JPS62119759A - Magneto-optical material - Google Patents

Magneto-optical material

Info

Publication number
JPS62119759A
JPS62119759A JP25935085A JP25935085A JPS62119759A JP S62119759 A JPS62119759 A JP S62119759A JP 25935085 A JP25935085 A JP 25935085A JP 25935085 A JP25935085 A JP 25935085A JP S62119759 A JPS62119759 A JP S62119759A
Authority
JP
Japan
Prior art keywords
film
magneto
garnet
crystal
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25935085A
Other languages
Japanese (ja)
Inventor
Kazuo Fukuda
和生 福田
Shinya Katayama
慎也 片山
Toshiaki Mizuno
俊明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25935085A priority Critical patent/JPS62119759A/en
Publication of JPS62119759A publication Critical patent/JPS62119759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Surface Treatment Of Glass (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce the variance in the inversion magnetic field in spite of the titled magneto-optical material using a polycrystal by using garnet having specified lambda111 and lambda100 as the polycrystal garnet. CONSTITUTION:A polycrystalline Bi-substituted rare earth iron garnet film having a compensation temp. is formed on an amorphous substrate to obtain the magneto-optical material. The garnet crystal wherein the ratio K (lambda111/lambda100) of the magnetostriction constants in the <111> and <100> directions is adjusted to 1/5-5 is used in the Bi-substituted rare earth iron garnet film. When the K value is lower than 1/5 or higher than 5, the magnetic characteristic in the direction vertical to the film face is widely distributed due to the variance in the crystal axis of the crystal grain. When the ratio K of the two magneto- striction constants is controlled to 1/5-5, or preferably to 1/3-3, the magnetic characteristic in the direction vertical to the film face is not fluctuated even when the crystal axis of the crystal grain is varied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気光学材料に関し、特に光磁気特性のばらつ
きの少ない多結晶ガーネットを用いた磁気光学材料に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical material, and more particularly to a magneto-optic material using polycrystalline garnet with less variation in magneto-optical properties.

〔従来の技術〕[Conventional technology]

非晶質基板上に補償温度を有するBi置換希土類鉄ガー
ネット膜を設けた磁気光学材料として、例えばBil、
2 Gd1.l Fe2.1 A11.6o12の多結
晶垂直磁化膜をスパッター法により作成したガラス基板
が知られている。(例えば第g回日本応用磁気学会学術
講演概要集/IaB−j、PJ4!(/9.r4c) 
)〔発明が解決しようとする問題点〕 上記従来の補償温度を有するBi置換希土類鉄ガーネッ
トを用いた磁気光学材料は、大きな保磁力を有し、かつ
7アラデ一回転角の大きな磁気光学材料であるという利
点を有するものの、その磁化ヒステリシスループは比較
的なだらかなものであり、磁区を反転するために必要な
磁場に広い分布が生じている。この反転磁場に広い分布
が生じていることは、磁気光学材料を光磁気記録膜とし
て使用する際S/N比が低下する、光シャッタとして使
用する際スイッチングがだらだらとおこる等の問題点と
なった。
As a magneto-optical material in which a Bi-substituted rare earth iron garnet film having a compensation temperature is provided on an amorphous substrate, for example, Bi,
2 Gd1. A glass substrate is known in which a polycrystalline perpendicularly magnetized film of 1 Fe2.1 A11.6o12 is formed by sputtering. (For example, the gth Japanese Society of Applied Magnetics Academic Lecture Abstracts/IaB-j, PJ4! (/9.r4c)
) [Problems to be Solved by the Invention] The conventional magneto-optical material using Bi-substituted rare earth iron garnet having the compensation temperature described above has a large coercive force and a large rotation angle of 7 Arade. However, the magnetization hysteresis loop is relatively gentle, resulting in a wide distribution of the magnetic field required to reverse the magnetic domain. The wide distribution of this reversal magnetic field causes problems such as a decrease in the S/N ratio when the magneto-optic material is used as a magneto-optical recording film, and sloppy switching when used as an optical shutter. Ta.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記従来の問題点を解決するために輔 非晶質基板上に%償温度を有する多結晶状Bi置換希土
類鉄ガーネット膜を形成してなる磁気光学材料のBi置
換希土類鉄ガーネット膜にガーネット結晶の(/ / 
/)および(/ 00’:)方向の磁歪定数λ111お
よびA100の比K(λ111/λ100)が//5−
jのものを用いている。
In order to solve the above-mentioned conventional problems, the present invention provides a Bi-substituted rare-earth iron garnet film of a magneto-optical material, which is formed by forming a polycrystalline Bi-substituted rare-earth iron garnet film having a % compensation temperature on an amorphous substrate. Garnet crystal (//
The ratio K (λ111/λ100) of the magnetostriction constants λ111 and A100 in the /) and (/00':) directions is /5-
j is used.

一般にガーネット結晶の磁気特性は、ガーネット結晶の
〈l//〉および(/ 00>の方向の特性により表示
され、磁歪定数も上記2つの方向の磁歪定数λ111お
よびA100により表示される。この2つの磁歪定数の
比K(λ111/λ100)が//5〜j望ましくは/
/3〜3であること、つまり一つの磁歪定数の差が小さ
いことが必要とされる。Kの値が//3より小さいか!
より大きいと、膜面に対して垂直な方向の磁気特性が結
晶粒の結晶軸のばらつきにより広く分布することになる
Generally, the magnetic properties of a garnet crystal are expressed by the properties of the garnet crystal in the <l//> and (/00> directions, and the magnetostriction constant is also expressed by the magnetostriction constants λ111 and A100 in the above two directions.These two The ratio K (λ111/λ100) of magnetostriction constants is preferably /5 to j
/3 to 3, that is, the difference in one magnetostriction constant is required to be small. Is the value of K smaller than //3?
If it is larger, the magnetic properties in the direction perpendicular to the film surface will be widely distributed due to variations in the crystal axes of the crystal grains.

2つの磁歪定数の比Kが/15〜5望ましくは//3〜
3であれば、結晶粒の結晶軸のばらつきがあっても膜面
に対して垂直方向の磁気特性がばらつかない効果を有す
るが、この様なりi置換希土類鉄ガーネットとしては、
Bi■R■Fe◎M@012(R:希土類元素、M :
 A13”tGa3++cu2”+Ge”+Cu”+V
5+等3価または3価と等価なイオンの組合せ、0.2
5≦(a)≦2.trr、o、s≦(a)≦3.0,3
.0≦◎≦s、o 、 o、s≦(b)≦八l、へ、2
≦■+(b)≦3.5、Lj≦◎→≦s、r )で示さ
れ、かつ含まれる希土類元素の少なくとも20モル%以
上、望ましくは50モル%以上がHoおよび/またはD
y1の組成のBi置換希土類鉄ガーネットが例示できる
The ratio K of the two magnetostriction constants is /15~5, preferably //3~
If it is 3, it has the effect that the magnetic properties in the direction perpendicular to the film surface do not vary even if there are variations in the crystal axes of the crystal grains.
Bi■R■Fe◎M@012 (R: rare earth element, M:
A13"tGa3++cu2"+Ge"+Cu"+V
5+ trivalent or combination of ions equivalent to trivalent, 0.2
5≦(a)≦2. trr, o, s≦(a)≦3.0,3
.. 0≦◎≦s, o, o, s≦(b)≦8l, to, 2
≦■+(b)≦3.5, Lj≦◎→≦s, r ), and at least 20 mol% or more, preferably 50 mol% or more of the rare earth elements contained are Ho and/or D
Bi-substituted rare earth iron garnet having the composition y1 can be exemplified.

上記条件式の前半はガーネット結晶の結晶構造を生成す
るための条件を示し、後半のHoおよび/またはDyを
Bi置換希土類鉄ガーネットに含ませることは、前記磁
歪定数の差を小さくするための条件を示す。Hoおよび
/またはDyの含有量が20モル%よりも少ないと磁歪
定数の比が//j〜3に入らなくなりやすい。
The first half of the above conditional expression indicates the conditions for generating the crystal structure of the garnet crystal, and the second half, including Ho and/or Dy in the Bi-substituted rare earth iron garnet, is the condition for reducing the difference in the magnetostriction constants. shows. If the content of Ho and/or Dy is less than 20 mol%, the ratio of magnetostriction constants tends to fall outside of //j~3.

上記磁歪定数の比Kが//j〜5のBi置換希土類鉄ガ
ーネット膜は、スパッター法、蒸着法等の気相法、溶液
を塗布した後焼成する方法等によりガラス板等の非晶質
基板上に作成することができる。
The above-mentioned Bi-substituted rare earth iron garnet film with a magnetostriction constant ratio K of //j to 5 can be produced on an amorphous substrate such as a glass plate by a vapor phase method such as a sputtering method or a vapor deposition method, or by a method of applying a solution and then baking it. can be created on.

又上記ガーネット結晶の磁歪定数は温度により変化する
が、本発明でいう磁歪定数は通常使用する温度(室温)
における磁歪定数を表わすものである。
In addition, the magnetostriction constant of the above-mentioned garnet crystal changes depending on the temperature, but the magnetostriction constant in the present invention is the temperature at which it is normally used (room temperature).
It represents the magnetostriction constant at .

〔作 用〕[For production]

本発明は、前記従来の磁気光学材料の磁気特性のばらつ
きが多結晶ガーネット膜結晶粒の結晶軸の方向ばらつき
により生じていることを鑑みなされたものであり、本発
明によればBit換希土類鉄ガーネットとして2つの磁
歪定数の差が小さなものを用いているため結晶軸の方向
ばらつきによる磁気特性のばらつきが少なくなっている
The present invention was made in view of the fact that variations in the magnetic properties of the conventional magneto-optical materials are caused by variations in the direction of the crystal axes of the crystal grains of polycrystalline garnet films. Since a garnet with a small difference in two magnetostriction constants is used, variations in magnetic properties due to variations in the direction of crystal axes are reduced.

〔実 施 例〕〔Example〕

実施例−/ Bil、45D’/1.05 Gd0.32 Fe3.
85 AI!1.3301zの組成のBi置換希土類鉄
ガーネット膜をガラス板上に有する磁気光学材料を以下
の操作により作成した。
Example-/Bil, 45D'/1.05 Gd0.32 Fe3.
85 AI! A magneto-optical material having a Bi-substituted rare earth iron garnet film having a composition of 1.3301z on a glass plate was prepared by the following operation.

まず第3図に示すような高周波(RF)スパッタリング
装置のステンレス製の電極板(試料台)3/の上に厚さ
約/ zsのガラス板32を取りつけると共に、対向す
る電極板33にターゲット3グを取り付けたー。ターゲ
ット3グはBi2 Gd F’e4.8AA!1.20
12の円盤状焼結体3!の上にB13GdFe4,8 
AA’1.2012の小円盤焼結体チップ36およびB
13DyFe4.QA!!n、2 o12ノ小円盤焼結
体チソフ37を置いたものである。
First, a glass plate 32 with a thickness of about /zs is mounted on a stainless steel electrode plate (sample stage) 3/ of a radio frequency (RF) sputtering apparatus as shown in FIG. I installed the plug. Target 3g is Bi2 Gd F'e4.8AA! 1.20
12 disk-shaped sintered bodies 3! on top of B13GdFe4,8
Small disc sintered chip 36 and B of AA'1.2012
13DyFe4. QA! ! A small disk sintered body Tisof 37 of size n, 2 o 12 is placed.

次にスパッタリング装置内を5×IO”’6TOrr 
マで排気した後、Arと02の混合ガス(Ar:02−
9:l)をO,(l88TOrrまで流入させた。
Next, the inside of the sputtering equipment was
After exhausting the gas with Ar and 02 gas (Ar:02-
9:1) was allowed to flow up to O, (188 TOrr).

真空度が安定した後に、ガラス板32をヒーター、31
を用いてtOO″Cに加熱しながら88&板3/と電極
板33の間に300Wの高周波電圧を印加してグロー放
電を開始させた。このスパッタリング装作を2時間行な
ってガラス基板32上に膜厚約7μmの非晶質膜39を
作成した。その後この非晶質膜39つきガラス板32を
空気中で650″CKj時間保持させた後冷却し、非晶
質膜を結晶化させて多結晶膜II0とした。
After the degree of vacuum is stabilized, the glass plate 32 is heated to
While heating to tOO''C using An amorphous film 39 with a film thickness of approximately 7 μm was created.The glass plate 32 with the amorphous film 39 was then held in air for 650″CKj hours and then cooled to crystallize the amorphous film and form a multilayer film. The crystal film was designated as II0.

該多結晶膜は、透導結合プラズマ発光分析によりBil
、45 D’11.o5Gd0.32 F193.85
 A11.3301gの結晶膜と分析された。
The polycrystalline film was determined by conductively coupled plasma emission spectroscopy.
, 45 D'11. o5Gd0.32 F193.85
A11.3301g of crystalline film was analyzed.

上記多結晶膜の磁歪定数λ111/λ、。。は//3〜
3の範囲にあるものと以下の理由によって推定される0 ここテDy3Fe5012のA111とA100はJO
OKにおいて−5,9X/(7−6および一/2.!r
x10−6でありGd5Fe5o12のA111とA1
00は300KVCおイテ−3,/x10−6およびO
である。(強磁性体の物理(下)/31頁近角聡信著(
裳華房)昭和59年3月25日発行)これらの数値より
Dy2.3 Gd0.7Fe5012のJOOKの温度
におけるA111とA100を内分法により推定すると
A111ニー3.2!l;×106rλ100キー9.
4X#)−6となる。ここでA111/λ100キ0.
55である。
The magnetostriction constant λ111/λ of the polycrystalline film. . Ha//3~
3 and estimated by the following reason. Here, A111 and A100 of TeDy3Fe5012 are JO
In OK -5,9X/(7-6 and 1/2.!r
x10-6 and A111 and A1 of Gd5Fe5o12
00 is 300KVC ite-3, /x10-6 and O
It is. (Physics of Ferromagnetic Materials (Part 2)/31 pages, written by Satoshi Chikanobu (
Shokabo) Published March 25, 1982) From these values, A111 and A100 at the temperature of JOOK of Dy2.3 Gd0.7Fe5012 are estimated by internal division method, and A111 knee is 3.2! l;×106rλ100 key9.
4X#)-6. Here A111/λ100ki0.
It is 55.

一方、ガーネット結晶の希土類をBiで置換する+: 
(!: (R3−XBix Fe5O12)による磁歪
定数の比の変化はY3−)(BixFe5O12を例に
とってみてもさほど大きくない。
On the other hand, replacing the rare earth of the garnet crystal with Bi+:
(!: The change in the ratio of magnetostriction constants due to (R3-XBix Fe5O12) is not so large as Y3-) (taking BixFe5O12 as an example).

(Y3−X BiX Fe5O12の295K il+
)温度における磁歪定数の比に一λ111/λ100は
、X−Oの時に−2、#、X−/の時に−2,63、!
:なる程度テアル。
(295K il+ of Y3-X BiX Fe5O12
) The ratio of magnetostriction constants at temperature - λ111/λ100 is -2 when X-O, -2,63 when X-/!
: Teal to some extent.

第5図参照Phys、 Rev、 B 、 s二660
1C/913’))又ガーネット結晶のFeを1で多少
置換すること(R3Fe5−zAlz 012.X≦八
へ Kヨルa歪定1の比の変化もさほど大きくない。(
Y3Fe5−XGaXO12の295にの温度における
磁歪定数の比に一λ111/λ100はx−oの時に−
2,/l、X=i、sの時に中2.0 であり、(第6
図参照J、 Appl。
See Figure 5 Phys, Rev, B, s2660
1C/913')) Also, by somewhat replacing Fe in the garnet crystal with 1 (R3Fe5-zAlz 012.
The ratio of magnetostriction constants of Y3Fe5-XGaXO12 at a temperature of 295 - λ111/λ100 is - when x-o.
2,/l, when X=i, s, it is medium 2.0, and (6th
See figure J, Appl.

phys、、LLJ63IC19711))Ga K比
べて磁歪定数の変化が小さいAlの置換によるA111
/λ100の比の変化はGaのA111/λ100の比
の変化よりも小さい。) そこでBil、+s DYx、o5Gd0.32 Fe
3,8511.33012のA111/λ100の値は
Dy2.3 Gd0.7 Fe5012のA11し′λ
100の推定値O,SSとさほど大きな差がないと推定
される。
phys,, LLJ63IC19711)) A111 by substitution of Al, which has a smaller change in magnetostriction constant than Ga K.
The change in the ratio A111/λ100 of Ga is smaller than the change in the ratio A111/λ100 of Ga. ) So Bil, +s DYx, o5Gd0.32 Fe
The value of A111/λ100 of 3,8511.33012 is Dy2.3 Gd0.7 A11 of Fe5012'λ
It is estimated that there is not much difference from the estimated values O and SS of 100.

父上記多結晶膜の膜面に垂直な方向の磁界Hに対する多
結晶膜110の波長632.ざnmの光に対すb る7アラデ一回転角ぜのヒステリシス特性を測定したと
ころ第7図に示すような角形性が良好なループが得られ
た。反転を生じる外部磁場の最大値Hmaxは約/20
00eであり又反転を生じる外部磁場の最小値Hmin
は約g o o oeであった。
Wavelength 632. of the polycrystalline film 110 relative to the magnetic field H in the direction perpendicular to the film surface of the polycrystalline film 110. When the hysteresis characteristics of one rotation angle of 7 nm were measured against light of 1 nm, a loop with good squareness as shown in FIG. 7 was obtained. The maximum value Hmax of the external magnetic field that causes reversal is approximately /20
00e and the minimum value Hmin of the external magnetic field that causes reversal
was approximately goooe.

実施例−2 Bil、5 Dy1.5F’83.8 A11.201
2の組成のBi−置換希土類鉄ガーネット膜をガラス板
上に有する磁気光学材料を以下の操作により作成した。
Example-2 Bil, 5 Dy1.5F'83.8 A11.201
A magneto-optical material having a Bi-substituted rare earth iron garnet film having the composition No. 2 on a glass plate was prepared by the following operations.

硝酸ビスマス、硝酸ディスプロシウム、硝酸第二鉄、硝
酸アルミニウムをモル比で八5 : /、j :3、g
°八へでかつ合計でO,OSモルとなるように秤量した
。これら硝酸塩を3規定の硝酸水溶液10m1!に溶か
した後エチルアルコールを加えて!Omlの溶液とした
。この溶液なへ2闘厚、jcm角のガラス板上に滴下し
た後ガラス板を回転させる方法(スピンコード法)を用
いてガラス板上に塗布した。この塗布膜を約IIo o
”cで乾燥した後さらに乾燥膜上に塗布膜を形成する操
作をくりかえして最終的に膜厚約220 nmの均一な
乾燥膜を作成した。
Bismuth nitrate, dysprosium nitrate, ferric nitrate, aluminum nitrate in a molar ratio of 85: /, j: 3, g
It was weighed so that the total amount was O and OS moles. Add these nitrates to 10ml of 3N nitric acid aqueous solution! Add ethyl alcohol after dissolving it! It was made into a solution of Oml. This solution was dropped onto a glass plate 2 cm thick and 1 cm square, and then coated on the glass plate using a method of rotating the glass plate (spin cord method). This coating film is approximately IIo o
After drying in step C, the operation of forming a coating film on the dried film was repeated to finally form a uniform dry film with a thickness of about 220 nm.

この乾燥膜つきガラ゛ス板を゛空気中で加熱し、630
℃に3時間保持した後冷却した。乾燥膜は熱分解した後
結晶化して多結晶膜となった。
This glass plate with a dry film was heated in the air for 630 minutes.
After being kept at ℃ for 3 hours, it was cooled. The dried film was thermally decomposed and then crystallized to become a polycrystalline film.

該多結晶膜はBil、5 DYl、5F83.8 A1
1.2012 の多結晶ガーネット膜と推定された。又
該多結晶膜の光学ループを実施例−7同様測定した結果
を第2図に示す。
The polycrystalline film is Bil, 5 DYl, 5F83.8 A1
1.2012 polycrystalline garnet film. Further, the optical loop of the polycrystalline film was measured in the same manner as in Example 7, and the results are shown in FIG.

該多結晶膜の磁歪定数の比は、実施例1で述べたように
Dy3Fe5012の値A111/λ100中0.’1
7(A111= −!r、9×10−6  、λIQQ
 −−/2.5×1O−6)とさほど違わないものと推
定される。
As described in Example 1, the ratio of the magnetostriction constants of the polycrystalline film is 0.0 out of the value A111/λ100 of Dy3Fe5012. '1
7(A111=-!r, 9×10-6, λIQQ
--/2.5×1O-6).

反転を生じる外部磁場の最大値Hmaxは約/6000
eであり、反転を生じる外部磁場の最小値は約1roo
oeであった。
The maximum value Hmax of the external magnetic field that causes reversal is approximately /6000
e, and the minimum value of the external magnetic field that causes reversal is approximately 1roo
It was oe.

比較例 Bil、2Gdl、 I Fe4.l AA’1.60
12の組成のBil換希土類鉄ガーネット膜をガラス板
上に実施例/と同様の操作で作成した。
Comparative Examples Bil, 2Gdl, I Fe4. l AA'1.60
A Bil-exchanged rare earth iron garnet film having a composition of No. 12 was prepared on a glass plate in the same manner as in Example.

約へjμm厚の上記多結晶膜の磁気ヒステリシスを測定
した結果を第μ図に示す。
The results of measuring the magnetic hysteresis of the above-mentioned polycrystalline film having a thickness of approximately 10 μm are shown in FIG.

本比較例のBil、2 Gd1.l F’64.1 A
11.6o12 のガーネットの磁歪定数の比はGd3
 Fe+ 012のλ111/λ1oo=−oo(λ1
ll−−3./X10−6.λ100−”)とさほど違
わないものと思われる。
Bil, 2 Gd1. of this comparative example. l F'64.1 A
The ratio of magnetostriction constants of 11.6o12 garnet is Gd3
λ111/λ1oo of Fe+ 012=-oo(λ1
ll--3. /X10-6. λ100-”).

第グ図より、比較例の多結晶膜の反転を生じる外部磁場
の最大値Hmaxは約/ j 00 Qe %又反転を
生じる外部磁場の最小値Hminは約1oooeであっ
た。Hmin/)Imax 中0.07 ”?’あり実
施例−ノおヨヒ2のHmin/Hmax −0,5とく
らべて小さな磁界で反転を起こすことがわかる。
As shown in FIG. 3, the maximum value Hmax of the external magnetic field causing reversal of the polycrystalline film of the comparative example was about / j 00 Qe %, and the minimum value Hmin of the external magnetic field causing reversal was about 1oooe. Hmin/)Imax medium 0.07 ``?'' It can be seen that reversal occurs with a small magnetic field compared to Hmin/Hmax -0.5 of Example-Noyohi 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多結晶ガーネットとしてλ’illと
A100の値が/15〜jのガーネットを用いているの
で、多結晶を用いた磁気光学材料であるにもかかわらず
反転磁場のばらつきが小さくなっている。
According to the present invention, since a garnet with λ'ill and A100 values of /15 to j is used as the polycrystalline garnet, the variation in the reversal magnetic field is small even though it is a magneto-optical material using polycrystals. It has become.

上記磁気特性の向上は、磁気光学材料を光磁気記録膜と
して使用した際にはS/N比を高くすることに、又光シ
ャッタとして使用した際にはスイッチングスピードが速
くなるので好ましい。
The above improvement in magnetic properties is preferable because it increases the S/N ratio when the magneto-optical material is used as a magneto-optical recording film, and increases the switching speed when it is used as an optical shutter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は実施例/およびコにより得られた
磁気光学材料の磁気光学特性を示す図、第3図は実施例
1に用いたスパッタリング装置の概略を示す断面図、第
弘図は比較例1により得られた磁気光学材料の磁気光学
特性を示す図、第5図はY3−X Bi)(Fe501
2の磁歪定数λ1ilyλ1o。 およびλ111/λ100 の変化を示す図、第6図は
Y3Fe5−xGaxoxzの磁歪定数λ111.λ1
00およびλIll/λ100 の変化を示す図である
。 第1図 第2図 第3図 第4図
Figures 1 and 2 are diagrams showing the magneto-optical properties of the magneto-optical materials obtained in Example 1 and 2. Figure 3 is a sectional view schematically showing the sputtering apparatus used in Example 1, and Figure is a diagram showing the magneto-optical properties of the magneto-optical material obtained in Comparative Example 1, and FIG.
The magnetostriction constant λ1ilyλ1o of 2. FIG. 6 shows the magnetostriction constant λ111. of Y3Fe5-xGaxoxz. λ1
00 and λIll/λ100. Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質基板上に補償温度を有する多結晶状Bi置
換希土類鉄ガーネット膜を形成してなる磁気光学材料に
おいて、該Bi置換希土類鉄ガーネット膜のガーネット
結晶の<111>および<100>方向の磁歪定数λ_
1_1_1およびλ_1_0_0の比K(λ111/λ
100)が1/5〜5であることを特徴とする磁気光学
材料。
(1) In a magneto-optical material formed by forming a polycrystalline Bi-substituted rare-earth iron garnet film having a compensation temperature on an amorphous substrate, <111> and <100> of the garnet crystals of the Bi-substituted rare-earth iron garnet film Magnetostriction constant λ_ of direction
The ratio K of 1_1_1 and λ_1_0_0 (λ111/λ
100) is 1/5 to 5.
(2)該Bi置換希土類鉄ガーネット膜が、Bi(a)
R(b)Fe(c)M(d)O_1_2{R:希土類元
素、M:3価または3価と等価なイオンの組合せ、0.
25≦(a)≦2.88、0.5≦(b)≦3.0、3
.0≦(c)≦5.0、0、5≦(d)≦1.4、2.
2≦(a)+(b)≦3.5、4.5≦(c)+(d)
≦5.8}で示され、かつ含まれる希土類元素の少なく
とも20モル%がHoおよび/またはDy、の組成を有
するものである特許請求の範囲第1項記載の磁気光学材
料。
(2) The Bi-substituted rare earth iron garnet film contains Bi(a)
R(b)Fe(c)M(d)O_1_2{R: rare earth element, M: trivalent or combination of ions equivalent to trivalent, 0.
25≦(a)≦2.88, 0.5≦(b)≦3.0, 3
.. 0≦(c)≦5.0, 0, 5≦(d)≦1.4, 2.
2≦(a)+(b)≦3.5, 4.5≦(c)+(d)
≦5.8}, and at least 20 mol% of the rare earth elements contained therein have a composition of Ho and/or Dy.
JP25935085A 1985-11-19 1985-11-19 Magneto-optical material Pending JPS62119759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25935085A JPS62119759A (en) 1985-11-19 1985-11-19 Magneto-optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25935085A JPS62119759A (en) 1985-11-19 1985-11-19 Magneto-optical material

Publications (1)

Publication Number Publication Date
JPS62119759A true JPS62119759A (en) 1987-06-01

Family

ID=17332888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25935085A Pending JPS62119759A (en) 1985-11-19 1985-11-19 Magneto-optical material

Country Status (1)

Country Link
JP (1) JPS62119759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398855A (en) * 1986-10-14 1988-04-30 Fujitsu Ltd Magneto-optical recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205398A (en) * 1981-06-12 1982-12-16 Nec Corp Liquid phase epitaxial garnet film
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material
JPS60185237A (en) * 1984-02-29 1985-09-20 Fujitsu Ltd Photothermomagnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205398A (en) * 1981-06-12 1982-12-16 Nec Corp Liquid phase epitaxial garnet film
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material
JPS60185237A (en) * 1984-02-29 1985-09-20 Fujitsu Ltd Photothermomagnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398855A (en) * 1986-10-14 1988-04-30 Fujitsu Ltd Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
Okuda et al. Preparation of polycrystalline Bi3Fe5O12 garnet films
Masterson et al. Thin films of barium ferrite with perpendicular magnetic anisotropy produced by laser ablation deposition
Nakamura et al. Cobalt‐titanium substituted barium ferrite films for magneto‐optical memory
Eppler et al. Garnets for short wavelength magneto-optic recording
Morisako et al. Iron nitride thin films prepared by facing targets sputtering
Lee et al. Surface morphology and magnetic properties of CoFe2O4 thin films grown by a RF magnetron sputtering method
Sawatzky et al. Magnetic and magneto‐optical properties of sputtered MnGaGe films
JPS62119759A (en) Magneto-optical material
Duan et al. Laser deposited bismuth doped iron garnet films with perpendicular anisotropy
Rao et al. Magnetic properties of amorphous BiFeO3‐PbZrO3 sputtered films
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
Borrelli et al. Magnetic and optical properties of thin films in the system 1-xFe 3 O 4· xFe 8/3 O 4
Kim et al. Crystallographic and magnetic properties of CoAl/sub 0.2/Fe/sub 1.8/O/sub 4/thin films prepared by a sol-gel method
Eppler et al. The effects of the sputtering conditions on bismuth doped gadolinium iron garnet films
JPS59162622A (en) Vertical magnetic recording material and its production
Lee et al. Preparation and properties of nonstoichiometric MnAlGe thin films
Dhara et al. Magnetic studies of Ce4+ compensated Co‐doped yttrium iron garnet thin film grown by chemical vapor deposition
EP0196332A1 (en) Method of manufacturing photothermomagnetic recording film
Rastogi et al. Magnetic properties of yttrium iron garnet thin films changed through surface modification by CoO overlayer growth for magneto-optic recording applications
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
Singh Effect of ferroelectric polarization switching on the magnetization and exchange bias in BiFeO3/La2/3Sr1/3MnO3
Katsui et al. New magneto‐optic thin films for storage application
Bai et al. Identification of spin re-orientation phenomenon from ferromagnetic resonance studies in thin films of Mn 1+ x Sb system
Tao et al. Magnetic and magneto-optical properties of CeYIG thin films grown by pulsed laser deposition on quartz substrates