁性
層(以下、記録層と称する)を有してなる光磁気記録媒
体を用いて、前記記録層に信号記録を行った後、信号再
生時には記録層の磁化を再生層に転写しながら磁気光学
効果により光学信号に変換して読み取ることによって達
成される。
Further, the above-mentioned object is an in-plane magnetized film at room temperature, and a first magnetic layer (hereinafter referred to as a reproduction layer) which becomes a perpendicular magnetized film when heated, and a second magnetic layer (which is called a reproducing layer) ( Hereinafter, a signal is recorded on the recording layer by using a magneto-optical recording medium having a recording layer), and when the signal is reproduced, the magnetization of the recording layer is transferred to the reproducing layer to achieve an optical effect. It is achieved by converting into a signal and reading.

【0013】室温において面内磁化膜で、昇温すると垂
直磁化膜となる再生層と垂直磁化膜からなる記録層を有
してなる光磁気記録媒体によって達成される。
This is achieved by a magneto-optical recording medium having an in-plane magnetized film at room temperature and a recording layer composed of a perpendicular magnetized film and a reproducing layer which becomes a perpendicular magnetized film when heated.

【0014】[0014]

【実施例】以下、図面を用いて本発明を詳しく説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0015】図1は、本発明の光磁気媒体の膜構成の一
例を示す模式図、図2は、本発明の光磁気信号の再生方
法を示す説明図、図3は、媒体移動時の光スポット周辺
の媒体の温度分布を表す模式図、図4は、転写磁化現出
状態を示す模式図、図5は、再生層の磁化Ms、性能指
数(RθK )の温度依存性の一例を示す図、図6は、
再生層の2πMs2 と垂直磁気異方性定数Kuの温度
依存性の一例を示したものである。
FIG. 1 is a schematic view showing an example of a film structure of a magneto-optical medium of the present invention, FIG. 2 is an explanatory view showing a reproducing method of a magneto-optical signal of the present invention, and FIG. FIG. 4 is a schematic diagram showing the temperature distribution of the medium around the spot, FIG. 4 is a schematic diagram showing a transferred magnetization appearance state, and FIG. 5 is an example of the temperature dependence of the magnetization Ms of the reproducing layer and the performance index (Rθ K ). Figures and 6
It shows an example of the temperature dependence of 2πMs 2 of the reproducing layer and the perpendicular magnetic anisotropy constant Ku.

【0016】本発明の光磁気記録媒体は、室温で面内磁
化膜であり、昇温すると垂直磁化膜に変化する再生層と
再生層と交換結合すると共に室温時、昇温時いずれの時
にも垂直磁化膜である記録層の2層を少なくとも有す
る。
The magneto-optical recording medium of the present invention is an in-plane magnetized film at room temperature, and is exchange-coupled with the reproducing layer and the reproducing layer, which changes to a perpendicularly magnetized film when heated, and at any one of room temperature and temperature rising. It has at least two recording layers which are perpendicular magnetization films.

【0017】記録層としては、例えば希土類−鉄族非晶
質合金、例えば、TbFeCo,DyFeCo,TbD
yFeCoなどの、微小の記録ピットが安定に保存でき
るような垂直磁気異方性の大きな材料が最も望ましい。
またガーネット類、Pt/Co,Pd/Co等の垂直磁
化膜であって、再生層に磁気的に情報転写できるもので
あっても良い。
The recording layer is, for example, a rare earth-iron group amorphous alloy such as TbFeCo, DyFeCo, TbD.
A material having a large perpendicular magnetic anisotropy, such as yFeCo, capable of stably storing minute recording pits is most desirable.
Further, it may be a perpendicular magnetic film such as garnet, Pt / Co, Pd / Co, etc., which can magnetically transfer information to the reproducing layer.

【0018】再生層としては、希土類−鉄族非晶質合
金、例えば、GdCo,GdFeCo,TbFeCo,DyFeCo,GdTbFeCo,GdD
yFeCo,TbDyFeCoなどが望ましい。又これらの材料に短波
長でのカー回転角を大きくするためなどの理由でNd,
Pr,Sm等の軽希土類金属を添加しても良い。
As the reproducing layer, a rare earth-iron group amorphous alloy such as GdCo, GdFeCo, TbFeCo, DyFeCo, GdTbFeCo, GdD is used.
yFeCo and TbDyFeCo are preferable. For these materials, Nd, for the reason of increasing the Kerr rotation angle at short wavelength,
A light rare earth metal such as Pr or Sm may be added.

【0019】あるいは、白金族ー鉄族周期構造膜、例え
ば、Pt/Co,Pd/Co 白金族−鉄族合金、例えばPtCo,PdCo
などでも良い。
Alternatively, a platinum group-iron group periodic structure film such as Pt / Co, Pd / Co platinum group-iron group alloy such as PtCo, PdCo
And so on.

【0020】再生層はデータ再生のレーザースポット内
の高温部において、磁化方向が面内から膜面に垂直方向
へと移行する必要がある。この再生層用の磁性層として
は、例えば、もともと垂直磁気異方性を持ち(Ku>
0)、室温では飽和磁化Msが大きいために自身の反磁
界の影響を受けて面内磁化膜となり、再生時に温度が上
昇するにつれてMsが小さくなって垂直磁化膜になる磁
性材料を用いれば良い。
In the reproducing layer, in the high temperature portion within the laser spot for data reproduction, the magnetization direction needs to shift from the in-plane direction to the direction perpendicular to the film surface. The magnetic layer for the reproducing layer originally has, for example, perpendicular magnetic anisotropy (Ku>
0) At room temperature, since the saturation magnetization Ms is large, it is possible to use a magnetic material that is affected by its own demagnetizing field to become an in-plane magnetized film, and Ms becomes smaller as the temperature rises during reproduction to become a perpendicular magnetized film. .

【0021】その様な材料としては、補償温度は必ずし
もなくてよいが、好ましくは補償温度が室温とキュリー
温度の間にあるものを用いるのが望ましい。具体的には
再生層の補償温度は、100℃以上が望ましく、200
℃以上がより望ましく、240℃以上が最も望ましい。
As such a material, a compensation temperature is not always required, but it is desirable to use a material having a compensation temperature between room temperature and Curie temperature. Specifically, the compensation temperature of the reproducing layer is preferably 100 ° C. or higher,
C. or higher is more desirable, and 240.degree. C. or higher is most desirable.

【0022】再生層の飽和磁化は、室温において150
emu/cc以上であることが望ましく、室温において
200emu/cc以上であることがより望ましい。
The saturation magnetization of the reproducing layer is 150 at room temperature.
It is preferably emu / cc or more, and more preferably 200 emu / cc or more at room temperature.

【0023】また、再生層はキュリー温度が高い方が再
生時にカー回転角が小さくなることがなく、十分大きな
再生信号を得ることができるので望ましく、少なくとも
記録層よりもキュリー温度の高いものが望ましい。より
具体的には、再生層のキュリー温度は250℃以上が望
ましく、300℃以上がより望ましい。
Further, it is preferable that the Curie temperature of the reproducing layer is higher because the Kerr rotation angle does not decrease during reproduction and a sufficiently large reproduced signal can be obtained, and that of which the Curie temperature is higher than that of the recording layer is preferable. . More specifically, the Curie temperature of the reproducing layer is preferably 250 ° C. or higher, more preferably 300 ° C. or higher.

【0024】GdFeCoを主成分とする磁性材料を再
生層に用いる場合、Co含有量を多くすればキュリー温
度を高くすることができる。ただし、Coをあまり多く
添加すると、Kuが小さくなってやがて負の値になる
(面内異方性となる)ので、昇温して飽和磁化が十分小
さくなっても完全な垂直磁化膜とならないので良好な信
号は得られなくなってしまう。(成膜の時に基板側に負
の電位バイアスを印加する逆スパッタを行ったり、成膜
後にアニール処理などをおこなうと、GdCo膜でも垂
直磁気異方性を持つことがあるので、まったくGdCo
膜を使用できないことはないが、これは生産性の面でや
や不利になる場合がある。)このため、再生層の主の元
素の組成をGdx (Fe100-y Coy100-x とした場
合、yは10〜60at%がより望ましく、20〜50
%がさらに望ましい。
When a magnetic material containing GdFeCo as a main component is used in the reproducing layer, the Curie temperature can be increased by increasing the Co content. However, if too much Co is added, Ku becomes small and eventually becomes a negative value (in-plane anisotropy). Therefore, even if the temperature rises and the saturation magnetization becomes sufficiently small, a perfect perpendicular magnetization film is not formed. Therefore, a good signal cannot be obtained. (If reverse sputtering in which a negative potential bias is applied to the substrate side during film formation is performed or annealing treatment is performed after film formation, the GdCo film may have perpendicular magnetic anisotropy.
Membranes are not unusable, but this can be a slight disadvantage in terms of productivity. Therefore, when the composition of the main elements of the reproducing layer is Gd x (Fe 100-y Co y ) 100-x , y is more preferably 10 to 60 at% and more preferably 20 to 50 at%.
% Is more desirable.

【0025】再生層の膜厚は、記録層にまで入射光が透
過したり、記録層との間にできた磁壁が再生層側に浸透
するなどして記録層に記録された情報が再生され、光ス
ポットのマスク部分が不完全になるので、あまり薄くは
できない。又、再生層の膜厚が厚過ぎると、再生時に要
するレーザーパワーが大きくなるため限界がある。この
ため再生層の膜厚は、150〜1000Åが望ましく、
より望ましくは300〜900Åが望ましい。
The thickness of the reproducing layer is such that the information recorded in the recording layer is reproduced by allowing incident light to pass through to the recording layer or by causing a domain wall formed between the recording layer and the recording layer to penetrate into the reproducing layer side. Since the mask part of the light spot becomes incomplete, it cannot be made too thin. On the other hand, if the thickness of the reproducing layer is too large, there is a limit because the laser power required for reproducing becomes large. Therefore, the thickness of the reproducing layer is preferably 150 to 1000 Å,
More preferably, 300 to 900Å is desirable.

【0026】再生層と記録層には、Cr,Al,Ti,Pt,Nbなど
の耐食性改善のための元素添加を行なっても良い。また
交換結合力を調整するための中間層などの他の磁性層を
付与しても良い。
Elements such as Cr, Al, Ti, Pt and Nb for improving corrosion resistance may be added to the reproducing layer and the recording layer. Further, another magnetic layer such as an intermediate layer for adjusting the exchange coupling force may be provided.

【0027】上記再生層と記録層に加えて、干渉効果に
より再生信号を高めるために、SiN,AlOx,Ta
Ox,等の誘電体や、Al,AlTi,AlCr,Al
Ta,Cu等の金属層を熱伝導性制御のために設けても
良い。更に保護膜として前記誘電体層や高分子樹脂から
なる保護コート等を付与しても良い。
In addition to the reproducing layer and the recording layer, SiN, AlOx, Ta are added to enhance the reproduced signal due to the interference effect.
Dielectrics such as Ox, Al, AlTi, AlCr, Al
A metal layer such as Ta or Cu may be provided for controlling thermal conductivity. Further, a protective coat made of the dielectric layer or polymer resin may be provided as a protective film.

【0028】本発明者は記録層から再生層への磁化転写
過程を鋭意検討したところ、再生層に室温では面内磁化
膜であるが高温になると垂直磁化膜となる磁性層を用い
れば、レーザースポットの中で高温になった部分のみが
記録層の磁化を転写することを見いだした。この方法で
は、再生層の磁化をあらかじめ一方向に揃えておく等の
余分な操作を必要とせずに、光の検出限界以下の周期の
信号が再生可能となる。
The present inventor diligently studied the magnetization transfer process from the recording layer to the reproducing layer. As a result, if a magnetic layer that is an in-plane magnetized film at room temperature but becomes a perpendicular magnetized film at high temperature is used as the reproducing layer, a laser is generated. It was found that only the hot part of the spot transfers the magnetization of the recording layer. According to this method, it is possible to reproduce a signal having a period equal to or shorter than the light detection limit without requiring an extra operation such as pre-aligning the magnetization of the reproduction layer in one direction.

【0029】以下に本発明の再生プロセスの原理を説明
する。
The principle of the regeneration process of the present invention will be described below.

【0030】図1で示される光磁気記録媒体の記録層に
データ信号を記録する。記録は記録層がキュリー温度以
上になるようなパワーのレーザー光を照射しながら外部
磁界を変調して行うか、もしくは、磁化を同方向に初期
化した後に、記録方向に磁界を印加しながらレーザーパ
ワーを変調して行う。
A data signal is recorded on the recording layer of the magneto-optical recording medium shown in FIG. Recording is performed by irradiating the external magnetic field while irradiating a laser beam with a power such that the recording layer has a Curie temperature or higher, or after initializing the magnetization in the same direction, the laser is applied while applying the magnetic field in the recording direction. Modulates the power.

【0031】この時、光スポット内の所定領域のみが記
録層のキュリー温度近傍になるように記録媒体の線速度
を考慮してレーザ光の強度を決定してやれば光スポット
の径以下の記録磁区が形成でき、その結果、光の回折限
界以下の周期の信号を記録できる。
At this time, if the intensity of the laser light is determined in consideration of the linear velocity of the recording medium so that only a predetermined area within the light spot is near the Curie temperature of the recording layer, a recording magnetic domain smaller than the diameter of the light spot is obtained. As a result, a signal having a period below the diffraction limit of light can be recorded.

【0032】データ再生時には、媒体に再生レーザー光
を連続照射して、記録媒体からの反射光もしくは透過光
を検知することにより行なう。この時、レーザ照射部位
の温度が上昇し、媒体上の温度分布は図3に示す様に媒
体の移動方向の延びた形状となり、光スポット内の一部
が高温となった温度分布となる。
At the time of data reproduction, the medium is continuously irradiated with a reproduction laser beam to detect reflected light or transmitted light from the recording medium. At this time, the temperature of the laser irradiation portion rises, and the temperature distribution on the medium has a shape extending in the moving direction of the medium, as shown in FIG.

【0033】ところで磁性薄膜の飽和磁化をMS 、垂直
磁気異方性定数をKuとした時、 K⊥=Ku−2πMS 2 で定義される実効的垂直磁気異方性定数K⊥により、磁
化の主な向きが決定されることが知られている。ここで
2πMs 2は反磁界エネルギーである。
When the saturation magnetization of the magnetic thin film is M S and the perpendicular magnetic anisotropy constant is Ku, the effective perpendicular magnetic anisotropy constant K ⊥ defined by K⊥ = Ku-2πM S 2 It is known that the main orientation of is determined. Here, 2πM s 2 is the demagnetizing energy.

【0034】図5で示した様に、再生層のMsは再生時
には温度が上昇するため、小さくなる。このため図6で
示す様に2πMs2 は急激に小さくなって垂直磁気異方
性定数Kuとの大小関係が逆転し(逆転する温度をTr
とする)、 K⊥>0 となって垂直磁化膜となる(Kuも温度上昇と共に若干
減少するが、2πMs2と比較するとその減少率は一般
に小さい。)。
As shown in FIG. 5, the Ms of the reproduction layer becomes small because the temperature rises during reproduction. Therefore, as shown in FIG. 6, 2πMs 2 is rapidly reduced, and the magnitude relationship with the perpendicular magnetic anisotropy constant Ku is reversed (the temperature at which the temperature is reversed is Tr
Then, K⊥> 0 and the film becomes a perpendicular magnetization film (Ku also decreases slightly as the temperature rises, but its reduction rate is generally small compared to 2πMs 2 ).

【0035】又、温度がTr以下の部分はMsが大きい
ために、 K⊥<0 なる式を満たし面内磁化膜のままである。
Further, since Ms is large in the portion where the temperature is equal to or lower than Tr, the in-plane magnetized film remains as it satisfies the equation of K⊥ <0.

【0036】この磁性薄膜を垂直磁化膜と直接もしくは
中間層等を介して積層する場合、垂直磁化膜からの交換
結合力、静磁結合力などが働くため、垂直磁化膜となる
温度領域は高温側にシフトするが、単層膜での面内磁化
膜から垂直磁化膜への転移温度をやや低めに設定してお
けば、垂直磁化膜と積層した場合にも、室温において垂
直磁化膜で、再生時の高温において垂直磁化膜となる状
況が成立する。
When this magnetic thin film is laminated directly on the perpendicular magnetic film or via an intermediate layer or the like, since the exchange coupling force and the magnetostatic coupling force from the perpendicular magnetic film act, the temperature region of the perpendicular magnetic film is high. Although it shifts to the side, if the transition temperature from the in-plane magnetized film to the perpendicular magnetized film in the single layer film is set to be slightly lower, even when laminated with the perpendicular magnetized film, the perpendicular magnetized film at room temperature becomes The condition that the film becomes a perpendicular magnetic film at a high temperature during reproduction is established.

【0037】すなわち、再生時のレーザ光の強度を図3
で示される光スポットの高温部のみが温度Tr 以上に
なる様に設定すれば、図2の様に、再生層は光スポット
の一部である高温部のみが垂直磁化膜となり、他の大部
分は面内磁化膜のままという状態が実現する。垂直磁化
膜となった再生層は記録層と交換結合によって磁気的に
結合されるので記録層の信号が再生層に転写される。転
写された磁気信号は、再生層の磁気光学効果(カー回転
角あるいはファラデー回転角)によって光学信号に変換
されて検出される。
That is, the intensity of the laser beam during reproduction is shown in FIG.
If it is set so that only the high temperature part of the light spot indicated by is above the temperature Tr, as shown in FIG. 2, only the high temperature part which is a part of the light spot becomes a perpendicular magnetization film in the reproducing layer, and most of the other part. The state in which the in-plane magnetized film remains is realized. The reproducing layer, which has become a perpendicularly magnetized film, is magnetically coupled to the recording layer by exchange coupling, so that the signal of the recording layer is transferred to the reproducing layer. The transferred magnetic signal is converted into an optical signal by the magneto-optical effect (Kerr rotation angle or Faraday rotation angle) of the reproducing layer and detected.

【0038】この様に、図3で示される光スポットの高
温部の面積はレーザ光の設定強度によって決定できるこ
とを考慮すれば、記録層に記録された光の回折限界以下
の周期の信号の各記録ビット単位で再生層に転写するこ
とができ、その結果、光の回折限界以下の周期の信号も
符号間干渉無く再生できる。
In this way, considering that the area of the high temperature portion of the light spot shown in FIG. 3 can be determined by the set intensity of the laser light, each of the signals having a period less than the diffraction limit of the light recorded in the recording layer is obtained. It can be transferred to the reproducing layer in units of recording bits, and as a result, a signal having a period less than the diffraction limit of light can be reproduced without intersymbol interference.

【0039】さらに再生に際して、再生トラックと隣接
トラックとの境界での温度TtがTt<Trとなるよう
な温度分布としておけば、隣接トラックの再生層が垂直
磁化膜とならず、隣接トラックの記録層に記録された信
号が再生層に転写されることなく、クロストークは完全
に解消される。この様子を図4に示した。
Further, in reproducing, if the temperature distribution is such that the temperature Tt at the boundary between the reproducing track and the adjacent track is Tt <Tr, the reproducing layer of the adjacent track does not become a perpendicular magnetization film, and the recording of the adjacent track occurs. The crosstalk is completely eliminated without the signal recorded on the layer being transferred to the reproduction layer. This state is shown in FIG.

【0040】尚、上述では再生層と記録層が交換相互作
用により磁気的に結合する場合を述べたが、再生時に記
録層と再生層が静磁結合によって磁気的に結合されると
してもよい。
In the above description, the case where the reproducing layer and the recording layer are magnetically coupled by the exchange interaction has been described, but the recording layer and the reproducing layer may be magnetically coupled by magnetostatic coupling during reproduction.

【0041】以下に実験例をもって本発明を更に詳細に
説明するが、本発明はその要旨を越えない限り以下の実
験例に限定されるものではない。
The present invention will be described in more detail below with reference to experimental examples, but the present invention is not limited to the following experimental examples as long as the gist thereof is not exceeded.

【0042】(実験例1)直流マグネトロンスパッタリ
ング装置に、SiN、Tb,Gd,Fe,Co,Alの
各タ−ゲットを取り付け、ガラス基板を基板ホルダーに
固定した後、1×10-5 Pa以下の高真空になるまで
チャンバ−内をクライオポンプで真空排気した。
(Experimental Example 1) Each target of SiN, Tb, Gd, Fe, Co, and Al was attached to a DC magnetron sputtering apparatus, and a glass substrate was fixed to a substrate holder, and then 1 × 10 -5 Pa or less. The interior of the chamber was evacuated by a cryopump until the high vacuum was reached.

【0043】真空排気をしながらArガスを0.3Pa
となるまでチャンバ−内に導入した後、Gd,Tb,C
oの各タ−ゲットに各々に直流電力を印加してガラス基
板上にGdTbCo層800Å成膜し、次いでSiNタ
−ゲットに交流を印加して保護膜としてSiN層を80
0Å成膜した。GdTbFe層の組成は、スパッタ成膜
時のGd,Tb,Fe各タ−ゲットのパワ−を変えるこ
とにより調節し、補償温度が180℃でキュリー温度は
350℃以上となる様に設置した。
Ar gas was supplied at 0.3 Pa while evacuation was performed.
Gd, Tb, C after being introduced into the chamber until
Direct current power is applied to each of the target o to form a GdTbCo layer 800Å on the glass substrate, and then alternating current is applied to the SiN target to form a SiN layer as a protective film.
0Å Film was formed. The composition of the GdTbFe layer was adjusted by changing the power of each of the Gd, Tb, and Fe targets during sputtering film formation, and was set so that the compensation temperature was 180 ° C. and the Curie temperature was 350 ° C. or higher.

【0044】またカー回転角は、キュリー温度が高いこ
とを反映して、150℃付近でも室温の値からの減衰は
10%以内であった。再生層の膜面に垂直に磁化された
外部磁界に対する磁気モーメントの平均回転率を測定し
たところ、図8に示すように、再生層は、約120℃付
近で、記録層からの交換結合力による実効的外部磁界を
受ける状況においても、膜面内に磁化方向を持っていた
膜が、垂直磁化膜に変わることが確認された。
Also, the Kerr rotation angle was within 10% of the attenuation from the value at room temperature near 150 ° C., reflecting the high Curie temperature. When the average rotation rate of the magnetic moment with respect to the external magnetic field magnetized perpendicularly to the film surface of the reproducing layer was measured, as shown in FIG. 8, the reproducing layer was affected by the exchange coupling force from the recording layer at about 120 ° C. It was confirmed that the film having the magnetization direction in the film plane was changed to the perpendicular magnetization film even under the condition of receiving the effective external magnetic field.

【0045】ここで磁化の平均回転率は、M⊥/(Ms
・Hex)と定義し、M⊥は、1×10-4Pa以下の真
空中で抵抗加熱型ヒーターにより試料を加熱し、VSM
(振動試料型磁力計)を用いて、膜面垂直方向に600
Oeの外部磁界(Hexとする)を印加して試料の磁化
を測定して求め、飽和磁化Msは同様に15KOeの外
部磁界を印加して求めた。
Here, the average rotation rate of the magnetization is M⊥ / (Ms
・ Hex), M ⊥ is VSM by heating the sample with a resistance heating type heater in a vacuum of 1 × 10 −4 Pa or less.
Using a (vibrating sample magnetometer), 600 in the direction perpendicular to the film surface.
An external magnetic field of Oe (denoted by Hex) was applied to measure the magnetization of the sample, and the saturation magnetization Ms was similarly determined by applying an external magnetic field of 15 KOe.

【0046】次にφ130mmのプリグルーブのあるポ
リカーボネイト基板を装着した以外は上述と同じにした
チャンバ−内をクライオポンプで高真空排気した後、A
rガスを0.3Paになるまでチャンバ−内に導入し、
基板上に酸化防止と干渉効果を得るためにSiN層を9
00Å成膜した後、再生層としてGdTbCo層を40
0Å、記録層としてTbFeCo層を400Å成膜し
た。その後、酸化防止と干渉効果を高めるためにSiN
層を300Å、熱伝導制御層としてAl層を400Å成
膜した。成膜は順次真空を破ることなく連続して行い本
発明の一例である第7図に示すような5層構成の光磁気
記録媒体を作成した。
Next, after the inside of the chamber was evacuated to a high vacuum by a cryopump in the same manner as described above except that a polycarbonate substrate having a pre-groove of φ130 mm was mounted, A
r gas was introduced into the chamber until it reached 0.3 Pa,
A SiN layer is formed on the substrate to prevent oxidation and interference.
After depositing a film of 00Å, a GdTbCo layer is used as a reproducing layer.
0 Å and a TbFeCo layer of 400 Å was formed as a recording layer. After that, SiN is added to prevent oxidation and enhance interference effect.
A 300 Å layer and a 400 Å Al layer were formed as a heat conduction control layer. The film formation was carried out successively without breaking the vacuum to prepare a magneto-optical recording medium having a five-layer structure as shown in FIG. 7, which is an example of the present invention.

【0047】SiN層の屈折率nはどちらも約2.1、
TbFeCo層の組成はTb,Fe,Coがそれぞれ2
1、72、7at%の割合となるようにした。
The refractive index n of the SiN layer is about 2.1 in both cases.
The composition of the TbFeCo layer is 2 for Tb, Fe, and Co, respectively.
The ratio was 1, 72, 7 at%.

【0048】GdTbFe層の組成は補償温度は約26
0℃、キュリー温度は350℃となる様に設定した。
The composition of the GdTbFe layer has a compensation temperature of about 26.
The temperature was set to 0 ° C and the Curie temperature was set to 350 ° C.

【0049】次に、この光磁気記録媒体を用いて、記録
再生特性を測定した。
Next, the recording / reproducing characteristics were measured using this magneto-optical recording medium.

【0050】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは7
〜13mW、再生パワーは2.5〜3.5mWの範囲内
で、CNが最も高くなるように設定した。線速度9m/
秒として、記録層に5〜15MHzのキャリア信号を1
MHzおきに磁界変調方式で書き込み、C/N比(キャ
リアーレベル対ノイズレベルの比)の記録周波数依存性
を調べた。結果を図9に示した。
N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. Recording power is 7
.About.13 mW, and the reproducing power was set to be the highest in the range of 2.5 to 3.5 mW. Linear speed 9m /
The carrier signal of 5 to 15 MHz is recorded on the recording layer as 1 second.
The magnetic field modulation method was used to write data at every MHz, and the recording frequency dependence of the C / N ratio (ratio of carrier level to noise level) was examined. The results are shown in Fig. 9.

【0051】(実験例2〜16)同様にして表1に示し
た通りの組成、膜厚、補償温度(Tcp)、キュリー温
度(Tc)の再生層、記録層の媒体を作成して、評価を
行った。膜構成は熱伝導層を設けなかった以外は実験例
1と同構成とした。
(Experimental Examples 2 to 16) In the same manner, a medium having a composition, film thickness, compensation temperature (Tcp) and Curie temperature (Tc) as shown in Table 1 was prepared for the reproducing layer and the recording layer, and evaluated. I went. The film structure was the same as in Experimental Example 1 except that the heat conductive layer was not provided.

【0052】(比較実験例)再生層、熱伝導制御層を削
除し、記録層を800Åとした以外は実験例1と同様の
構成の光磁気記録媒体を作成し、同様にC/N比の記録
周波数依存性を調べた。結果を図9(2.従来法)に示
した。
(Comparative Experimental Example) A magneto-optical recording medium having the same structure as in Experimental Example 1 was prepared except that the reproducing layer and the heat conduction control layer were deleted and the recording layer was changed to 800 Å. The recording frequency dependence was investigated. The results are shown in Fig. 9 (2. conventional method).

【0053】図9、表1より本発明の方法を採用すると
高い記録周波数で記録した短いマーク長の記録において
も良好なC/N比が得られることがわかる。
It can be seen from FIG. 9 and Table 1 that when the method of the present invention is adopted, a good C / N ratio can be obtained even in recording with a short mark length recorded at a high recording frequency.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【発明の効果】本発明の光磁気記録媒体及び再生方法を
用いれば、初期化磁石が不要な簡素な装置(従来の装
置)を用いて、ビームスポット径より小さい磁区の再生
が可能で、かつクロストークを解消することができ、ト
ラック密度及び、線記録密度を向上して高密度記録の達
成が可能となった。
According to the magneto-optical recording medium and the reproducing method of the present invention, it is possible to reproduce a magnetic domain smaller than the beam spot diameter by using a simple device (conventional device) which does not require an initialization magnet. Crosstalk can be eliminated, and track density and linear recording density can be improved to achieve high-density recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁気記録媒体の膜構成の一例を示す
模式図
FIG. 1 is a schematic diagram showing an example of a film structure of a magneto-optical recording medium of the present invention.

【図2】本発明の光磁気信号の再生方法を示す説明図FIG. 2 is an explanatory diagram showing a method of reproducing a magneto-optical signal according to the present invention.

【図3】媒体移動時に光スポット周辺の媒体の温度分布
を表す図
FIG. 3 is a diagram showing a temperature distribution of a medium around a light spot when the medium is moved.

【図4】転写磁化現出状態を示す模式図FIG. 4 is a schematic diagram showing a transfer magnetization appearance state.

【図5】再生層の磁化Ms、性能指数(RθK )の温度
依存性の一例を示す図
FIG. 5 is a diagram showing an example of the temperature dependence of the magnetization Ms of the reproducing layer and the figure of merit (Rθ K ).

【図6】再生層の2πMs2 と垂直磁気異方性定数Ku
の温度依存性を示した図である。
FIG. 6 is 2πMs 2 of the reproducing layer and the perpendicular magnetic anisotropy constant Ku.
It is a figure showing the temperature dependence of.

【図7】本発明の光磁気記録媒体の実施例の膜構成図FIG. 7 is a film configuration diagram of an embodiment of a magneto-optical recording medium of the present invention.

【図8】膜面に垂直に印加された外部磁界に対する磁気
モーメントの平均回転率を表実施例の図である。
FIG. 8 is a table showing the average rotation rate of the magnetic moment with respect to an external magnetic field applied perpendicularly to the film surface.

【図9】C/N比の記録周波数、マーク長依存性を示し
た図である。
FIG. 9 is a diagram showing recording frequency and mark length dependence of C / N ratio.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室温において、面内磁化膜で、昇温する
と垂直磁化膜に変化する第一の磁性層と、垂直磁化膜か
らなる第二の磁性層とを有してなる光磁気記録媒体を用
いて、 前記第一の磁性層をレーザー光照射で昇温することによ
り垂直磁化膜とし、前記第二の磁性層に記録された磁気
信号を第一の磁性層に転写しながら、磁気光学効果によ
り光学信号に変換して読み取ることを特徴とする光磁気
記録媒体における信号再生方法。
1. A magneto-optical recording medium comprising an in-plane magnetized film at room temperature, which has a first magnetic layer that changes to a perpendicular magnetized film when heated, and a second magnetic layer made of the perpendicular magnetized film. The first magnetic layer is heated by laser light irradiation to form a perpendicular magnetization film by using a magnetic field, and the magnetic signal recorded in the second magnetic layer is transferred to the first magnetic layer while A signal reproducing method in a magneto-optical recording medium, which is characterized in that the signal is converted into an optical signal and read by the effect.
【請求項2】 室温において面内磁化膜で、昇温すると
垂直磁化膜に変化する第一の磁性層と、垂直磁化薄膜か
らなる第二の磁性層とを有してなることを特徴とする光
磁気記録媒体。
2. An in-plane magnetized film at room temperature, comprising a first magnetic layer that changes to a perpendicular magnetized film when heated, and a second magnetic layer composed of a perpendicular magnetized thin film. Magneto-optical recording medium.
JP18843893A 1992-08-28 1993-07-29 Magneto-optical recording medium and playback method of this medium Pending JPH06124500A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP18843893A JPH06124500A (en) 1992-08-28 1993-07-29 Magneto-optical recording medium and playback method of this medium
DE69331924T DE69331924T2 (en) 1992-08-28 1993-08-24 Magneto-optical recording medium and information recording and reproducing method therewith
EP93306690A EP0586175B1 (en) 1992-08-28 1993-08-24 A magnetooptical recording medium and information recording and reproducing methods using the recording medium
ES93306690T ES2176194T3 (en) 1992-08-28 1993-08-24 MAGNETOPOPTIC RECORDING SUPPORT AND RECORDING AND REPRODUCTION METHODS OF INFORMATION USED IN RECORDING SUPPORT.
EP01201745A EP1143434A3 (en) 1992-08-28 1993-08-24 A magnetooptical recording medium and information recording and reproducing methods using the recording medium
US08/643,833 US5616428A (en) 1992-08-28 1996-05-07 Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US08/774,721 US5889739A (en) 1992-08-28 1997-01-03 Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US09/820,734 USRE38501E1 (en) 1992-08-28 2001-03-30 Magnetooptical recording medium and information recording and reproducing methods using the recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23026592 1992-08-28
JP4-230265 1992-08-28
JP18843893A JPH06124500A (en) 1992-08-28 1993-07-29 Magneto-optical recording medium and playback method of this medium

Publications (1)

Publication Number Publication Date
JPH06124500A true JPH06124500A (en) 1994-05-06

Family

ID=26504925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18843893A Pending JPH06124500A (en) 1992-08-28 1993-07-29 Magneto-optical recording medium and playback method of this medium

Country Status (1)

Country Link
JP (1) JPH06124500A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201089A (en) * 1993-12-16 1995-08-04 Lg Electron Inc Magneto-optical disk and its manufacture
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
EP0698881A1 (en) 1994-08-24 1996-02-28 Canon Kabushiki Kaisha Magnetooptical recording medium and method for reproducing information from the medium
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
EP0706181A1 (en) 1994-10-05 1996-04-10 Canon Kabushiki Kaisha Magneto-optic recording medium and information reproducing method using the medium
US5732049A (en) * 1994-12-27 1998-03-24 Canon Kabushiki Kaisha Magneto-optical recording medium of super-resolution type using in-plane magnetic layer, and information reproducing method using the same medium
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US6261707B1 (en) 1992-11-06 2001-07-17 Sharp Kabushiki Kaisha Magneto-optical recording medium and recording and reproducing method and optical head designed for the magneto-optical recording medium
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
US6665235B2 (en) 1992-11-06 2003-12-16 Sharp Kabushiki Kaisha Magneto-optical recording medium and recording and reproducing method and optical head designed for the magneto-optical recording medium
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665235B2 (en) 1992-11-06 2003-12-16 Sharp Kabushiki Kaisha Magneto-optical recording medium and recording and reproducing method and optical head designed for the magneto-optical recording medium
US6483785B1 (en) 1992-11-06 2002-11-19 Sharp Kk Magneto-optical recording method using the relation of beam diameter and an aperture of converging lens
US6261707B1 (en) 1992-11-06 2001-07-17 Sharp Kabushiki Kaisha Magneto-optical recording medium and recording and reproducing method and optical head designed for the magneto-optical recording medium
JPH07201089A (en) * 1993-12-16 1995-08-04 Lg Electron Inc Magneto-optical disk and its manufacture
US6125083A (en) * 1994-06-10 2000-09-26 Canon Kabushiki Kaisha Magneto-optical recording method and medium comprising three layers, whose middle layer has a lower curie temperature than the other layers
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
EP0686970A3 (en) * 1994-06-10 1996-07-24 Canon Kk Magneto-optical recording medium and reproducing method using the medium
EP0698881A1 (en) 1994-08-24 1996-02-28 Canon Kabushiki Kaisha Magnetooptical recording medium and method for reproducing information from the medium
US5666346A (en) * 1994-08-24 1997-09-09 Canon Kabushiki Kaisha Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
US5935701A (en) * 1994-10-05 1999-08-10 Canon Kabushiki Kaisha Super-resolution magneto-optic recording medium using in-plane magnetic film and information reproducing method using the medium
EP0706181A1 (en) 1994-10-05 1996-04-10 Canon Kabushiki Kaisha Magneto-optic recording medium and information reproducing method using the medium
US5732049A (en) * 1994-12-27 1998-03-24 Canon Kabushiki Kaisha Magneto-optical recording medium of super-resolution type using in-plane magnetic layer, and information reproducing method using the same medium
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer

Similar Documents

Publication Publication Date Title
EP0619577B1 (en) Magneto-optical recording medium and method for reproducing information therein
US5616428A (en) Magnetooptical recording medium and information recording and reproducing methods using the recording medium
JPH06290496A (en) Magneto-optical recording medium, reproducing method and reproducing device
US6307816B1 (en) Magneto-optical recording medium, and information reproducing method using the medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US5793712A (en) Magneto-optical reproducing method using a reproducing layer of horizontal magnetized state at room temperature
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
US5666346A (en) Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
KR100271114B1 (en) Magneto-optical recording medium and information reproducing method using this medium
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
JP2003263806A (en) Magneto-optical recording medium
JP3101462B2 (en) Magneto-optical recording medium and information reproducing method using the medium
JPWO2002035540A1 (en) Magneto-optical recording medium and reproducing method thereof
JPH0528555A (en) Magneto-optical recording medium
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium
JP3332905B2 (en) Method and apparatus for reproducing magneto-optical recording medium
JPH06309729A (en) Magneto-optical recording medium and method for reproducing information with the same
JP2003303456A (en) Magneto-optical recording medium and method for manufacturing the same
JP2003272262A (en) Magneto-optical recording medium
JPH06274958A (en) Magneto-optical recording medium, method for recording and reproducing information using the medium
JP2005050400A (en) Magneto-optical recording medium
JPH06309716A (en) Magneto-optical recording medium and reproducing method using the same
JPH08315436A (en) Magneto-optical recording medium and information recording and reproducing method using that medium
JPH0935347A (en) Magneto-optical recording medium and reproducing method therefor
JPH07262629A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001114