JPS60185237A - Photothermomagnetic recording medium - Google Patents

Photothermomagnetic recording medium

Info

Publication number
JPS60185237A
JPS60185237A JP3592984A JP3592984A JPS60185237A JP S60185237 A JPS60185237 A JP S60185237A JP 3592984 A JP3592984 A JP 3592984A JP 3592984 A JP3592984 A JP 3592984A JP S60185237 A JPS60185237 A JP S60185237A
Authority
JP
Japan
Prior art keywords
film
garnet
substrate
recording medium
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3592984A
Other languages
Japanese (ja)
Inventor
Keiji Shono
敬二 庄野
Seiji Okada
誠二 岡田
Seiya Ogawa
小川 清也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3592984A priority Critical patent/JPS60185237A/en
Publication of JPS60185237A publication Critical patent/JPS60185237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Thin Magnetic Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a photothermomagnetic recording medium which has large vertical anisotropy and a defect-free Bi-substd. magnetic garnet film of a large area having high coercive force by forming said garnet film by a sputtering method on a substrate then subjecting the film to a heat treatment to form a vertical magnetized film. CONSTITUTION:The Bi-substd. magnetic garnet film expressed by the formula (0<x<=2.0, 0<=y<5, R is yttrium or rare earth element, A is an element which can be substd. with Fe) is formed by a sputtering method on a substrate. The film is then subjected to a heat treatment to crystallize the sputtering film formed in the amorphous state by utilizing the difference in the lattice constant between said film and the substrate or the difference in the coefft. of thermal expansion, thereby forming the vertical magnetized film consisting of the (111) bismuth-substd. magnetic garnet Nonmagnetic garnet such as neodium gallium garnet or gadolinium gallium garnet or the like is used for the substrate. The photothermomagnetic recording medium having the higher coercive force, larger Faraday rotating angle and better performance than in the prior art is thus obtd.

Description

【発明の詳細な説明】 発明の技術分野 本発明は光熱磁気記録媒体に係如、特に垂直異方性の大
きなビスマス置換ガーネットエビタギシャル膜からなる
光熱磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a photothermal magnetic recording medium, and particularly to a photothermal magnetic recording medium comprising a bismuth-substituted garnet epitaxial film having a large perpendicular anisotropy.

技術の背景 レーデビーム照射による熱磁気書き込みを行い、更に磁
気光学効果主にカー効果、ファラデー効果を用いて記録
の読み出しを行なう光熱磁気記録は書き替え可能、高密
反記録可能等の特長を有している。現在このような光熱
磁気記録媒体材料として、GdCo 、TbFe 、G
dFe等希土類と鉄族からなるアモルファス(非晶質〕
膜が主として検討され実用段階に入ったと言える。
Background of the technology Photothermal magnetic recording, which performs thermomagnetic writing using Rade beam irradiation and reads out records using magneto-optic effects, mainly the Kerr effect and Faraday effect, has features such as being rewritable and capable of high-density rewriting. There is. Currently, such photothermal magnetic recording media materials include GdCo, TbFe, G
Amorphous (non-crystalline) consisting of rare earth elements such as dFe and iron group
It can be said that membranes have been mainly studied and have entered the practical stage.

従来技術と問題点 従来、光熱磁気記録材料としての磁性ガーネット膜は主
に液相エピタキシャル法(LPE法)によって主に形成
されて来た。LPE法によって誘起される磁性ガーネッ
ト膜の垂直異方性は成長誘導磁気異方性が原因であると
いうのが定説であシ、これには少なくとも2種類の希土
類元素が必要である。光熱磁気記録媒体としては大きな
保磁力(He > 1kOe) 、従って大きな垂直異
方性を必要とするがLPE法によって形成した磁性ガー
イ、ット膜ではイオン半径の差の大きな希比類イオン、
例えばSmとErを用いることによって保磁力を高めて
いる。
Prior Art and Problems Conventionally, magnetic garnet films as photothermal magnetic recording materials have been mainly formed by liquid phase epitaxial method (LPE method). It is a well-established theory that the perpendicular anisotropy of a magnetic garnet film induced by the LPE method is caused by growth-induced magnetic anisotropy, which requires at least two types of rare earth elements. As a photothermal magnetic recording medium, it requires a large coercive force (He > 1 kOe) and therefore a large perpendicular anisotropy, but in the magnetic Ga-I film formed by the LPE method, rare ions with a large difference in ion radius,
For example, the coercive force is increased by using Sm and Er.

しかしながらその保磁力は最大でも3QOOe程度であ
シ光熱磁気記録媒体としては十分でない。
However, its coercive force is at most about 3QOOe, which is not sufficient for use as a photothermal magnetic recording medium.

磁性ガーネットにおいて希土類イオンの1部をビスマス
で置換したいわゆるビスマス置換ガ゛−不ツト(Bix
R3−xFe5012)は非常に大きなファラデー回転
を有するために有望な光熱記録媒体であることはよく知
られている。LPE法によってビスマス置換ガーネット
膜を形成することは可能である。
So-called bismuth-substituted garnet (Bix
It is well known that R3-xFe5012) is a promising photothermal recording medium because it has a very large Faraday rotation. It is possible to form a bismuth-substituted garnet film by the LPE method.

しかし、この場合ビスマス置換ガーイ・ットの融点が低
いためにビスマス置換量が太きく(x>1)Lかも結晶
性のよい大面積の膜を得ることは困難であった。
However, in this case, since the melting point of the bismuth-substituted material is low, the amount of bismuth substitution is large (x>1), and it is difficult to obtain a large-area film with good crystallinity.

磁性ガーネットの結晶構造は立方晶であシ、その結晶磁
気異方性は小さいためそれだけで垂直磁化膜は得られな
い。磁性ガーネットの垂直磁化膜を得る方法としては前
述のLPE法の他に化学的気相成長法(CVD法)があ
る。該CVD法によって得られる磁性ガーネットの垂直
異方性は歪誘導磁気異方性であるとされている。これは
磁性ガーネット膜と基板の格子定数やB膨張係数に違い
があるために磁性ガーネット膜に否応力が働き逆磁歪効
果によって垂直異方性が生じるものそある。
The crystal structure of magnetic garnet is cubic, and its magnetocrystalline anisotropy is small, so a perpendicularly magnetized film cannot be obtained by itself. In addition to the above-mentioned LPE method, there is a chemical vapor deposition method (CVD method) as a method for obtaining a perpendicularly magnetized film of magnetic garnet. The perpendicular anisotropy of magnetic garnet obtained by the CVD method is said to be strain-induced magnetic anisotropy. This is because there is a difference in the lattice constant and B expansion coefficient between the magnetic garnet film and the substrate, which causes negative stress in the magnetic garnet film and causes perpendicular anisotropy due to the reverse magnetostriction effect.

発明の目的 上記欠点を鑑み本発明は垂直異方性の太きなすなわち高
磁力を有するビスマス置換が−不ツトスパッタ膜からな
る光熱磁気記録媒体を提供することを目的とする。
OBJECTS OF THE INVENTION In view of the above drawbacks, it is an object of the present invention to provide a photothermal magnetic recording medium comprising a bismuth-substituted non-sputtered film having a large perpendicular anisotropy, that is, a high magnetic force.

発明の構成 本発明の目的はビスマス置換磁性ガーネット。Composition of the invention The object of the present invention is bismuth-substituted magnetic garnet.

BixR6−XAyFe5−XOl。(0(xく2.0
.o<y<s、Rはイツトリウムあるいは希土類元素、
AはF’eと置換し得る元素)の膜からなる光熱磁気記
録媒体を製造する方法において、非磁性ガーネット基板
上に前記ビスマス置換磁性ガーネット膜をスノやツタリ
ング法によって形成し、次に熱処理を施すことによって
該ビスマス置換磁性ガーネット垂直磁化膜とすることを
特徴とする光熱磁気記録媒体によって達成される。
BixR6-XAyFe5-XOl. (0(xku2.0
.. o<y<s, R is yttrium or a rare earth element,
In a method for manufacturing a photothermal magnetic recording medium comprising a film of A (A is an element that can be substituted with F'e), the bismuth-substituted magnetic garnet film is formed on a non-magnetic garnet substrate by a sawing or tuttering method, and then heat treatment is performed. This is achieved by a photothermal magnetic recording medium characterized in that the bismuth-substituted magnetic garnet perpendicularly magnetized film is formed by applying this method.

通常ガーイ・ット膜をス・ぐツタリングで形成した場合
、そのままの状態では該ガーネット膜は非晶質(アモル
ファス)状態であシ、この後、熱処理を施すことによっ
て磁性ガーネットを得るのである。
Normally, when a garnet film is formed by strut ringing, the garnet film is in an amorphous state as it is, and is then subjected to heat treatment to obtain a magnetic garnet.

垂直異方性に寄与する磁歪効果は結晶の方位に付随する
ものであることを考慮すれば上述の如くスパッタリング
法によって成膜した状態では非晶質であるガーネットス
フ9ツタ膜に、CVD法同様な垂直異方性を誘起させる
方法は容易に想到し得ない。しかしながら本発明者らは
上記ガーネットスパッタ膜の適自な成膜条件下ではB 
CVD法と同様なメカニズムを利用して垂直異方性を持
たせることを見出した。
Considering that the magnetostrictive effect that contributes to perpendicular anisotropy is associated with the orientation of the crystal, the garnet sputtering film, which is amorphous when deposited by the sputtering method as described above, has the same effect as the CVD method. It is not easy to think of a method for inducing such vertical anisotropy. However, the present inventors found that under appropriate film formation conditions for the above-mentioned garnet sputtered film, B
It was discovered that vertical anisotropy can be imparted using a mechanism similar to that of the CVD method.

垂直異方性を誘起させるためにはガーネット膜と基板と
の間の格子定数の違いあるいは熱膨張係数の違いを利用
する2つの方法があるが、以下に説明する。
In order to induce vertical anisotropy, there are two methods that utilize the difference in lattice constant or the difference in thermal expansion coefficient between the garnet film and the substrate, which will be explained below.

まずガーネット膜と基板との間の格子定数の違いを利用
する方法を示す。
First, we will show a method that utilizes the difference in lattice constant between the garnet film and the substrate.

基板として不オゾウム・ガリウム・ガーネット(以下N
GGと記す)を用い、その(11I)面上にスパッタリ
ング法によって(BiY)3Fe50.2なる組成を有
する非晶質膜を形成し、次に700〜800℃程度の高
温度で約180〜300分間熱処理を施すことによって
(BiY)3Fe501□の非晶質膜を結晶化L、(1
11)ビスマス置換YIG (イツトリウム鉄ガーネッ
ト)膜とする。
Nonozome gallium garnet (hereinafter N) is used as a substrate.
GG), an amorphous film having a composition of (BiY)3Fe50.2 is formed on the (11I) plane by sputtering, and then an amorphous film having a composition of (BiY)3Fe50.2 is formed at a high temperature of about 700 to 800 °C to about 180 to 300 °C. The amorphous film of (BiY)3Fe501□ was crystallized by heat treatment for 1 minute, L, (1
11) A bismuth-substituted YIG (yttrium iron garnet) film.

ここで上記熱処理工程による該ガーネット膜の結晶化の
過程を考察する。NGGの格子定数はビスマス置換YI
Gのそれよシも大きいがその差はわずかである。該結晶
化はNGOとの界面から起こるが、両者の格子定数が非
常に近い場合には基板面に平行な(110面の格子は基
板格子に強制的にそろえられるので、その結果ガーネッ
ト膜に引張シ応力が作用することになる。ビスマス置換
YIGの磁歪定数は負であるから逆磁歪効果によυ垂直
異方性が誘起される。
Here, the process of crystallization of the garnet film through the heat treatment step will be considered. The lattice constant of NGG is bismuth substitution YI
The difference between G and C is also large, but the difference is small. This crystallization occurs from the interface with NGO, but when the lattice constants of both are very close, the 110-plane lattice is forced to align with the substrate lattice, and as a result, the garnet film has a tensile force. Since the magnetostriction constant of bismuth-substituted YIG is negative, υ perpendicular anisotropy is induced by the inverse magnetostriction effect.

通常磁性ガーネット膜の基板として用いられるガドリニ
ウムΦガリウム・ガーネット(以下GGGと記す)の格
子定数はビスマス置換YIGのそれよ)も小さいのでG
GGを用いて垂直異方性を誘起することはできない。N
GGはビスマス置換YIGのような格子定数の大きな膜
を形成するために開発されたものであるが、上述のよう
に垂直異方性を誘起することを主目的として用いられた
例はない。
The lattice constant of gadolinium Φ gallium garnet (hereinafter referred to as GGG), which is usually used as a substrate for magnetic garnet films, is also smaller than that of bismuth-substituted YIG.
Vertical anisotropy cannot be induced using GG. N
Although GG was developed to form a film with a large lattice constant such as bismuth-substituted YIG, there is no example in which it has been used primarily for the purpose of inducing vertical anisotropy as described above.

次にガーネット膜と基板との間の熱膨張の違いを利用し
て垂直異方性を誘起する例を示す。
Next, an example will be shown in which vertical anisotropy is induced using the difference in thermal expansion between the garnet film and the substrate.

5000程度の基板加熱の下に基板GGG(11])面
にスパッタリング法によV) (BiY)sFe5o1
□の組成からなる非晶質膜を形成する。次に800℃程
度の温度で熱処理を施して結晶化せしめる。この場合ビ
スマス置換YIGO熱膨張係数はGGGのそれよシも大
きいので熱処理によって該ガーネット膜に引張シ応力が
働く。これがビスマス置換YI’Gの負の磁歪と結合し
、垂直異方性が誘起される。但しこの場合格子定数の差
(ミスマツチ)が大きいこと、および熱膨張係数の差か
ら生じる応力のため結晶の質は悪くなシ、更にはガーネ
ット膜にクラック等が生じやすくなる。これを防止する
目的からスパッタリングによる膜形成時に基板加熱を行
うのである。すなわち基板加熱によってガーネット膜に
欠陥が入らず、しかも結晶が成長しゃすい状態を形成し
ておくのである。このようにすることによってガーネッ
ト膜に欠陥を生じさせない範囲で引張シ応力を有効に働
かせ垂直異方性を誘起することができる。
V) (BiY)sFe5o1 was deposited on the GGG(11) surface of the substrate by sputtering method while heating the substrate to about 5000℃.
An amorphous film having a composition of □ is formed. Next, heat treatment is performed at a temperature of about 800° C. to crystallize it. In this case, since the thermal expansion coefficient of bismuth-substituted YIGO is larger than that of GGG, tensile stress is applied to the garnet film by heat treatment. This combines with the negative magnetostriction of bismuth-substituted YI'G to induce perpendicular anisotropy. However, in this case, the quality of the crystal is poor due to the large difference (mismatch) in lattice constants and the stress caused by the difference in thermal expansion coefficients, and furthermore, cracks are likely to occur in the garnet film. To prevent this, the substrate is heated during film formation by sputtering. That is, by heating the substrate, defects are not introduced into the garnet film, and a state is created in which crystal growth is facilitated. By doing so, vertical anisotropy can be induced by effectively exerting tensile stress within a range that does not cause defects in the garnet film.

実施例1 高周波スパッタリング法によりBiY2GaFe4o1
2の組成を有する焼結体ターグットを用いて500℃に
加熱したNGO基板の(111)面に厚さ1μmのBi
Y2GaFe401゜非晶質膜を形成した。これを空気
中800℃の温度で熱処理をすることによってビスマス
置換ガーネットエピタキシャル膜を得た。
Example 1 BiY2GaFe4o1 by high frequency sputtering method
A 1 μm thick layer of Bi is deposited on the (111) plane of an NGO substrate heated to 500°C using a sintered targut having a composition of 2.
A Y2GaFe401° amorphous film was formed. A bismuth-substituted garnet epitaxial film was obtained by heat-treating this in air at a temperature of 800°C.

第1図はこの膜のファラデー回転のヒステリシスループ
であシ、垂直磁化膜であることを示している。ファラデ
ー回転角θ2は約0.6deg保磁力ば1400eであ
りた。
FIG. 1 shows the hysteresis loop of the Faraday rotation of this film, indicating that it is a perpendicularly magnetized film. The Faraday rotation angle θ2 was approximately 0.6 deg, and the coercive force was 1400 e.

実施例2 高周波スパッタリング法によ!0 BiY2GaFe4
0,2の組成を有する焼結体ガーネットを用いて500
℃に加熱したGGG基板の(111)面に厚さ1μmの
Biy2GaFe401□の非晶質膜を形成した。これ
を空気中800℃の温度で熱処理をすることによってビ
スマス置換ガーネットエピタキシャル膜を得た。第2図
はとの膜のファラデー回転のヒステリシスループでアシ
、垂直磁化膜であることを示している。ファラデー回転
角θ2は約1 deg保磁カは3000oであった。
Example 2 By high frequency sputtering method! 0 BiY2GaFe4
500 using sintered garnet with a composition of 0.2
An amorphous film of Biy2GaFe401□ with a thickness of 1 μm was formed on the (111) plane of the GGG substrate heated to ℃. A bismuth-substituted garnet epitaxial film was obtained by heat-treating this in air at a temperature of 800°C. Figure 2 shows the hysteresis loop of the Faraday rotation of the film, indicating that it is a perpendicularly magnetized film. The Faraday rotation angle θ2 was approximately 1 degree, and the coercive force was 3000 degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ実施例1及び実施例2で形
成したガーネット膜の7アラデ一回転のヒステリシスル
ープヲ示ス。 g;+、2図 面。
FIG. 1 and FIG. 2 show the hysteresis loop of the garnet films formed in Example 1 and Example 2, respectively, with one revolution of 7 degrees. g;+, 2 drawings.

Claims (1)

【特許請求の範囲】 1、 ビスマス置換磁性ガーネット。 BixR5−xAye 5−Xol 2 (0<X≦2
.0.0≦y〈5゜Ril’イツトリウムあるいは希土
類元素、AはFeと置換し得る元素)の膜からなる光熱
磁気記録媒体を製造する方法において、基板上に前記ビ
スマス置換磁性ガーネット膜をス/? ツタリングおよ
びこれに次ぐ熱処理によってビスマス置換磁性ガーネッ
ト垂直磁化膜としたととを特徴とする光熱磁気記録媒体
。 2、上記基板が非磁性ガーネットであることを特徴とす
る第1項記載の光熱磁気記録媒体。
[Claims] 1. Bismuth-substituted magnetic garnet. BixR5-xAye 5-Xol 2 (0<X≦2
.. In a method for manufacturing a photothermal magnetic recording medium comprising a film of 0.0≦y<5゜Ril' yttrium or a rare earth element, A is an element that can be replaced with Fe), the bismuth-substituted magnetic garnet film is spun on a substrate. ? A photothermal magnetic recording medium characterized in that a bismuth-substituted magnetic garnet perpendicularly magnetized film is formed by vine ringing and subsequent heat treatment. 2. The photothermal magnetic recording medium according to item 1, wherein the substrate is made of nonmagnetic garnet.
JP3592984A 1984-02-29 1984-02-29 Photothermomagnetic recording medium Pending JPS60185237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592984A JPS60185237A (en) 1984-02-29 1984-02-29 Photothermomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592984A JPS60185237A (en) 1984-02-29 1984-02-29 Photothermomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60185237A true JPS60185237A (en) 1985-09-20

Family

ID=12455717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592984A Pending JPS60185237A (en) 1984-02-29 1984-02-29 Photothermomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60185237A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPS6295754A (en) * 1985-10-22 1987-05-02 Nippon Sheet Glass Co Ltd Photomagnetic recording medium
JPS62119759A (en) * 1985-11-19 1987-06-01 Nippon Sheet Glass Co Ltd Magneto-optical material
JPS63312963A (en) * 1987-06-17 1988-12-21 Ricoh Co Ltd Production of thin film of oxide magnetic material
JPH02131216A (en) * 1988-11-11 1990-05-21 Fuji Elelctrochem Co Ltd Magneto-optical element material
JPH0381724A (en) * 1989-08-25 1991-04-08 Shin Etsu Chem Co Ltd Production of magneto-optical element
JPH08182693A (en) * 1994-12-27 1996-07-16 Kamemizu Kagaku Kogyo Kk Intertooth cleaning tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134404A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Magnetooptical material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPS6295754A (en) * 1985-10-22 1987-05-02 Nippon Sheet Glass Co Ltd Photomagnetic recording medium
JPS62119759A (en) * 1985-11-19 1987-06-01 Nippon Sheet Glass Co Ltd Magneto-optical material
JPS63312963A (en) * 1987-06-17 1988-12-21 Ricoh Co Ltd Production of thin film of oxide magnetic material
JPH02131216A (en) * 1988-11-11 1990-05-21 Fuji Elelctrochem Co Ltd Magneto-optical element material
JPH0381724A (en) * 1989-08-25 1991-04-08 Shin Etsu Chem Co Ltd Production of magneto-optical element
JPH08182693A (en) * 1994-12-27 1996-07-16 Kamemizu Kagaku Kogyo Kk Intertooth cleaning tool

Similar Documents

Publication Publication Date Title
Abe et al. Magneto-optical recording on garnet films
US4728178A (en) Faceted magneto-optical garnet layer and light modulator using the same
JPS60185237A (en) Photothermomagnetic recording medium
JPS647518Y2 (en)
US5501913A (en) Garnet polycrystalline film for magneto-optical recording medium
JPH0670924B2 (en) Perpendicular magnetic recording medium
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0721544A (en) Magnetic recording medium and its production
JPS58175809A (en) Photomagnetic recording medium
JPH01256049A (en) Production of magneto-optical recording medium
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
JPS60182032A (en) Photothermomagnetic recording medium
JPH02131216A (en) Magneto-optical element material
Challeton et al. RF sputtering of Bi-substituted garnet films for magneto-optic memory
JPH0354454B2 (en)
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
JPH01119940A (en) Magneto-optical recording medium
JPH0340246A (en) Magneto-optical recording medium and production thereof
JPS59129956A (en) Production of optomagnetic recording medium
JPS61115259A (en) Photomagnetic recording medium
JPH0558251B2 (en)
JPS621154A (en) Photomagnetic recording medium and its manufacture
JPS62192047A (en) Production of photomagnetic recording medium
Arimoto et al. Effects of Annealing on the Magnetic Properties of High B s CoHfTa Materials
JPH01256050A (en) Production of magneto-optical recording medium