JPH08315435A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH08315435A
JPH08315435A JP11718695A JP11718695A JPH08315435A JP H08315435 A JPH08315435 A JP H08315435A JP 11718695 A JP11718695 A JP 11718695A JP 11718695 A JP11718695 A JP 11718695A JP H08315435 A JPH08315435 A JP H08315435A
Authority
JP
Japan
Prior art keywords
layer
reproducing
recording
thickness
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11718695A
Other languages
Japanese (ja)
Inventor
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP11718695A priority Critical patent/JPH08315435A/en
Publication of JPH08315435A publication Critical patent/JPH08315435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a magneto-optical recording medium having especially high recording sensitivity while maintaining a high resolution by using a magnetic layer which acts as an intra-plane magnetization film at room temp. for a reproducing layer. CONSTITUTION: The medium has a reproducing layer 13 and a recording layer 214 having the compsn. of Gdx Mey (Fe1-z Coz )1-x-y (wherein x, y, z satisfy 0.25<=x<=0.31, 0.01<=y<=0.03, 0.3<=z<=0.5, and Me is Nb, Mo, etc.,) on a base body 11. Reproducing is performed by transferring the recorded information from the recording layer 14 to the reproducing layer 13 by irradiation with reproducing light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光を用い情報の記録、再
生、消去を行う光磁気記録媒体に関する。とくに超解像
再生を行う光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording, reproducing and erasing information by using light. In particular, it relates to a magneto-optical recording medium that performs super-resolution reproduction.

【0002】[0002]

【従来の技術】光磁気記録のさらなる高密度化を目的と
し、再生用の光の光学的回折限界以下の大きさに記録さ
れた情報を再生する方法として磁気超解像再生方式が提
案されている(例えば、特開平1−143041号公
報、特開平1−143042号公報参照)。この再生方
法は、少なくとも再生層と記録層とを用い、再生光が照
射されているビームスポットの一定の領域をマスクとし
て用いることにより、実質的にビームスポットを小さく
したと同様の効果を持たせたもので、ビームスポット中
での光の強度分布と、ビームの進行方向に対して後方の
温度上昇が大きいことを利用している。
2. Description of the Related Art A magnetic super-resolution reproducing system has been proposed as a method for reproducing information recorded in a size smaller than the optical diffraction limit of reproduction light for the purpose of further increasing the density of magneto-optical recording. (See, for example, Japanese Patent Laid-Open Nos. 1-143041 and 1-143042). In this reproducing method, at least the reproducing layer and the recording layer are used, and a certain region of the beam spot irradiated with the reproducing light is used as a mask so that the beam spot has substantially the same effect. It utilizes the intensity distribution of light in the beam spot and the large temperature rise behind the beam traveling direction.

【0003】この再生方法には大きく分けて2通りの方
法がある。一つは、温度が一定以上の領域で再生層が特
定の状態となるようにしてマスクとする消滅型の方法、
他方は、再生層が再生前には特定の状態であり、温度が
一定以上となった領域で記録層に記録された情報が再生
層に転写される浮き出し型の方法である。後者の方法で
は隣接トラックにおいても再生層が特定の状態にあるた
めに、隣接トラックとのクロストークは非常に小さい。
This reproducing method is roughly classified into two methods. One is an extinction method in which the reproducing layer is in a specific state in a region where the temperature is equal to or higher than a certain level, and is used as a mask
On the other hand, in the embossing type method, the reproducing layer is in a specific state before reproduction, and the information recorded in the recording layer is transferred to the reproducing layer in an area where the temperature becomes a certain temperature or higher. In the latter method, the reproduction layer is in a specific state even in the adjacent track, so that the crosstalk with the adjacent track is very small.

【0004】この再生方法において、再生層に垂直磁化
膜を用いた場合には、再生前に再生層を特定の状態にす
るために初期化磁石が必要になり、またこの状態を安定
にするための制御層などが必要になる。この問題を解決
するために、再生層に、室温で面内磁化膜であり、温度
が一定以上となった領域で垂直磁化膜となる磁性層を用
いる方法が提案されている(例えば、特開平5−817
17号公報参照)。
In this reproducing method, when a perpendicularly magnetized film is used for the reproducing layer, an initializing magnet is required to bring the reproducing layer into a specific state before reproducing, and in order to stabilize this state. The control layer and so on are required. In order to solve this problem, a method has been proposed in which a magnetic layer that is an in-plane magnetized film at room temperature and serves as a perpendicular magnetized film in a region where the temperature is above a certain level is used as a reproducing layer (for example, Japanese Patent Laid-Open No. Hei 10 (1999) -242242). 5-817
17).

【0005】この方法は、室温において面内磁化膜であ
る再生層と垂直磁化膜である記録層とを交換結合させた
膜を用いる方法であるが、再生前の再生層の磁化が膜面
内方向を向いているので、初期化磁石が必要なく、原理
的には再生層と記録層の2層のみで構成することが可能
であり製造の面でも有利である。
This method uses a film in which a reproducing layer, which is an in-plane magnetized film, and a recording layer, which is a perpendicularly magnetized film, are exchange-coupled at room temperature, but the magnetization of the reproducing layer before reproduction is in-plane. Since it faces in the direction, it does not require an initializing magnet, and in principle, it can be composed of only two layers of a reproducing layer and a recording layer, which is advantageous in terms of manufacturing.

【0006】また、再生層と記録層の間に中間層を設け
ることによって解像度を向上させる方法も提案されてい
る(例えば、特開平5−205336参照)。
A method for improving resolution by providing an intermediate layer between the reproducing layer and the recording layer has also been proposed (see, for example, Japanese Patent Laid-Open No. 5-205336).

【0007】しかしながら、このような面内磁化膜を再
生層として用いた光磁気超解像媒体は、高い解像度を得
るためには再生層および記録層の厚みが厚くなり、記録
に高いレ−ザ−パワ−を要するために高速でディスクを
回転させることが困難であった。とくに記録保持性に優
れるTbFeCoを記録層に使用した場合、再生層のG
dFeCoの厚みは80nm以上あることが解像度を高め
る上で好ましいことが報告されている(Magneto-Optica
l Recording International Symposium '94 の29-Q-05
)。
However, in a magneto-optical super-resolution medium using such an in-plane magnetized film as a reproducing layer, the reproducing layer and the recording layer must be thick in order to obtain high resolution, and the laser for recording is high. Since it requires power, it is difficult to rotate the disc at high speed. Especially when TbFeCo, which has excellent record retention, is used for the recording layer,
It has been reported that a thickness of dFeCo of 80 nm or more is preferable for improving resolution (Magneto-Optica
29-Q-05 in l Recording International Symposium '94
).

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、再生
層に、室温で面内磁化膜となる磁性層を用いて高い解像
度を保ったまま、とくに記録の感度を高めた光磁気記録
媒体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium in which a reproducing layer is formed of a magnetic layer which serves as an in-plane magnetized film at room temperature while maintaining a high resolution, and in particular, the recording sensitivity is enhanced. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者は鋭意研究を重
ねた結果、室温で面内磁化膜となるGdFeCoを主体
とした再生層と、垂直磁化膜の記録層とを磁気的に結合
した膜であって、再生層に特定の元素を特定の組成の範
囲内で添加したものを用いることにより、再生層が従来
のものより薄く、しかも従来と同等以上の解像度を持っ
た磁気超解像媒体が得られることを見出し本発明の光磁
気記録媒体を得た。
As a result of intensive studies, the present inventor magnetically coupled a reproducing layer mainly composed of GdFeCo, which is an in-plane magnetized film at room temperature, and a recording layer of a perpendicular magnetized film. By using a film that has a specific element added to the reproducing layer within a specific composition range, the reproducing layer is thinner than the conventional one, and has a resolution equal to or higher than the conventional one. It was found that a medium was obtained, and a magneto-optical recording medium of the present invention was obtained.

【0010】即ち本発明は、基体上に、少なくとも、室
温において面内磁化膜である再生層と、垂直磁化膜であ
る記録層とを備え、再生光の照射により記録層から再生
層に情報を転写して再生を行う光磁気記録媒体であっ
て、再生層の組成が Gdx Mey (Fe1-z Coz 1-x-y (0.25≦x≦0.31、0.01≦y≦0.03、
0.3≦z≦0.5、Meは希土類、Ia族、IIa
族、Vb族、VIb族、VIIb族に属する以外の元素
から選ばれる1種以上の元素)で表される光磁気記録媒
体に関するものである。
That is, according to the present invention, at least a reproducing layer which is an in-plane magnetized film at room temperature and a recording layer which is a perpendicularly magnetized film are provided on a substrate, and information is transferred from the recording layer to the reproducing layer by irradiation of reproducing light. A magneto-optical recording medium for transfer and reproduction, wherein the composition of the reproducing layer is Gd x Me y (Fe 1-z Co z ) 1-xy (0.25 ≦ x ≦ 0.31, 0.01 ≦ y ≤0.03,
0.3 ≦ z ≦ 0.5, Me is rare earth, Ia group, IIa
The present invention relates to a magneto-optical recording medium represented by one or more elements selected from elements other than those belonging to Group Vb, Group VIb, Group VIIb).

【0011】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0012】面内磁化膜を再生層に用いた本発明での、
浮き出し型の磁気超解像再生方式は、再生ビームスポッ
ト中で所定の温度以上になった領域のみで再生層が垂直
磁化膜となり、記録層に記録された情報が交換結合力に
よって再生層に転写され、これを再生信号として検出す
ることを特徴としている。この方式によってビームスポ
ットの大きさより小さい記録ピットも再生可能となる。
In the present invention using the in-plane magnetized film as the reproducing layer,
In the embossed type magnetic super-resolution reproducing method, the reproducing layer becomes a perpendicularly magnetized film only in the area of the reproducing beam spot where the temperature exceeds a predetermined temperature, and the information recorded in the recording layer is transferred to the reproducing layer by the exchange coupling force. And is detected as a reproduced signal. With this method, a recording pit smaller than the size of the beam spot can be reproduced.

【0013】即ち、所定の温度以下では再生層はその磁
化の膜面に垂直な成分をほとんど持たない状態とするこ
とが重要で、これを実現するためには再生層の組成を希
土類優勢とすることである。また再生の際に再生光の強
度は記録層に記録が行われるほど大きくないことが必要
である。
That is, it is important that the reproducing layer has almost no component perpendicular to the film surface of its magnetization at a predetermined temperature or lower. In order to realize this, the composition of the reproducing layer is made to have a rare earth-dominant structure. That is. Further, it is necessary that the intensity of the reproducing light at the time of reproducing is not so great as to record on the recording layer.

【0014】本発明者の研究の結果、これらの条件を満
足するために、光磁気記録媒体の再生層をGdFeCo
とした場合、Gd濃度、Co濃度の調整が必要である
が、GdFeCoの垂直磁気異方性は主にCo濃度によ
り決まり、Gd濃度は面内から垂直磁気になる温度の調
整の際影響することが判った。GdFeCoの垂直磁気
異方性はCo濃度に比例して単調に減少し、キュリ−温
度は単調に増加する。本発明者の検討結果ではCoとF
eCoの比で約40〜50at%程度で最も再生特性の
よいGdFeCo再生層が得られたが、このとき記録保
持性に優れるTbFeCoを記録層に使用すると再生層
の厚みは800A以上が好ましいという結果になり記録
に大きなレーザーパワーを要した。
As a result of the research conducted by the present inventor, in order to satisfy these conditions, the reproducing layer of the magneto-optical recording medium was made of GdFeCo.
In that case, it is necessary to adjust the Gd concentration and the Co concentration, but the perpendicular magnetic anisotropy of GdFeCo is mainly determined by the Co concentration, and the Gd concentration affects the temperature adjustment from the in-plane to the perpendicular magnetic field. I understood. The perpendicular magnetic anisotropy of GdFeCo monotonically decreases in proportion to the Co concentration, and the Curie temperature monotonically increases. According to the examination result of the present inventor, Co and F
A GdFeCo reproducing layer having the best reproducing characteristics was obtained with an eCo ratio of about 40 to 50 at%. At this time, when TbFeCo having excellent record retention is used for the recording layer, the reproducing layer preferably has a thickness of 800 A or more. It required a large laser power for recording.

【0015】記録感度を高めるには再生層の厚みを可能
な限り薄くすることであるが、本発明では、再生層に、
希土類、Ia族、IIa族、Vb族、VIb族、VII
b族に属する以外の元素からから選ばれた1種以上の元
素(Me)を添加したものを用いることにより、キュリ
−温度と垂直磁気異方性を適度に低下させこれを実現し
た。ここで、希土類元素他を除いた理由は、希土類元素
の添加は垂直磁気異方性を上昇させるためであり、Ia
族、IIa族、Vb族、VIb族、VIIb族元素の添
加は耐蝕性の低下を招くからである。
To increase the recording sensitivity, it is necessary to make the thickness of the reproducing layer as thin as possible.
Rare earth, Ia group, IIa group, Vb group, VIb group, VII
The Curie temperature and the perpendicular magnetic anisotropy were appropriately reduced by using a material to which one or more elements (Me) selected from elements other than the group b were added, and this was realized. Here, the reason why the rare earth element and others are excluded is that the addition of the rare earth element raises the perpendicular magnetic anisotropy.
This is because the addition of the Group IIIa, Group IIa, Group Vb, Group VIb, and Group VIIb elements causes deterioration in corrosion resistance.

【0016】本発明のMeの濃度(y)が0.01未満
では、キュリ−温度と垂直磁気異方性の充分な低下効果
が得られず、高い解像度を得るために必要な再生層膜厚
が厚くなり、0.03を越えるとカー回転角が小さくな
り再生出力が下がる。再生層のCo濃度(z)が0.3
未満では、垂直磁気異方性が大きく再生層の磁化が面内
から垂直に立つ時にスムーズに変化せず従ってノイズが
生じやすくなり、0.5を越えるとMe添加により垂直
磁気異方性が小さくなりすぎて磁化が垂直に立たなかっ
たり、キュリー温度が高いために高い解像度を得るため
に必要な再生層膜厚が厚くなるなど問題がある。また、
Gd濃度(x)に関しては0.25≦x≦0.31の範
囲で調整することにより、面内から垂直に変化する温度
を好ましい範囲である100〜200℃に設定すること
ができる。
When the Me concentration (y) of the present invention is less than 0.01, the effect of sufficiently lowering the Curie temperature and perpendicular magnetic anisotropy cannot be obtained, and the film thickness of the reproducing layer necessary for obtaining high resolution is obtained. Becomes thicker, and if it exceeds 0.03, the Kerr rotation angle becomes small and the reproduction output decreases. Co concentration (z) of the reproducing layer is 0.3
If it is less than 0.5, the perpendicular magnetic anisotropy is large, and the magnetization of the reproducing layer does not change smoothly when standing perpendicularly from the in-plane. Therefore, noise tends to occur. However, there are problems that the magnetization does not stand vertically because of too much, and that the reproducing layer film thickness necessary for obtaining high resolution becomes thick due to the high Curie temperature. Also,
By adjusting the Gd concentration (x) within the range of 0.25 ≦ x ≦ 0.31, it is possible to set the temperature at which the in-plane changes vertically to 100 to 200 ° C. which is a preferable range.

【0017】本発明において、前記した条件を満す全て
の元素においてキュリ−温度と垂直磁気異方性を低下さ
せる効果はみられるが、キュリ−温度と垂直磁気異方性
を下げ、かつカ−回転角の低下を抑制するには、可能な
限り少量の添加でキュリ−温度と垂直磁気異方性の低下
をもたらす添加物の選択によりさらに高い解像度が得ら
れる。本発明では、再生層の組成でMeがNb,Mo,
Hf,Ta,W,Pt,Auから選ばれた1種以上の元
素を添加したもので用いると上記した効果を得る上で特
に好ましい。
In the present invention, although the effect of lowering the Curie temperature and the perpendicular magnetic anisotropy can be seen in all the elements satisfying the above-mentioned conditions, the Curie temperature and the perpendicular magnetic anisotropy are lowered, and In order to suppress the decrease of the rotation angle, higher resolution can be obtained by selecting an additive which brings about a decrease in the Curie temperature and the perpendicular magnetic anisotropy with addition in the smallest possible amount. In the present invention, in the composition of the reproducing layer, Me is Nb, Mo,
It is particularly preferable to use one added with one or more kinds of elements selected from Hf, Ta, W, Pt and Au in order to obtain the above effects.

【0018】本発明で、記録層がTbFeCoを主体と
した垂直磁化膜である場合、再生層の厚みが50〜70
nmで、かつ記録層の厚みが40〜70nmであるとより高
感度で特に良好な記録再生が得られる。
In the present invention, when the recording layer is a perpendicular magnetic film mainly composed of TbFeCo, the thickness of the reproducing layer is 50 to 70.
When the thickness is nm and the thickness of the recording layer is 40 to 70 nm, higher sensitivity and particularly good recording and reproduction can be obtained.

【0019】さらに本発明で、記録層の組成がTbx
y (Fe1-z Coz 1-x-y (0.14≦x≦0.2
2、0.04≦y≦0.12、0.1≦z≦0.25)
の範囲にあり、かつMeがIa族、IIa族、Vb族、
VIb族、VIIb族に属する以外の元素から選ばれた
1種以上の元素である場合、再生層の厚みが40〜60
nmで、かつ記録層の厚みが40〜70nmであることによ
りさらに高感度で良好な記録再生が得られる。
Further, in the present invention, the composition of the recording layer is Tb x M.
e y (Fe 1-z Co z ) 1-xy (0.14 ≦ x ≦ 0.2
2, 0.04 ≦ y ≦ 0.12, 0.1 ≦ z ≦ 0.25)
And Me is Ia group, IIa group, Vb group,
When it is one or more elements selected from elements other than those belonging to the VIb group and the VIIb group, the thickness of the reproducing layer is 40 to 60.
When the recording layer has a thickness of nm and the recording layer has a thickness of 40 to 70 nm, excellent recording and reproduction with higher sensitivity can be obtained.

【0020】ここで、記録層のTb濃度(x)に関して
は、適当な記録磁界特性を得るためにTb濃度を0.1
4≦x≦0.22とすることが必要である。Meは記録
層の垂直磁気異方向性を減少させて記録層と再生層の交
換結合を低下させて再生層の膜厚が薄くても面内になり
やすくする効果があるので濃度(y)が大きい程効果は
大きい。記録の保持性との兼ね合いからMe濃度は0.
04≦y≦0.12が好ましい。記録感度を適当に保つ
ために記録層のキュリ−温度は200〜300℃が好ま
しいがMe濃度によりCo濃度を0.1≦z≦0.25
の範囲で調整することで容易に達成できる。
Here, regarding the Tb concentration (x) of the recording layer, the Tb concentration is 0.1 in order to obtain an appropriate recording magnetic field characteristic.
It is necessary to satisfy 4 ≦ x ≦ 0.22. Me has the effect of reducing the perpendicular magnetic anisotropy of the recording layer, reducing the exchange coupling between the recording layer and the reproducing layer, and facilitating the in-plane even when the reproducing layer is thin, so that the concentration (y) is The larger the value, the greater the effect. The Me concentration is 0.
04 ≦ y ≦ 0.12 is preferable. The Curie temperature of the recording layer is preferably 200 to 300 ° C. in order to keep the recording sensitivity appropriate, but the Co concentration is 0.1 ≦ z ≦ 0.25 depending on the Me concentration.
It can be easily achieved by adjusting within the range.

【0021】本発明の記録層がDyFeCoを主体とし
た垂直磁化膜である場合、記録層の垂直磁気異方性がT
bFeCoを用いた場合より小さいために、再生層の厚
みが30〜50nmで、かつ記録層の厚みが40〜70nm
であることにより高感度で良好な記録再生が得られる。
When the recording layer of the present invention is a perpendicular magnetic film mainly composed of DyFeCo, the perpendicular magnetic anisotropy of the recording layer is T.
The thickness of the reproducing layer is 30 to 50 nm, and the thickness of the recording layer is 40 to 70 nm, because it is smaller than when bFeCo is used.
Therefore, high sensitivity and excellent recording / reproducing can be obtained.

【0022】ここで記録層のTbFeCoやDyFeC
oの厚みを40nm以上とするのは、これ以上の膜厚であ
れば記録時に再生層からの交換結合の影響を受けること
なく記録層に書き込まれるためである。また記録層は薄
いほど記録感度の点で好ましく、70nmを越えるとディ
スクの外周部などで記録が難しくなる。
Here, TbFeCo and DyFeC of the recording layer
The thickness of o is set to 40 nm or more because if the thickness is more than 40 nm, it is written in the recording layer without being affected by exchange coupling from the reproducing layer during recording. Also, the thinner the recording layer is, the more preferable it is in terms of recording sensitivity, and when it exceeds 70 nm, recording becomes difficult at the outer peripheral portion of the disk.

【0023】また、記録層が記録保存性に優れるTbF
eCoを主体とした垂直磁化膜の場合、再生層と記録層
の間にキュリ−温度が記録層より低いDyFeCoを主
体とした垂直磁化膜の中間層を設けることにより、再生
層の厚みを30〜50nmとすることが可能であり、かつ
記録層の厚みを10〜50nmとかなり薄くして高感度と
することが可能である。ここで中間層の厚みは10〜3
0nmが好ましい。
In addition, the recording layer has a TbF excellent in storage stability.
In the case of a perpendicular magnetic film mainly composed of eCo, the thickness of the reproducing layer is 30 to 30 by providing an intermediate layer of the perpendicular magnetic film mainly composed of DyFeCo having a Curie temperature lower than that of the recording layer between the reproducing layer and the recording layer. The thickness can be 50 nm, and the recording layer can be made as thin as 10 to 50 nm to achieve high sensitivity. Here, the thickness of the intermediate layer is 10 to 3
0 nm is preferred.

【0024】本発明において記録層のキュリー温度は2
00〜300℃であることが好ましく、中間層を設ける
場合の中間層のキュリー温度は、記録層のキュリー温度
より20℃以上低くかつ150℃以上であることが安定
に再生するために好ましい。また記録層と中間層のキュ
リー温度の差を60℃以上とすることにより特開平5−
205336号公報に開示された第2のマスクによる超
解像が可能となる。
In the present invention, the Curie temperature of the recording layer is 2
The Curie temperature of the intermediate layer when the intermediate layer is provided is preferably 20 ° C. or more lower than the Curie temperature of the recording layer and 150 ° C. or more for stable reproduction. Further, by setting the difference between the Curie temperatures of the recording layer and the intermediate layer to be 60 ° C. or higher, the method disclosed in Japanese Patent Laid-Open No.
Super-resolution using the second mask disclosed in Japanese Patent No. 205336 is possible.

【0025】本発明で用いる基体としては、ポリカーボ
ネイト等の樹脂またはガラス等の透明基板が好ましく、
再生層よりもレーザー光の入射側に極カー効果を増大さ
せることを目的としてSiN、SiO2 、ZnS、Al
N等からなる厚さ80nm程度の誘電体層を設けることも
有効である。この層は、媒体の反射率や再生信号強度を
調整するために適宜厚さを変えることもできる。更に記
録レーザーパワー等の調整のためにレーザー光の入射側
と反対側に、例えば厚さ20nm程度のAl合金膜等の熱
拡散層を設けたり、薄膜の保護のためにアクリル系の樹
脂などの保護膜を設けることも可能である。
The substrate used in the present invention is preferably a resin such as polycarbonate or a transparent substrate such as glass,
SiN, SiO 2 , ZnS, Al for the purpose of increasing the polar Kerr effect on the laser light incident side of the reproducing layer.
It is also effective to provide a dielectric layer made of N or the like and having a thickness of about 80 nm. The thickness of this layer can be changed appropriately in order to adjust the reflectance of the medium and the reproduction signal strength. Further, for adjusting the recording laser power and the like, a thermal diffusion layer such as an Al alloy film having a thickness of about 20 nm is provided on the side opposite to the laser light incident side, and an acrylic resin or the like is used to protect the thin film. It is also possible to provide a protective film.

【0026】また、本発明の耐蝕性向上等のために記録
層にCr、Ti等の元素を添加することも考えられるが
特に限定されない。
It is also conceivable to add elements such as Cr and Ti to the recording layer in order to improve the corrosion resistance of the present invention, but it is not particularly limited.

【0027】本発明の光磁気記録媒体の薄膜は、夫々の
層に対応したタ−ゲットを用いてスパッタリング法で作
製することが生産性の点から好ましいが、その他に真空
蒸着法、イオンビ−ムスパッタ法などによっても作製可
能である。
The thin film of the magneto-optical recording medium of the present invention is preferably manufactured by a sputtering method using a target corresponding to each layer from the viewpoint of productivity, but in addition, a vacuum evaporation method, an ion beam sputtering method. It can also be produced by a method or the like.

【0028】[0028]

【実施例】以下に実施例を用いて更に詳述する。EXAMPLES The present invention will be described in more detail below with reference to examples.

【0029】実施例1 図1に示すように、マグネトロンスパッタ法によりトラ
ックピッチ1.2μm のポリカーボネイト(PC)基板
(11)上にSiNからなる誘電体層(12)を80nm成膜し、
その後、Gd0.29Me0.02(Fe0.6 Co0.4 0.69
組成の再生層(13)を60nm、Tb0.19Fe0.7 Co0.11
の組成の記録層(14)を50nm、SiNからなる誘電体層
(15)を80nm、Alからなる熱拡散層(16)を20nmの順
で成膜しディスクを作製した。ここでMeはCr、T
a、Ptを夫々用いた。さらに比較例1として再生層(1
3)としてGd0.29(Fe0.6 Co0.4 0.71を60nm、
80nmの厚みとした他は実施例1と同じ構造のディスク
を作製した。また、比較例2として再生層(13)をGd
0.29Nd0.02(Fe0.6 Co0.4 0.69を60nm、80
nmの厚みとした他は実施例1と同じ構造のディスクを作
製した。
Example 1 As shown in FIG. 1, a polycarbonate (PC) substrate having a track pitch of 1.2 μm formed by a magnetron sputtering method.
A dielectric layer (12) made of SiN is formed on (11) to a thickness of 80 nm,
After that, a reproducing layer (13) having a composition of Gd 0.29 Me 0.02 (Fe 0.6 Co 0.4 ) 0.69 was formed at 60 nm with Tb 0.19 Fe 0.7 Co 0.11.
The recording layer (14) having the composition of 50 nm, a dielectric layer made of SiN
A disk was prepared by depositing (15) in the order of 80 nm and a thermal diffusion layer (16) consisting of Al in the order of 20 nm. Here, Me is Cr, T
a and Pt were used, respectively. Furthermore, as Comparative Example 1, a reproduction layer (1
3) Gd 0.29 (Fe 0.6 Co 0.4 ) 0.71 as 60 nm,
A disk having the same structure as in Example 1 except that the thickness was 80 nm was produced. In addition, as Comparative Example 2, the reproduction layer (13) was formed with Gd.
0.29 Nd 0.02 (Fe 0.6 Co 0.4 ) 0.69 at 60 nm, 80
A disk having the same structure as in Example 1 except that the thickness was set to nm was manufactured.

【0030】作製したディスクの半径30mmの位置でマ
ーク長が0.5μm (マークピッチの半分とみなす)と
なるように回転数2400rpm として記録周波数9.4
MHz、duty33% で780nmのレーザー光(対物レ
ンズのNA= 0.55)を用いて記録を行った。記録時
には300Oeの磁界を印加した。同じ光を用いてキャリ
ア対ノイズ比(C/N)を測定した。C/N測定の時の
再生レーザーパワーは2〜4mWの範囲においてそれぞれ
の試料でC/Nが最大となる値とした。
A recording frequency of 9.4 was set at a rotation speed of 2400 rpm so that the mark length becomes 0.5 μm (which is regarded as half of the mark pitch) at a position where the radius of the manufactured disk is 30 mm.
Recording was carried out using a laser beam of 780 nm (NA of objective lens = 0.55) at MHz and duty of 33%. A magnetic field of 300 Oe was applied during recording. The carrier-to-noise ratio (C / N) was measured using the same light. The reproducing laser power at the time of C / N measurement was set to a value that maximizes C / N in each sample in the range of 2 to 4 mW.

【0031】表1に実施例1と比較例1のC/Nと記録
に要したレーザーパワーを示す。
Table 1 shows the C / N of Example 1 and Comparative Example 1 and the laser power required for recording.

【0032】[0032]

【表1】 [Table 1]

【0033】再生層の膜厚が60nmのとき記録パワーは
約8mWで、比較例1の再生層の膜厚が80nmのときに比
べて約1.5mW記録パワーを下げることが可能となっ
た。また、C/Nについては比較例1の再生層の膜厚が
60nmのときに40dBしか得られなかったが、実施例1
ではこれよりも2から4dB高い値が得られ、特にMeが
TaまたはPtでは比較例1の再生層の膜厚が80nmの
ときと同等のC/Nが得られた。さらに、比較例2のM
e=Ndで再生層の膜厚が60nmのときは比較例1と同
等以下のC/Nしか得られなかった。
The recording power was about 8 mW when the thickness of the reproducing layer was 60 nm, and it was possible to reduce the recording power by about 1.5 mW as compared with the case where the thickness of the reproducing layer of Comparative Example 1 was 80 nm. Regarding C / N, although only 40 dB was obtained when the thickness of the reproducing layer in Comparative Example 1 was 60 nm, Example 1
2 to 4 dB higher than the above value, and especially when Me is Ta or Pt, the C / N equivalent to that when the thickness of the reproducing layer of Comparative Example 1 is 80 nm is obtained. Furthermore, M of Comparative Example 2
When e = Nd and the thickness of the reproducing layer was 60 nm, only C / N equal to or lower than that of Comparative Example 1 was obtained.

【0034】次に実施例1と比較例1の試料の室温での
カー回転角および再生層のキュリー温度を表2に示す。
Table 2 shows the Kerr rotation angle at room temperature and the Curie temperature of the reproduction layer of the samples of Example 1 and Comparative Example 1.

【0035】[0035]

【表2】 [Table 2]

【0036】Meの添加によりカー回転角はいずれも約
10% 下がるが、キュリー温度も下がっている。特にT
aやPtはキュリー温度の下がり方が大きく、C/Nと
逆の傾向になっている。キュリー温度が下がると交換ス
チッフネス定数や垂直磁気異方性が下がるので再生層の
中の磁壁の厚みが減少し、薄い再生層でも室温で記録層
の情報をマスクできたと考えられる。カー回転角の下が
り方はMeがCr、Ta、Ptでほとんど差がないにも
関わらずTaやPtはキュリー温度を特に下げることが
できたために特に良好な解像度が得られたものと考えら
れる。また、比較例2のMe=Ndのときはキュリ−温
度やカ−回転角がCrのときとほとんど同等であるが、
垂直磁気異方性が高まることが確認されており、そのた
めに磁壁の厚みが減少せず解像度が低いものとなったと
考えられる。
The addition of Me lowers the Kerr rotation angle by about 10%, but also lowers the Curie temperature. Especially T
A and Pt have a large decrease in the Curie temperature, which is the reverse of C / N. When the Curie temperature is lowered, the exchange stiffness constant and the perpendicular magnetic anisotropy are lowered, so that the thickness of the domain wall in the reproducing layer is reduced, and it is considered that the information of the recording layer can be masked even at a thin reproducing layer at room temperature. It is considered that although the Kerr rotation angle was decreased in Me and Cr and Ta and Pt showed almost no difference, Ta and Pt were able to particularly lower the Curie temperature, so that particularly good resolution was obtained. Further, when Me = Nd in Comparative Example 2, the Curie temperature and the curl rotation angle are almost the same as when Cr,
It has been confirmed that the perpendicular magnetic anisotropy is increased, and it is considered that for that reason, the thickness of the domain wall is not reduced and the resolution is low.

【0037】一方、Meの濃度(y)については、0.
02付近でC/Nは最大となり0.01未満ではキュリ
ー温度の下がり方が顕著でなく、0.03を越えるとカ
ー回転角が下がるためにC/Nが低くなることが判っ
た。
On the other hand, the Me concentration (y) is 0.
It was found that the C / N was maximum around 02 and the Curie temperature did not decrease remarkably when the ratio was less than 0.01, and the C / N decreased because the Kerr rotation angle decreased when it exceeded 0.03.

【0038】本発明者らがさらに再生層の添加物Meに
ついて検討した結果、Meが希土類、Ia族、IIa
族、Vb族、VIb族、VIIb族に属する以外の元素
から選ばれた1種以上の元素であるときに再生層の厚み
が60nm程度であっても超解像により解像度を高めるこ
とが可能であることが判った。また、TaやPtのよう
にカー回転角に比べてキュリー温度を特に下げる物質と
してMeがNb,Mo,Hf,Ta,W,Pt、Auか
ら選ばれた1種以上の元素が特に好ましいことが判っ
た。
The inventors of the present invention further investigated the additive Me in the reproducing layer, and found that Me was a rare earth element, a group Ia group, or a IIa group.
Even if the reproducing layer has a thickness of about 60 nm, the resolution can be increased by super-resolution when it is one or more elements selected from elements other than those belonging to Group Vb, Group VIb, Group VIIb. I knew it was. In addition, it is particularly preferable that Me is one or more kinds of elements selected from Nb, Mo, Hf, Ta, W, Pt, and Au as a substance that particularly lowers the Curie temperature compared to the Kerr rotation angle, such as Ta and Pt. understood.

【0039】実施例2 実施例1と同様にマグネトロンスパッタ法によりトラッ
クピッチ1.2μm のポリカーボネイト(PC)基板上
にSiNからなる誘電体層を80nm成膜し、その後、G
0.29Ta0.02(Fe0.6 Co0.4 0.69の組成の再生
層を60nm、Tb0.19Fe0.7 Co0.11の組成の記録層
を50nm、SiNからなる誘電体層を80nm、Alから
なる熱拡散層を20nmの順で成膜しディスクを作製し
た。この条件を標準条件として再生層の膜厚を50から
70nmまで、記録層の膜厚を40から70nmまで変化さ
せたものを作製した。次に比較例3として再生層の膜厚
を40から80nm、記録層の膜厚を30から80nmまで
変化させたディスクを作製した。これらのディスクを実
施例1と同様の条件で記録再生し、C/Nを測定した。
表3に実施例2と比較例3のC/Nと記録に要したレー
ザーパワーを示す。
Example 2 As in Example 1, a dielectric layer made of SiN was formed to a thickness of 80 nm on a polycarbonate (PC) substrate having a track pitch of 1.2 μm by the magnetron sputtering method, and then G
The reproducing layer having the composition of d 0.29 Ta 0.02 (Fe 0.6 Co 0.4 ) 0.69 is 60 nm, the recording layer having the composition of Tb 0.19 Fe 0.7 Co 0.11 is 50 nm, the dielectric layer made of SiN is 80 nm, and the thermal diffusion layer made of Al is 20 nm. The film was formed in this order to prepare a disk. Using these conditions as standard conditions, the thickness of the reproducing layer was changed from 50 to 70 nm, and the thickness of the recording layer was changed from 40 to 70 nm. Next, as Comparative Example 3, a disc having a reproducing layer having a thickness of 40 to 80 nm and a recording layer having a thickness of 30 to 80 nm was manufactured. Recording and reproducing were performed on these discs under the same conditions as in Example 1, and the C / N was measured.
Table 3 shows C / N of Example 2 and Comparative Example 3 and the laser power required for recording.

【0040】[0040]

【表3】 [Table 3]

【0041】この表から再生層の厚みが50nm以上であ
りかつ記録層の厚みが40nm以上で良好なC/Nが得ら
れることが判った。記録層が薄い場合、記録磁界を10
00OeとすることでC/N=42dBまで向上したので、
記録時の再生層から記録層への交換結合による磁界が記
録を妨げていると推定される。また、再生層や記録層の
厚みの厚みが70nmを越えると記録感度がかなり悪くな
ることが判った。
From this table, it was found that good C / N was obtained when the thickness of the reproducing layer was 50 nm or more and the thickness of the recording layer was 40 nm or more. When the recording layer is thin, the recording magnetic field is 10
Since it was improved to C / N = 42 dB by setting it to 00 Oe,
It is presumed that the magnetic field due to exchange coupling from the reproducing layer to the recording layer during recording hinders recording. It was also found that the recording sensitivity was considerably deteriorated when the thickness of the reproducing layer and the recording layer exceeded 70 nm.

【0042】実施例3 実施例1と同様にマグネトロンスパッタ法によりトラッ
クピッチ1.2μm のポリカーボネイト(PC)基板上
にSiNからなる誘電体層を80nm成膜し、その後、G
0.280.02(Fe0.6 Co0.4 0.70の組成の再生層
を50nm、Tb0.18Ta0.05Fe0.64Co0.13の組成の
記録層を50nm、SiNからなる誘電体層を80nm、A
lからなる熱拡散層を20nmの順で成膜しディスクを作
製した。この条件を標準条件として再生層の膜厚を40
から60nmまで変化させたものを作製した。次に比較例
4として再生層の膜厚が30nmのディスクを作製した。
Example 3 As in Example 1, a dielectric layer made of SiN was formed to a thickness of 80 nm on a polycarbonate (PC) substrate having a track pitch of 1.2 μm by the magnetron sputtering method, and then G
The reproducing layer having a composition of d 0.28 W 0.02 (Fe 0.6 Co 0.4 ) 0.70 is 50 nm, the recording layer having a composition of Tb 0.18 Ta 0.05 Fe 0.64 Co 0.13 is 50 nm, the dielectric layer made of SiN is 80 nm, A
A thermal diffusion layer consisting of 1 was formed in the order of 20 nm to prepare a disk. With this condition as the standard condition, the thickness of the reproducing layer is set to 40.
To 60 nm were manufactured. Next, as Comparative Example 4, a disc having a reproducing layer having a thickness of 30 nm was manufactured.

【0043】これらのディスクを実施例1と同様の条件
で記録再生し、C/Nを測定した。表4に実施例3と比
較例4のC/Nと記録に要したレーザーパワーを示す。
Recording / reproduction was performed on these discs under the same conditions as in Example 1, and C / N was measured. Table 4 shows the C / N of Example 3 and Comparative Example 4 and the laser power required for recording.

【0044】[0044]

【表4】 [Table 4]

【0045】この表から再生層の厚みが40nm以上のと
き良好なC/Nが得られることが判った。記録層の組成
にTaを添加することにより実施例1よりさらに再生層
を薄くして記録感度を高めることができた。この原因と
してはTaの記録層への添加により垂直磁気異方性が約
半分になったためと考えられる。
From this table, it was found that good C / N was obtained when the thickness of the reproducing layer was 40 nm or more. By adding Ta to the composition of the recording layer, the reproducing layer was made thinner than in Example 1 and the recording sensitivity could be improved. It is considered that this is because the perpendicular magnetic anisotropy was halved by adding Ta to the recording layer.

【0046】実施例4 実施例1と同様にマグネトロンスパッタ法によりトラッ
クピッチ1.2μm のポリカーボネイト(PC)基板上
にSiNからなる誘電体層を80nm成膜し、その後、G
0.29Nb0.02(Fe0.6 Co0.4 0.69の組成の再生
層を40nm、Dy0.23Fe0.63Co0.14の組成の記録層
を50nm、SiNからなる誘電体層を80nm、Alから
なる熱拡散層を20nmの順で成膜しディスクを作製し
た。この条件を標準条件として再生層の膜厚を30から
50nmまで変化させたディスクを作製した。次に比較例
5として再生層の膜厚が20nmのディスクを作製した。
Example 4 As in Example 1, a dielectric layer made of SiN was formed to a thickness of 80 nm on a polycarbonate (PC) substrate having a track pitch of 1.2 μm by the magnetron sputtering method, and then G
d 0.29 Nb 0.02 (Fe 0.6 Co 0.4 ) 0.69 composition reproducing layer 40 nm, Dy 0.23 Fe 0.63 Co 0.14 composition recording layer 50 nm, SiN dielectric layer 80 nm, Al thermal diffusion layer 20 nm The film was formed in this order to prepare a disk. Using these conditions as standard conditions, discs were produced in which the thickness of the reproducing layer was changed from 30 to 50 nm. Next, as Comparative Example 5, a disc having a reproducing layer having a thickness of 20 nm was manufactured.

【0047】これらのディスクを実施例1と同様の条件
で記録再生し、C/Nを測定した。表5に実施例4と比
較例5のC/Nと記録に要したレーザーパワーを示す。
Recording / reproducing was performed on these discs under the same conditions as in Example 1, and C / N was measured. Table 5 shows the C / N ratios of Example 4 and Comparative Example 5 and the laser power required for recording.

【0048】[0048]

【表5】 [Table 5]

【0049】この表から再生層の厚みが30nm以上のと
き良好なC/Nが得られることが判った。記録層をTb
FeCoから垂直磁気異方性が約1/3以下のDyFe
Coとすることにより実施例1よりさらに再生層を薄く
して記録感度を高めることができた。
From this table, it was found that good C / N was obtained when the thickness of the reproducing layer was 30 nm or more. Recording layer is Tb
From FeCo to DyFe with perpendicular magnetic anisotropy of about 1/3 or less
When Co was used, the reproducing layer was made thinner than in Example 1 and the recording sensitivity could be increased.

【0050】実施例5 図2に示すように、マグネトロンスパッタ法によりトラ
ックピッチ1.2μm のポリカーボネイト(PC)基板
(21)上にSiNからなる誘電体層(22)を80nm成膜し、
その後、Gd0.28Mo0.02(Fe0.6 Co0.4 0.70
組成の再生層(23)を40nm、Dy0.23Fe0.65Co0.12
の組成の中間層(24)を15nm、Tb0.19Fe0.7 Co
0.11の組成の記録層(25)を20nm、SiNからなる誘電
体層(26)を80nm、Alからなる熱拡散層(27)を20nm
の順で成膜しディスクを作製した。
Example 5 As shown in FIG. 2, a polycarbonate (PC) substrate having a track pitch of 1.2 μm by the magnetron sputtering method.
A dielectric layer (22) made of SiN is formed on (21) to a thickness of 80 nm,
After that, a reproducing layer (23) having a composition of Gd 0.28 Mo 0.02 (Fe 0.6 Co 0.4 ) 0.70 was deposited at 40 nm and Dy 0.23 Fe 0.65 Co 0.12
The intermediate layer (24) having the composition of 15 nm, Tb 0.19 Fe 0.7 Co
The recording layer (25) having a composition of 0.11 is 20 nm, the dielectric layer (26) made of SiN is 80 nm, and the thermal diffusion layer (27) made of Al is 20 nm.
The film was formed in this order to prepare a disk.

【0051】このディスクを実施例1と同様の条件で記
録再生し、C/N45dB、記録パワー5.2mWを得た。
C/N、記録感度ともにかなり良好な値が得られた。ま
た、中間層の組成をDy0.23Fe0.69Co0.08として、
記録層のキュリー温度に比べて80度程度低く設定し、
膜厚を10mnとしたところ第2のマスクによる超解像が
起こり、C/N50dBが得られた。この場合も記録パワ
ー5.0mWと高い感度が得られた。
This disc was recorded and reproduced under the same conditions as in Example 1 to obtain C / N of 45 dB and recording power of 5.2 mW.
Both C / N and recording sensitivity were quite good. The composition of the intermediate layer is Dy 0.23 Fe 0.69 Co 0.08 ,
Set about 80 degrees lower than the Curie temperature of the recording layer,
When the film thickness was set to 10 mn, super-resolution by the second mask occurred and C / N of 50 dB was obtained. Also in this case, a high sensitivity with a recording power of 5.0 mW was obtained.

【0052】[0052]

【発明の効果】以上の説明から明らかなように、室温で
面内磁化膜となる再生層を用いた光磁気超解像媒体にお
いて、本発明により高い解像度を保ったまま、特に記録
感度を高めることができる。従って、ディスクの高速回
転下での記録が可能となり高記録密度と高転送速度を両
立させた媒体が可能である。
As is clear from the above description, in the magneto-optical super-resolution medium using the reproducing layer which becomes the in-plane magnetized film at room temperature, the recording sensitivity is particularly enhanced while maintaining high resolution according to the present invention. be able to. Therefore, recording can be performed under high-speed rotation of the disk, and a medium having both high recording density and high transfer speed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】面内磁化膜を再生層として用いた光磁気記録媒
体の実施様態の一例を示す概念図。
FIG. 1 is a conceptual diagram showing an example of an embodiment of a magneto-optical recording medium using an in-plane magnetized film as a reproducing layer.

【図2】面内磁化膜を再生層として用いた光磁気記録媒
体の実施様態の別の一例を示す概念図。
FIG. 2 is a conceptual diagram showing another example of an embodiment of a magneto-optical recording medium using an in-plane magnetized film as a reproducing layer.

【符号の説明】[Explanation of symbols]

11:ポリカーボネイト(PC)基板 12:誘電体層 13:再生層 14:記録層 15:誘電体層 16:熱拡散層 21:ポリカーボネイト(PC)基板 22:誘電体層 23:再生層 24:中間層 25:記録層 26:誘電体層 27:熱拡散層 11: Polycarbonate (PC) substrate 12: Dielectric layer 13: Reproducing layer 14: Recording layer 15: Dielectric layer 16: Thermal diffusion layer 21: Polycarbonate (PC) substrate 22: Dielectric layer 23: Reproducing layer 24: Intermediate layer 25: recording layer 26: dielectric layer 27: thermal diffusion layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基体上に、少なくとも、室温において面内
磁化膜である再生層と、垂直磁化膜である記録層とを備
え、再生光の照射により記録層から再生層に情報を転写
して再生を行う光磁気記録媒体であって、再生層の組成
が下記で表される光磁気記録媒体。 Gdx Mey (Fe1-z Coz 1-x-y (0.25≦x≦0.31、0.01≦y≦0.03、
0.3≦z≦0.5、Meは希土類、Ia族、IIa
族、Vb族、VIb族、VIIb族に属する以外の元素
から選ばれる1種以上の元素)
1. A reproducing layer which is an in-plane magnetized film and a recording layer which is a perpendicular magnetized film are provided on a substrate at least at room temperature, and information is transferred from the recording layer to the reproducing layer by irradiation of reproducing light. A magneto-optical recording medium for reproducing, the composition of a reproducing layer of which is shown below. Gd x Me y (Fe 1-z Co z ) 1-xy (0.25 ≦ x ≦ 0.31, 0.01 ≦ y ≦ 0.03,
0.3 ≦ z ≦ 0.5, Me is rare earth, Ia group, IIa
(One or more elements selected from elements other than those belonging to Group Vb, Group VIb, Group VIb, and Group VIIb)
【請求項2】MeがNb,Mo,Hf,Ta,W,P
t、Auから選ばれる元素である請求項1記載の光磁気
媒体。
2. Me is Nb, Mo, Hf, Ta, W, P
The magneto-optical medium according to claim 1, which is an element selected from t and Au.
【請求項3】再生層の厚みが50〜70nmで、記録層が
TbFeCoを主体とした垂直磁化膜でありその厚みが
40〜70nmである請求項1記載の光磁気媒体。
3. The magneto-optical medium according to claim 1, wherein the reproducing layer has a thickness of 50 to 70 nm, the recording layer is a perpendicularly magnetized film mainly composed of TbFeCo, and the thickness thereof is 40 to 70 nm.
【請求項4】再生層の厚みが40〜60nmで、記録層の
組成が下記で表されその厚みが40〜70nmである請求
項1記載の光磁気媒体。 Tbx Mey (Fe1-z Coz 1-x-y (0.14≦x≦0.22、0.04≦y≦0.12、
0.1≦z≦0.25、MeはIa族、IIa族、Vb
族、VIb族、VIIb族に属する以外の元素から選ば
れる1種以上の元素)
4. The magneto-optical medium according to claim 1, wherein the reproducing layer has a thickness of 40 to 60 nm and the recording layer has a composition shown below and a thickness of 40 to 70 nm. Tb x Me y (Fe 1-z Co z ) 1-xy (0.14 ≦ x ≦ 0.22, 0.04 ≦ y ≦ 0.12,
0.1 ≦ z ≦ 0.25, Me is Ia group, IIa group, Vb
(One or more elements selected from elements other than those belonging to Group VIb, VIIb)
【請求項5】再生層の厚みが30〜50nmで、記録層が
DyFeCoを主体とした垂直磁化膜でありその厚みが
40〜70nmである請求項1記載の光磁気媒体。
5. The magneto-optical medium according to claim 1, wherein the reproducing layer has a thickness of 30 to 50 nm, the recording layer is a perpendicularly magnetized film mainly containing DyFeCo, and the thickness thereof is 40 to 70 nm.
【請求項6】再生層の厚みが30〜50nmで、記録層が
TbFeCoを主体とした垂直磁化膜でありその厚みが
10〜50nmで、再生層と記録層の間にキュリ−温度が
記録層より低いDyFeCoを主体とした垂直磁化膜の
中間層を設けた請求項1記載の光磁気媒体。
6. A reproducing layer having a thickness of 30 to 50 nm, a recording layer being a perpendicular magnetic film mainly composed of TbFeCo, having a thickness of 10 to 50 nm, and a Curie temperature between the reproducing layer and the recording layer being a recording layer. The magneto-optical medium according to claim 1, further comprising an intermediate layer of a perpendicular magnetization film mainly composed of lower DyFeCo.
JP11718695A 1995-05-16 1995-05-16 Magneto-optical recording medium Pending JPH08315435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11718695A JPH08315435A (en) 1995-05-16 1995-05-16 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11718695A JPH08315435A (en) 1995-05-16 1995-05-16 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH08315435A true JPH08315435A (en) 1996-11-29

Family

ID=14705543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11718695A Pending JPH08315435A (en) 1995-05-16 1995-05-16 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH08315435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243326B1 (en) 1996-02-22 2001-06-05 Sanyo Electric Co., Ltd. Recording and reproduction device for a magneto-optic recording medium capable of recording information according to optical super-resolution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243326B1 (en) 1996-02-22 2001-06-05 Sanyo Electric Co., Ltd. Recording and reproduction device for a magneto-optic recording medium capable of recording information according to optical super-resolution

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
EP0668586B1 (en) Magneto-optical recording medium, and information reproducing method using the medium
JPH05225627A (en) High density magneto-optical disk
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JP3477384B2 (en) Magneto-optical recording medium
JP3545133B2 (en) Method of reproducing magneto-optical recording medium and magneto-optical recording medium
US5666346A (en) Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
US5639563A (en) Magneto-optical recording medium
EP0724260A1 (en) Magneto-optical recording medium of super-resolution type using in-plane magnetic layer, and information reproducing method using the same medium
JP3093340B2 (en) Magneto-optical recording medium
JPH08315435A (en) Magneto-optical recording medium
JP3210178B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JPH0350344B2 (en)
KR20010078359A (en) Magneto-optical recording medium
JPH11328762A (en) Magneto-optical recording medium
JP3074104B2 (en) Magneto-optical recording medium
JP3101462B2 (en) Magneto-optical recording medium and information reproducing method using the medium
JP2653520B2 (en) Magneto-optical recording medium
JP3592399B2 (en) Magneto-optical recording medium
JP2000222787A (en) Magneto-optical recording medium
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium
JPS61243977A (en) Photomagnetic recording medium
JPH0240151A (en) Magneto-optical recording medium