JPH0558251B2 - - Google Patents

Info

Publication number
JPH0558251B2
JPH0558251B2 JP58216750A JP21675083A JPH0558251B2 JP H0558251 B2 JPH0558251 B2 JP H0558251B2 JP 58216750 A JP58216750 A JP 58216750A JP 21675083 A JP21675083 A JP 21675083A JP H0558251 B2 JPH0558251 B2 JP H0558251B2
Authority
JP
Japan
Prior art keywords
thin film
rotation angle
faraday rotation
single crystal
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58216750A
Other languages
Japanese (ja)
Other versions
JPS60107815A (en
Inventor
Manabu Gomi
Masanori Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP21675083A priority Critical patent/JPS60107815A/en
Priority to DE8484904169T priority patent/DE3482886D1/en
Priority to EP19840904169 priority patent/EP0196332B1/en
Priority to US06/763,789 priority patent/US4608142A/en
Priority to PCT/JP1984/000547 priority patent/WO1985002292A1/en
Publication of JPS60107815A publication Critical patent/JPS60107815A/en
Publication of JPH0558251B2 publication Critical patent/JPH0558251B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、磁性薄膜の製造方法、より詳細には
光熱磁気記録材料として用いて好適なBi置換鉄
ガーネツト単結晶薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic thin film, and more particularly to a method for manufacturing a Bi-substituted iron garnet single crystal thin film suitable for use as a photothermal magnetic recording material.

近年、この種のBi置換鉄ガーネツトとして、
希土類鉄ガーネツトR3(Fe,M)5O12(R:希土類
元素,M:Al3+,Ga3+,Sc3+,Tl3+,(Co2+
Ti4+等)のRの一部をBiで置換した鉄ガーネツ
トR3-xBix(Fe,M)5O12が注目されている。この
Bi置換希土類鉄ガーネツトは、Rの一部をBiで
置換することにより、吸収係数αをあまり大きく
することなくフアラデー回転角θFを大きくするこ
とができるという性質を有し、光熱磁気記録材料
として一般に優れたものである。このような性質
を有するBi置換希土類鉄ガーネツトの光熱磁気
記録材料としての性能を高めるためには、Bi置
換量xを大きくしてフアラデー回転角θFを大きく
すればよい。従来、焼結体について、Biの固溶
限界は希土類鉄ガーネツトの結晶構造の十二面体
位置の50%であることが知られており、Bi置換
量xの大きな単結晶薄膜を得ることが試みられて
きた。しかし、Bi置換希土類鉄ガーネツトの単
結晶薄膜の成長に通常用いられている方法では、
Bi置換量xが十分大きい単結晶薄膜、つまり上
記固溶限界程度までBiが置換された単結晶薄膜
は次に述べる理由により実際には実現困難であつ
た。
In recent years, as this kind of Bi-substituted iron garnet,
Rare earth iron garnet R 3 (Fe, M) 5 O 12 (R: rare earth element, M: Al 3+ , Ga 3+ , Sc 3+ , Tl 3+ , (Co 2+ +
Iron garnet R 3-x Bi x (Fe,M) 5 O 12 , in which part of the R of Ti 4+ etc.) is replaced with Bi, is attracting attention. this
Bi-substituted rare earth iron garnet has the property that by substituting a part of R with Bi, the Faraday rotation angle θ F can be increased without increasing the absorption coefficient α too much, and it can be used as a photothermal magnetic recording material. Generally excellent. In order to improve the performance of the Bi-substituted rare earth iron garnet having such properties as a photothermal magnetic recording material, the Faraday rotation angle θ F may be increased by increasing the Bi substitution amount x. Conventionally, it has been known that the solid solubility limit of Bi in sintered bodies is 50% of the dodecahedral position of the crystal structure of rare earth iron garnet, and attempts have been made to obtain single crystal thin films with a large Bi substitution amount x. I've been exposed to it. However, the methods commonly used to grow single-crystal thin films of Bi-substituted rare earth iron garnets
A single-crystal thin film with a sufficiently large Bi substitution amount x, that is, a single-crystal thin film in which Bi is substituted to the above-mentioned solid solution limit, has been difficult to realize in practice for the following reasons.

即ち、上述のBi置換希土類鉄ガーネツト薄膜
は、通常液相エピタキシヤル法(LPE法)によ
つて製造されるが、このLPE法においては、800
℃程度の高温で薄膜の成長を行う必要がある。と
ころが、Biの蒸気圧は800℃においては1Torr程
度と極めて高いので、薄膜の成長中にBiが選択
的に蒸発してしまうという欠点がある。このた
め、薄膜にBiを高濃度に含ませてBi置換量xが
大きいBi置換希土類鉄ガーネツト薄膜を製造す
ることは難しい。なおLPE法により現在までに
得られているBi置換量xは、十二面体位置の
高々20%程度であると推定されている。
That is, the above-mentioned Bi-substituted rare earth iron garnet thin film is usually manufactured by liquid phase epitaxial method (LPE method).
It is necessary to grow the thin film at a high temperature of around 10°C. However, since the vapor pressure of Bi is extremely high at about 1 Torr at 800°C, there is a drawback that Bi selectively evaporates during the growth of the thin film. For this reason, it is difficult to produce a Bi-substituted rare earth iron garnet thin film with a large Bi substitution amount x by containing Bi at a high concentration in the thin film. It is estimated that the amount of Bi substitution x obtained so far by the LPE method is at most about 20% of the dodecahedral position.

本発明は、上述の問題にかんがみ、Bi置換量
xが大きく、このためフアラデー回転角θFが極め
て大きいと共に保磁力Hcが十分に大きく、また
吸収係数αが十分小さいBi置換希土類鉄ガーネ
ツト薄膜等の磁性薄膜の製造方法を提供すること
を目的とする。
In view of the above-mentioned problems, the present invention provides a Bi-substituted rare earth iron garnet thin film in which the Bi substitution amount x is large, the Faraday rotation angle θ F is extremely large, the coercive force H c is sufficiently large, and the absorption coefficient α is sufficiently small. The purpose of the present invention is to provide a method for manufacturing magnetic thin films such as the above.

即ち、本発明に係る磁性薄膜の製造方法は、少
なくともBi原子、Fe原子及び希土類原子を含む
酸化物から成るターゲツトをスパツタし、このス
パツタにより前記ターゲツトから離脱した前記酸
化物の構成原子を350〜700℃に加熱されたGGG
基板上に被着することによつて、このGGG基板
上に高濃度Bi置換鉄ガーネツト単結晶薄膜をエ
ピタキシヤル成長させ、しかるのちに前記単結晶
薄膜を大気中において640〜740℃でアニールする
ようにしている。このようにすることによつて、
Bi置換量xが大きく、このためフアラデー回転
角θFが極めて大きいと共に保磁力Hcが十分に大
きく、また吸収係数αが十分小さい磁性薄膜を得
ることができる。
That is, in the method for manufacturing a magnetic thin film according to the present invention, a target made of an oxide containing at least Bi atoms, Fe atoms, and rare earth atoms is sputtered, and the constituent atoms of the oxide separated from the target by the sputtering are reduced to 350 to 350. GGG heated to 700℃
By depositing on the substrate, a high concentration Bi-substituted iron garnet single crystal thin film is epitaxially grown on this GGG substrate, and then the single crystal thin film is annealed at 640 to 740°C in the atmosphere. I have to. By doing this,
The Bi substitution amount x is large, so that a magnetic thin film can be obtained in which the Faraday rotation angle θ F is extremely large, the coercive force Hc is sufficiently large, and the absorption coefficient α is sufficiently small.

なお、上記GGG基板の好ましい加熱温度範囲
は350〜700℃であるが、このように限定される理
由は350℃以下では薄膜が非晶質となつて単結晶
薄膜が得られず、700℃以上ではBiの蒸気圧が高
くなるために本発明の目的とするBi置換量xの
大きな薄膜を得ることができないためである。ま
た、前記単結晶薄膜の好ましいアニール温度範囲
は640〜740℃であるが、このように限定される理
由は、640℃以下では、単結晶薄膜中に存在する
欠陥(結晶格子点に原子がなく空孔になつている
状態)に帰因する残留歪が十分に除去されないた
めに、フアラデー回転角θFが極めて大きいと共に
保磁力Hcが十分に大きくかつ吸収係数αが十分
小さい単結晶薄膜が得られず、740℃以上では、
GGG基板が必要以上に加熱されてその耐久性に
とつて好ましくない恐れがあり、また、640〜740
℃の場合に較べて、フアラデー回転角θF、保磁力
Hc及び吸収係数αの向上の点で、実質的な差異
が生じないためである。
The preferred heating temperature range for the above GGG substrate is 350 to 700°C, but the reason for this limitation is that below 350°C, the thin film becomes amorphous and a single crystal thin film cannot be obtained; This is because the vapor pressure of Bi increases, making it impossible to obtain a thin film with a large Bi substitution amount x, which is the objective of the present invention. In addition, the preferable annealing temperature range for the single crystal thin film is 640 to 740°C, but the reason for this limitation is that at temperatures below 640°C, defects existing in the single crystal thin film (no atoms in the crystal lattice points) Because the residual strain caused by the vacancies (in the form of pores) is not sufficiently removed, a single-crystal thin film with an extremely large Faraday rotation angle θ F , a sufficiently large coercive force Hc, and a sufficiently small absorption coefficient α cannot be obtained. At temperatures above 740℃,
There is a risk that the GGG board will be heated more than necessary and its durability will be adversely affected.
Faraday rotation angle θ F , coercive force
This is because there is no substantial difference in terms of improvement in Hc and absorption coefficient α.

以下本発明に係る磁性薄膜の製造方法を(Y,
Bi)3(Fe,Al)5O12で表される。Bi置換希土類鉄
ガーネツトの薄膜の製造に適用した一実施例につ
き図面を参照しながら説明する。なおこの(Y,
Bi)3(Fe,Al)5O12は、イツトリウム鉄ガーネツ
トY3Fe5O12(YIG)において、Yの一部をBiで置
換すると共にFeの一部をAlで置換したものであ
り、前者は吸収係数αをあまり増大することなく
フアラデー回転角θFを高め、後者は吸収係数αを
減少させると共に飽和磁化を小さくして垂直磁化
膜を得られやすくし、またキユリー温度も下げる
ことが知られている。
The method for manufacturing a magnetic thin film according to the present invention will be described below (Y,
Bi) 3 (Fe, Al) 5 O 12 An embodiment applied to the production of a thin film of Bi-substituted rare earth iron garnet will be described with reference to the drawings. Furthermore, this (Y,
Bi) 3 (Fe, Al) 5 O 12 is a yttrium iron garnet Y 3 Fe 5 O 12 (YIG) in which part of Y is replaced with Bi and part of Fe is replaced with Al. The former increases the Faraday rotation angle θ F without significantly increasing the absorption coefficient α, while the latter decreases the absorption coefficient α and lowers the saturation magnetization, making it easier to obtain a perpendicularly magnetized film and also lowering the Curie temperature. Are known.

なお本実施例においては、鉄ガーネツト薄膜を
成長させるべき基板として、Gd3Ga5O12の(111)
単結晶基板(以下GGG基板と称する)を用い、
またスパツタすべきターゲツトとしては、組成式
Bi2.0Y1.0Fe3.8Al1.2O12で表される多結晶状の鉄ガ
ーネツトの円盤状の焼結体を用いている。
In this example, a (111) of Gd 3 Ga 5 O 12 was used as the substrate on which the iron garnet thin film was grown.
Using a single crystal substrate (hereinafter referred to as GGG substrate),
Also, as a target to sputter, the composition formula
A disc-shaped sintered body of polycrystalline iron garnet represented by Bi 2.0 Y 1.0 Fe 3.8 Al 1.2 O 12 is used.

第1図に示すように、高周波(RF)スパツタ
リング装置のステンレス製の電極板(試料台)1
の上に上記GGG基板2を載置すると共に、電極
板3に上記タゲーツト4を取り付ける。なお上記
電極板1を加熱するためのヒータ5が設けられて
いるので、上記GGG基板2も上記電極板1を介
して上記ヒータ5によつて所定温度に加熱され
る。
As shown in Figure 1, the stainless steel electrode plate (sample stage) 1 of the radio frequency (RF) sputtering device
The GGG substrate 2 is placed on top of the GGG substrate 2, and the target 4 is attached to the electrode plate 3. Since the heater 5 for heating the electrode plate 1 is provided, the GGG substrate 2 is also heated to a predetermined temperature by the heater 5 via the electrode plate 1.

次にスパツタリング装置内を所定の真空度に排
気した後、このスパツタリング装置内にArとO2
との混合ガス(Ar:O2=9:1)を7Pa程度ま
で導入する。真空度が安定した状態で、電極板1
と電極板3との間に所定の高周波電圧を印加して
グロー放電を開始させる。この放電で生じたAr+
イオンはタゲーツト4の表面をスパツタし、この
スパツタにより上記タゲーツト4からBi,Y,
Fe,Al,O等の原子が離脱する。これらの離脱
した原子は、所定温度に加熱された上記GGG基
板2上に被着し、このGGG基板2上に(Y,Bi)
3(Fe,Al)5O12の単結晶薄膜(以下薄膜と称す
る)6がエピタキシヤル成長する。なおスパツタ
に用いる電力を110Wとし、またスパツタ時間を
5時間とした場合、得られた薄膜6の厚さは
1.5μmであつた。
Next, after evacuating the inside of the sputtering device to a predetermined degree of vacuum, Ar and O 2 are added to the sputtering device.
A mixed gas (Ar:O 2 =9:1) is introduced up to about 7Pa. With the degree of vacuum stable, electrode plate 1
A predetermined high frequency voltage is applied between the electrode plate 3 and the electrode plate 3 to start glow discharge. Ar + generated by this discharge
The ions sputter on the surface of the target 4, and by this sputtering, Bi, Y,
Atoms such as Fe, Al, and O are released. These detached atoms adhere to the GGG substrate 2 heated to a predetermined temperature, and (Y, Bi) are deposited on this GGG substrate 2.
A single crystal thin film (hereinafter referred to as thin film) 6 of 3 (Fe, Al) 5 O 12 is grown epitaxially. Note that when the power used for sputtering is 110W and the sputtering time is 5 hours, the thickness of the obtained thin film 6 is
It was 1.5 μm.

次に上記薄膜6をこの薄膜6が被着した上記
GGG基板2と共に所定条件でアニールして膜中
の歪みを除去する。なお上述のようにして得られ
た薄膜6が単結晶であることは、X線回折によつ
て確認された。
Next, the thin film 6 is attached to the thin film 6.
It is annealed together with the GGG substrate 2 under predetermined conditions to remove distortion in the film. It was confirmed by X-ray diffraction that the thin film 6 obtained as described above was a single crystal.

上述の実施例により製造された薄膜6は、光学
顕微鏡による観察の結果、唐草模様状の磁区構造
を有し、極めて良好な磁性薄膜であることが明ら
かにされ、また第2図〜第8図に示すような優れ
た特性を有することが測定によつて明らかにされ
た。以下順を追つてこれらの測定結果について述
べる。なお第2図及び第3図第5図〜第8図にお
いて、フアラデー回転角θF測定用の光源として
は、He−Neレーザー(波長6328Å)を用いた。
また測定は、上記薄膜6に光を透過させて行つ
た。なお第5図のキユリー点の測定は、薄膜6上
にAl膜を形成して成るGGG基板2の三層構造の
試料について行つた。
As a result of observation using an optical microscope, the thin film 6 manufactured according to the above-mentioned example was found to have an arabesque pattern-like magnetic domain structure and to be an extremely good magnetic thin film. Measurements have revealed that it has excellent properties as shown in the following. The results of these measurements will be described below in order. In FIGS. 2, 3, and 5 to 8, a He--Ne laser (wavelength: 6328 Å) was used as a light source for measuring the Faraday rotation angle θ F.
Further, the measurement was performed by transmitting light through the thin film 6. Note that the measurement of the Curie point shown in FIG. 5 was performed on a sample having a three-layer structure of the GGG substrate 2 having an Al film formed on the thin film 6.

第2図は420℃,470℃,490℃,510℃,550℃,
620℃の各基板温度で製造した薄膜6(各々の試
料に1〜6の番号を付す)のフアラデー回転角θF
及び保磁力Hcを示したグラフであるが、この図
に示すように、GGG基板2の温度が420〜620℃
の場合に製造された薄膜6のフアラデー回転角θF
は、アニール後の値で1〜2.75度であつた。なお
アニールは空気中で行い、試料1,2については
640℃、5時間、試料3〜6については740℃、5
時間とした。このように、本実施例により製造さ
れた薄膜6のフアラデー回転角θFの値は既述の
LPE法により製造された磁性薄膜のフアラデー
回転角θFが例えば0.5度程度であるのに比べて極
めて大きい。
Figure 2 shows 420℃, 470℃, 490℃, 510℃, 550℃,
Faraday rotation angle θ F of thin film 6 (each sample is numbered 1 to 6) manufactured at each substrate temperature of 620°C
This is a graph showing the coercive force Hc, and as shown in this figure, when the temperature of the GGG substrate 2 is 420 to 620℃
The Faraday rotation angle θ F of the thin film 6 manufactured in the case of
The value after annealing was 1 to 2.75 degrees. Note that annealing was performed in air, and for samples 1 and 2,
640℃, 5 hours, 740℃, 5 hours for samples 3 to 6
It was time. In this way, the value of the Faraday rotation angle θ F of the thin film 6 manufactured according to this example is as described above.
The Faraday rotation angle θ F of a magnetic thin film produced by the LPE method is, for example, about 0.5 degrees, which is extremely large.

またX線による薄膜6の結晶格子定数の測定結
果より、本実施例の薄膜6には固溶限界(十二面
体位置の50%)までBiが固溶していることが判
明し、Biの大量置換により大きなフアラデー回
転角が得られていることが明らかとなつた。
Furthermore, from the results of measuring the crystal lattice constant of the thin film 6 using X-rays, it was found that Bi was dissolved in solid solution in the thin film 6 of this example up to the solid solution limit (50% of the dodecahedral position). It became clear that a large Faraday rotation angle was obtained by large-scale substitution.

また本実施例の薄膜6の保磁力Hcは、第2図
に示すように140〜3500eと十分に大きな値であつ
た。
Further, the coercive force Hc of the thin film 6 of this example was a sufficiently large value of 140 to 3500e, as shown in FIG.

なお第2図には、アニール後の薄膜6のフアラ
デー回転角θFおよび保磁力Hcのデータの他に、
参考データとしてスパツタ直後の薄膜6のフアラ
デー回転角θF及び保磁力Hcの値も示してある。
なお図中の試料6(基板温度620℃)の膜厚は
2.0μm(スパツタ時間は7時間)であり、それ以
外の5つの試料(基板温度420〜550℃)の膜厚は
1.5μmである。
In addition to data on the Faraday rotation angle θ F and coercive force Hc of the thin film 6 after annealing, FIG.
As reference data, the values of Faraday rotation angle θ F and coercive force Hc of the thin film 6 immediately after sputtering are also shown.
The film thickness of sample 6 (substrate temperature 620℃) in the figure is
The film thickness of the other five samples (substrate temperature 420-550℃) was 2.0μm (sputtering time was 7 hours).
It is 1.5 μm.

第3図に試料5(基板温度550℃)のフアラデ
ー回転角θFの波長依存性を、また第8図に試料3
(基板温度490℃)のフアラデー回転角θFの波長依
存性を示す。これらの図に示すように、波長0.4
〜0.7μmの光に対するフアラデー回転角θFはアニ
ール後の値で、試料5は1〜10度、試料3で1〜
20度であり極めて大きい。また両試料とも、特に
0.5μm付近においてフアラデー回転角θFが著しく
大きくなつていることがわかる。なお第3図にお
いては、スパツタ直後の薄膜6についての測定結
果を参考データとして併せて示した。
Figure 3 shows the wavelength dependence of the Faraday rotation angle θ F of sample 5 (substrate temperature 550°C), and Figure 8 shows the wavelength dependence of the Faraday rotation angle θ F of sample 5 (substrate temperature 550°C).
This shows the wavelength dependence of the Faraday rotation angle θ F (substrate temperature 490°C). As shown in these figures, wavelength 0.4
The Faraday rotation angle θ F for ~0.7 μm light is the value after annealing, and is 1 to 10 degrees for sample 5 and 1 to 10 degrees for sample 3.
It is 20 degrees and extremely large. In addition, both samples were particularly
It can be seen that the Faraday rotation angle θ F becomes significantly large near 0.5 μm. In addition, in FIG. 3, the measurement results for the thin film 6 immediately after sputtering are also shown as reference data.

次に前記試料5について薄膜6の吸収係数αの
光の波長に対する依存性を第4図に示す。この図
より試料5の吸収係数αは波長0.55μm以上の可
視光に対して十分小さく、この波長領域の光に対
しては殆ど透明であること、及び0.5μm付近に吸
収端が存在することがわかる。
Next, FIG. 4 shows the dependence of the absorption coefficient α of the thin film 6 on the wavelength of light for the sample 5. This figure shows that the absorption coefficient α of sample 5 is sufficiently small for visible light with a wavelength of 0.55 μm or more, that it is almost transparent to light in this wavelength range, and that there is an absorption edge near 0.5 μm. Recognize.

第5図に前記試料5のフアラデー回転角θFの温
度依存性のデータを示す。この図より試料5のフ
アラデー回転角θFは室温から170℃付近まで、温
度Tの増加と共に単調に減少することがわかる。
そしてこの第5図からキユリー温度Tcが164℃で
あることもわかる。なおT=160〜200℃において
フアラデー回転角θFがなだらかに変化しているの
は、薄膜6の内部の残留歪やFe,Al原子の無秩
序配列等に起因する。
FIG. 5 shows data on the temperature dependence of the Faraday rotation angle θ F of the sample 5. From this figure, it can be seen that the Faraday rotation angle θ F of sample 5 decreases monotonically as the temperature T increases from room temperature to around 170°C.
It can also be seen from this Figure 5 that the Curie temperature Tc is 164°C. Note that the reason why the Faraday rotation angle θ F changes gradually at T=160 to 200° C. is due to the residual strain inside the thin film 6 and the disordered arrangement of Fe and Al atoms.

第6図に試料4(基板温度510℃)のフアラデ
ー回転角θFの膜面に垂直な方向の磁界Hに対する
ヒステリシス特性を測定した結果を示す。この図
に示すように、ヒステリシス特性はアニール前後
で変化し、またアニールによりフアラデー回転角
θFが増加していることがわかる。
FIG. 6 shows the results of measuring the hysteresis characteristics of sample 4 (substrate temperature 510° C.) with respect to a magnetic field H in a direction perpendicular to the film surface at a Faraday rotation angle θ F. As shown in this figure, it can be seen that the hysteresis characteristics change before and after annealing, and that the Faraday rotation angle θ F increases due to annealing.

次に第7A図〜第7C図は、試料5の中央部
(膜厚1.5μm)と試料周辺の膜厚の低下部分(膜
厚1.2μm及び0.9μm)の3種の異なる膜厚、即ち
膜厚1.5,1.2,0.9μmのアニール後の薄膜6につ
いてそれぞれのヒステリシス特性を測定した結果
であり、これらの図から膜厚が小さい程ループの
角形性が良くなり、特に膜厚が1μm以下の場合に
は磁気記録材料として極めて好ましいヒステリシ
ス特性を示すことがわかる。
Next, FIGS. 7A to 7C show three different film thicknesses: the central part of sample 5 (film thickness 1.5 μm) and the reduced film thickness around the sample (film thickness 1.2 μm and 0.9 μm). These are the results of measuring the hysteresis characteristics of thin films 6 after annealing with thicknesses of 1.5, 1.2, and 0.9 μm. From these figures, the smaller the film thickness, the better the squareness of the loop, especially when the film thickness is 1 μm or less. It can be seen that the material exhibits extremely favorable hysteresis characteristics as a magnetic recording material.

以上の種々の測定データから明らかなように、
上述の実施例により製造された(Y,Bi)3(Fe,
Al)5O12単結晶薄膜6はフアラデー回転角θFが極
めて大きいと共に保磁力Hcも十分大きく、また
吸収係数αも十分小さく、光熱磁気記録材料とし
て極めて好ましい性質を有している。
As is clear from the various measurement data above,
(Y, Bi) 3 (Fe,
The Al) 5 O 12 single crystal thin film 6 has an extremely large Faraday rotation angle θ F , a sufficiently large coercive force Hc, and a sufficiently small absorption coefficient α, and has extremely desirable properties as a photothermal magnetic recording material.

なお上述の実施例においては、スパツタすべき
タゲーツトの材料として組成式Bi2.0Y1.0Fe3.8Al1.2
O12で表される多結晶状の鉄ガーネツトを用いた
が、これに限定されるものではなく、例えば上述
の組成式に含まれる元素をそれぞれ含む混合物で
あつてもよい。より一般的には、(Bi2O3x(R2
O3y(Fe2O3z(M2O3uで表されるような少なく
ともBi原子、Y原子及び希土類原子を含む酸化
物から成る材料を用いることができる。ここで、
0<x≦3/2,0<y≦3/2,0<z<5/
2,0≦u≦5/2である。またRはY,Sm等
の希土類元素であり、MはAl3+,Ga3+,Sc3+
Tl3+,(Co2++Ti4+)等である。
In the above embodiment, the target material to be sputtered has the composition formula Bi 2.0 Y 1.0 Fe 3.8 Al 1.2.
Although polycrystalline iron garnet represented by O 12 is used, the present invention is not limited thereto, and may be a mixture containing each of the elements included in the above-mentioned compositional formula, for example. More generally, (Bi 2 O 3 ) x (R 2
A material consisting of an oxide containing at least Bi atoms, Y atoms, and rare earth atoms, such as O 3 ) y (Fe 2 O 3 ) z (M 2 O 3 ) u , can be used. here,
0<x≦3/2, 0<y≦3/2, 0<z<5/
2,0≦u≦5/2. Further, R is a rare earth element such as Y or Sm, and M is Al 3+ , Ga 3+ , Sc 3+ ,
Tl 3+ , (Co 2+ + Ti 4+ ), etc.

以上述べたように、本発明に係る磁性薄膜の製
造方法によれば、フアラデー回転角θFが極めて大
きいと共に保磁力Hcも十分大きく、また吸収係
数αも十分小さい磁性薄膜を製造することができ
る。
As described above, according to the method for manufacturing a magnetic thin film according to the present invention, it is possible to manufacture a magnetic thin film with an extremely large Faraday rotation angle θ F , a sufficiently large coercive force Hc, and a sufficiently small absorption coefficient α. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁性薄膜の製造方法の一
実施例を示す高周波スパツタリング装置の電極付
近の構造を示す断面図、第2図は本発明に係る磁
性薄膜の製造方法の一実施例により製造された
(Y,Bi)3(Fe,Al)5O12単結晶薄膜のフアラデ
ー回転角θF及び保磁力Hcの基板温度依存性を示
すグラフ、第3図は本発明に係る磁性薄膜の製造
方法の一実施例により製造された(Y,Bi)3
(Fe,Al)5O12単結晶薄膜のフアラデー回転角θF
の光の波長依存性を示すグラフ、第4図は本発明
に係る磁性薄膜の製造方法の一実施例により製造
された(Y,Bi)3(Fe,Al)5O12単結晶薄膜の吸
収係数αの波長依存性を示すグラフ、第5図は本
発明に係る磁性薄膜の製造方法の一実施例により
製造された(Y,Bi)3(Fe,Al)5O12単結晶薄膜
のフアラデー回転角θFの温度依存性を示すグラ
フ、第6図は本発明に係る磁性薄膜の製造方法の
一実施例により製造された(Y,Bi)3(Fe,Al)
5O12単結晶薄膜のヒステリシス特性を示すグラ
フ、第7A図〜第7C図は本発明に係る磁性薄膜
の製造方法の一実施例により製造された3つの異
なる膜厚の(Y,Bi)3(Fe,Al)5O12単結晶薄膜
のヒステリシス特性を示すグラフ、第8図は本発
明に係る磁性薄膜の製造方法の一実施例により製
造された(Y,Bi)3(Fe,Al)5O12単結晶薄膜の
フアラデー回転角θFの光の波長依存性を示す第3
図と同様なグラフである。 なお図面に用いた符号において、1……電極板
(試料台)、2……GGG基板、3……電極板、4
……ターゲツト、5……ヒータ、6……(Y,
Bi)3(Fe,Al)5O12単結晶薄膜、である。
FIG. 1 is a cross-sectional view showing the structure near the electrodes of a high-frequency sputtering device showing an embodiment of the method for manufacturing a magnetic thin film according to the present invention, and FIG. FIG. 3 is a graph showing the substrate temperature dependence of Faraday rotation angle θ F and coercive force Hc of the manufactured (Y, Bi) 3 (Fe, Al) 5 O 12 single crystal thin film. (Y, Bi) 3 manufactured by an embodiment of the manufacturing method
Faraday rotation angle θ F of (Fe, Al) 5 O 12 single crystal thin film
FIG. 4 is a graph showing the wavelength dependence of light on the absorption of a (Y, Bi) 3 (Fe, Al) 5 O 12 single crystal thin film produced by an embodiment of the method for producing a magnetic thin film according to the present invention. FIG. 5 is a graph showing the wavelength dependence of the coefficient α, and is a graph showing the Faraday of a (Y, Bi) 3 (Fe, Al) 5 O 12 single crystal thin film manufactured by an embodiment of the method for manufacturing a magnetic thin film according to the present invention. A graph showing the temperature dependence of the rotation angle θF , FIG. 6, shows (Y, Bi) 3 (Fe, Al) produced by an embodiment of the method for producing a magnetic thin film according to the present invention.
Graphs showing the hysteresis characteristics of 5 O 12 single crystal thin films, FIGS. 7A to 7C, show (Y, Bi) 3 films of three different thicknesses manufactured by an embodiment of the method for manufacturing magnetic thin films according to the present invention. A graph showing the hysteresis characteristics of a (Fe, Al) 5 O 12 single crystal thin film, FIG. 8 is a (Y, Bi) 3 (Fe, Al) produced by an embodiment of the method for producing a magnetic thin film according to the present invention. The third diagram shows the optical wavelength dependence of the Faraday rotation angle θ F of a 5 O 12 single crystal thin film.
This is a graph similar to the one shown in the figure. In addition, in the symbols used in the drawings, 1... Electrode plate (sample stage), 2... GGG substrate, 3... Electrode plate, 4
...Target, 5...Heater, 6...(Y,
Bi) 3 (Fe, Al) 5 O 12 single crystal thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともBi原子、Fe原子及び希土類原子
を含む酸化物から成るターゲツトをスパツタし、
このスパツタにより前記ターゲツトから離脱した
前記酸化物の構成原子を350〜700℃に加熱された
GGG基板上に被着することによつて、このGGG
基板上に高濃度Bi置換鉄ガーネツト単結晶薄膜
をエピタキシヤル成長させ、しかるのちに前記単
結晶薄膜を大気中において640〜740℃でアニール
することを特徴とする磁性薄膜の製造方法。
1 Sputtering a target made of an oxide containing at least Bi atoms, Fe atoms and rare earth atoms,
The constituent atoms of the oxide separated from the target by this sputtering were heated to 350 to 700°C.
By depositing on the GGG substrate, this GGG
1. A method for producing a magnetic thin film, which comprises epitaxially growing a high concentration Bi-substituted iron garnet single crystal thin film on a substrate, and then annealing the single crystal thin film at 640 to 740°C in the atmosphere.
JP21675083A 1983-11-17 1983-11-17 Manufacture of magnetic thin-film Granted JPS60107815A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21675083A JPS60107815A (en) 1983-11-17 1983-11-17 Manufacture of magnetic thin-film
DE8484904169T DE3482886D1 (en) 1983-11-17 1984-11-15 METHOD FOR PRODUCING PHOTOTHERMOMAGNETIC RECORDING FILMS.
EP19840904169 EP0196332B1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film
US06/763,789 US4608142A (en) 1983-11-17 1984-11-15 Method of manufacturing magneto-optic recording film
PCT/JP1984/000547 WO1985002292A1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21675083A JPS60107815A (en) 1983-11-17 1983-11-17 Manufacture of magnetic thin-film

Publications (2)

Publication Number Publication Date
JPS60107815A JPS60107815A (en) 1985-06-13
JPH0558251B2 true JPH0558251B2 (en) 1993-08-26

Family

ID=16693332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21675083A Granted JPS60107815A (en) 1983-11-17 1983-11-17 Manufacture of magnetic thin-film

Country Status (1)

Country Link
JP (1) JPS60107815A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424467A1 (en) * 1984-07-03 1986-01-16 Philips Patentverwaltung Gmbh, 2000 Hamburg METHOD FOR PRODUCING BISMUT-SUBSTITUTED FERRIMAGNETIC GRANATE LAYERS
JP2598409B2 (en) * 1987-06-17 1997-04-09 株式会社リコー Method for producing oxide magnetic thin film
US6759137B1 (en) 1998-08-28 2004-07-06 Centre National De La Recherche Scientifique, Inc. Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912398A (en) * 1972-05-16 1974-02-02
JPS5613710A (en) * 1979-07-13 1981-02-10 Nec Corp Material for magnetic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912398A (en) * 1972-05-16 1974-02-02
JPS5613710A (en) * 1979-07-13 1981-02-10 Nec Corp Material for magnetic element

Also Published As

Publication number Publication date
JPS60107815A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
Henry et al. Ferromagnetic resonance properties of LPE YIG films
US4608142A (en) Method of manufacturing magneto-optic recording film
JP2896193B2 (en) Method for manufacturing oxide crystal orientation film, oxide crystal orientation film, and magneto-optical recording medium
Stadler et al. Magneto-optical garnet films made by reactive sputtering
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0558251B2 (en)
EP0196332B1 (en) Method of manufacturing photothermomagnetic recording film
JPH0354454B2 (en)
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
Park et al. Chemical composition, microstructure and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) thin films grown by rf magnetron sputter techniques
JPH0457637B2 (en)
JPH0354443B2 (en)
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
CN115261795B (en) Magneto-optical structure used in optical information processing system and preparation method and preparation equipment thereof
US4354254A (en) Devices depending on garnet materials
Terada et al. Magnetic properties of Pr‐Co and Nd‐Co thin films deposited by ion beam sputtering
JP3059332B2 (en) Microwave device material
JPH0748425B2 (en) Microwave device
JP2728715B2 (en) Garnet-based magnetic material
JPH09208393A (en) Production of microwave element material
EP1363295A1 (en) Magnetic material and method for preparation thereof
Marcelli et al. Micromorphology, microstructure and magnetic properties of sputtered garnet multilayers