JPH0354454B2 - - Google Patents
Info
- Publication number
- JPH0354454B2 JPH0354454B2 JP613484A JP613484A JPH0354454B2 JP H0354454 B2 JPH0354454 B2 JP H0354454B2 JP 613484 A JP613484 A JP 613484A JP 613484 A JP613484 A JP 613484A JP H0354454 B2 JPH0354454 B2 JP H0354454B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- rare earth
- iron garnet
- film
- earth iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 68
- 239000010409 thin film Substances 0.000 claims description 58
- 229910052742 iron Inorganic materials 0.000 claims description 32
- 239000010408 film Substances 0.000 claims description 27
- 239000002223 garnet Substances 0.000 claims description 27
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 26
- 150000002910 rare earth metals Chemical class 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 8
- 238000001947 vapour-phase growth Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- -1 Si 3 N 4 Chemical class 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/16—Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
- G11B11/10591—Details for improving write-in properties, e.g. Curie-point temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/20—Ferrites
- H01F10/24—Garnets
- H01F10/245—Modifications for enhancing interaction with electromagnetic wave energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】
本発明は、磁性薄膜の製造方法に関し、より詳
細には磁気記録及び光熱磁気記録材料として用い
て好適な希土類鉄ガーネツト薄膜の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic thin film, and more particularly to a method of manufacturing a rare earth iron garnet thin film suitable for use as a magnetic recording and photothermal magnetic recording material.
近年、希土類鉄ガーネツトR3(Fe、M)5O12
(R:希土類元素、M:Al3+、Ga3+、Sc3+、
Tl3+、(Co2++Ti4+)など)のRの一部をBiで置
換した鉄ガーネツトR3-xBix(Fe、M)5O12が注目
されている。このBi置換希土類鉄ガーネツトは、
Rの一部をBiで置換することにより、吸収係数
αをあまり大きくすることなくフアラデー回転角
θFを大きくすることができるという性質を有し、
光熱磁気記録材料として一般に優れたものであ
る。 In recent years, rare earth iron garnet R 3 (Fe, M) 5 O 12
(R: rare earth element, M: Al 3+ , Ga 3+ , Sc 3+ ,
Iron garnet R 3-x Bi x (Fe, M) 5 O 12 , in which a part of R in Tl 3+ , (Co 2+ +Ti 4+ ), etc.) is replaced with Bi, is attracting attention. This Bi-substituted rare earth iron garnet is
By replacing a part of R with Bi, it has the property that the Faraday rotation angle θ F can be increased without increasing the absorption coefficient α too much,
It is generally excellent as a photothermal magnetic recording material.
このような性質を有するBi置換希土類鉄ガー
ネツトの光熱磁気記録材料としての性能を高める
ためには、Bi置換量xを大きくしてフアラデー
回転角θFを大きくすればよいが、従来の液相エピ
タキシヤル法等の製造方法ではBi置換量xが大
きいBi置換希土類鉄ガーネツト薄膜を製造する
ことは困難であつた。 In order to improve the performance of Bi-substituted rare earth iron garnets having these properties as photothermal magnetic recording materials, it is possible to increase the Bi substitution amount x and the Faraday rotation angle θ F , but conventional liquid phase epitaxy It has been difficult to produce a Bi-substituted rare earth iron garnet thin film with a large Bi substitution amount x using production methods such as the Yall method.
本発明者等は、特願昭58−216750号において、
固溶限界(十二面体位置の50%)までBiが固溶
している高濃度Bi置換希土類鉄ガーネツト単結
晶薄膜をスパツタリング法によりGGG基板上に
エピタキシヤル成長させることのできる磁性薄膜
の製造方法を提案した。しかし、この製造方法
は、用いることのできる基板がGGG基板に限定
されてしまう点で不利であるため、例えばガラス
基板等の非晶質基板上に高濃度Bi置換希土類鉄
ガーネツト薄膜を形成することのできる製造方法
が望まれていた。 The present inventors, in Japanese Patent Application No. 58-216750,
A method for manufacturing a magnetic thin film in which a high concentration Bi-substituted rare earth iron garnet single crystal thin film in which Bi is dissolved in solid solution up to the solid solution limit (50% of dodecahedral positions) can be epitaxially grown on a GGG substrate by sputtering method. proposed. However, this manufacturing method has the disadvantage that the substrates that can be used are limited to GGG substrates, so it is difficult to form a high concentration Bi-substituted rare earth iron garnet thin film on an amorphous substrate such as a glass substrate. A manufacturing method that would allow for this was desired.
このような要求は上記以外の希土類鉄ガーネツ
ト薄膜についても従来からあり、種々の試みがな
されている。しかしながら、現在までに得られて
いる薄膜はその面と平行な方向に磁化が存在する
多結晶の面内磁化膜であり、磁気記録及び光熱磁
気記録材料として好ましい垂直磁化膜は未だ得ら
れていない。また特にBi置換希土類鉄ガーネツ
ト垂直磁化膜を非晶質基板上に形成する試みは全
くなされていないのが現状である。 Such requirements have existed for rare earth iron garnet thin films other than those mentioned above, and various attempts have been made. However, the thin films obtained to date are polycrystalline in-plane magnetized films with magnetization in a direction parallel to the plane, and a perpendicularly magnetized film preferable as a magnetic recording and photothermal magnetic recording material has not yet been obtained. . Furthermore, at present, no attempt has been made to form a Bi-substituted rare earth iron garnet perpendicularly magnetized film on an amorphous substrate.
本発明は、上述の問題にかんがみ、良好な垂直
磁化特性を有するBi置換希土類鉄ガーネツト薄
膜等の希土類鉄ガーネツト薄膜を非晶質基板等の
種々の基板上に形成することのできる磁性薄膜の
製造方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention is directed to the production of magnetic thin films in which rare earth iron garnet thin films such as Bi-substituted rare earth iron garnet thin films having good perpendicular magnetization characteristics can be formed on various substrates such as amorphous substrates. The purpose is to provide a method.
即ち、本発明に係る磁性薄膜の製造方法は、所
定の基板上に非晶質の希土類鉄ガーネツト薄膜を
気相成長法により形成し、上記非晶質の希土類鉄
ガーネツト薄膜上に保護膜を形成し、次いで熱処
理を行うことにより上記非晶質の希土類鉄ガーネ
ツト薄膜を結晶化させるようにしている。このよ
うにすることによつて、結晶化のための熱処理に
よる悪影響を防止することができ、極めて良好な
垂直磁化特性を有する磁性薄膜を製造することが
できる。また磁性薄膜を形成すべき基板の材質を
種々に選ぶことができるので、製造上極めて好都
合である。 That is, the method for producing a magnetic thin film according to the present invention includes forming an amorphous rare earth iron garnet thin film on a predetermined substrate by vapor phase growth, and forming a protective film on the amorphous rare earth iron garnet thin film. Then, heat treatment is performed to crystallize the amorphous rare earth iron garnet thin film. By doing so, it is possible to prevent the adverse effects of heat treatment for crystallization, and it is possible to produce a magnetic thin film having extremely good perpendicular magnetization characteristics. Furthermore, since the material of the substrate on which the magnetic thin film is to be formed can be selected from various materials, it is extremely convenient in terms of manufacturing.
以下本発明に係る磁性薄膜の製造方法を(Y、
Bi)3(Fe、Al)5O12で表されるBi置換希土類鉄ガ
ーネツトの薄膜の製造に適用した一実施例につき
図面を参照しながら説明する。なおこの(Y、
Bi)3(Fe、Al)5O12は、イツトリウム鉄ガーネツ
トY3Fe5O12(YIG)において、Yの一部をBiで置
換すると共にFeの一部をAlで置換したものであ
り、前者は吸収係数αをあまり増大することなく
フアラデー回転角θFを高め、後者は吸収係数αを
減少させると共に飽和磁化を小さくして垂直磁化
膜を得られやすくし、またキユリー温度も下げる
ことが知られている。 The method for manufacturing a magnetic thin film according to the present invention will be described below (Y,
An example applied to the production of a thin film of Bi-substituted rare earth iron garnet represented by Bi) 3 (Fe, Al) 5 O 12 will be described with reference to the drawings. Furthermore, this (Y,
Bi) 3 (Fe, Al) 5 O 12 is a yttrium iron garnet Y 3 Fe 5 O 12 (YIG) in which part of Y is replaced with Bi and part of Fe is replaced with Al. The former increases the Faraday rotation angle θ F without significantly increasing the absorption coefficient α, while the latter decreases the absorption coefficient α and lowers the saturation magnetization, making it easier to obtain a perpendicularly magnetized film and also lowering the Curie temperature. Are known.
まず第1A図に示すように、高周波(RF)ス
パツタリング装置のステンレス製の電極板(試料
台)1の上に石英ガラス基板2を載置すると共
に、電極板3に第1のターゲツト4を取り付け
る。なおこの第1のターゲツト4は、組成式
Bi2.0Y1.0Fe3.8Al1.2O12で表される多結晶状の鉄ガ
ーネツトの円盤状の焼結体から成る。 First, as shown in FIG. 1A, a quartz glass substrate 2 is placed on a stainless steel electrode plate (sample stage) 1 of a radio frequency (RF) sputtering device, and a first target 4 is attached to the electrode plate 3. . Note that this first target 4 has the composition formula
It consists of a disc-shaped sintered body of polycrystalline iron garnet represented by Bi 2.0 Y 1.0 Fe 3.8 Al 1.2 O 12 .
次にスパツタリング装置内を所定の真空度に排
気した後、このスパツタリング装置内にArとO2
との混合ガス(Ar:O2=9:1)を7Pa程度ま
で導入する。真空度が安定した状態で、電極板1
と電極板3との間に所定の高周波電圧を印加して
グロー放電を開始させる。この放電で生じたAr+
イオンは第1のターゲツト4の表面をスパツタ
し、このスパツタにより上記第1のターゲツト4
からBi、Y、Fe、Al、O等の原子が離脱する。
これらの離脱した原子は、電極板1を介してヒー
タ5により例えば440℃に加熱されている石英ガ
ラス基板2上に被着し、この石英ガラス基板2上
に(Y、Bi)3(Fe、Al)5O12の非晶質薄膜(以下
薄膜と称する)6が形成される。なおスパツタに
用いる電力を110Wとし、またスパツタ時間を2
時間30分とした場合、得られた薄膜6の厚さは
0.8μmであつた。 Next, after evacuating the inside of the sputtering device to a predetermined degree of vacuum, Ar and O 2 are added to the sputtering device.
A mixed gas (Ar:O 2 =9:1) is introduced up to about 7Pa. With the degree of vacuum stable, electrode plate 1
A predetermined high frequency voltage is applied between the electrode plate 3 and the electrode plate 3 to start glow discharge. Ar + generated by this discharge
The ions spatter the surface of the first target 4, and the sputtering causes the first target 4 to sputter.
Atoms such as Bi, Y, Fe, Al, and O are released from the
These detached atoms adhere to a quartz glass substrate 2 which is heated to, for example, 440° C. by a heater 5 via an electrode plate 1, and (Y, Bi) 3 (Fe, An amorphous thin film (hereinafter referred to as thin film) 6 of Al) 5 O 12 is formed. The power used for sputtering was 110W, and the sputtering time was 2.
When the time is 30 minutes, the thickness of the obtained thin film 6 is
It was 0.8 μm.
次に第1B図に示すように、電極板1に取り付
けられている第1のターゲツト4をSiO2から成
る第2のターゲツト7と交換した後、再びスパツ
タリング装置内を所定の真空度に排気し、次にこ
のスパツタリング装置内にArとO2との混合ガス
(Ar:O2=9:1)を7Pa程度まで導入する。真
空度が安定した状態で、電極板1と電極板3との
間に所定の高周波電圧を印加してグロー放電を開
始させる。この結果、薄膜6上にSiO2膜8が形
成される。なおこの際、石英ガラス基板2は室温
に保持する。またスパツタに用いる電力を200W
とし、またスパツタ時間を30分とした場合、得ら
れたSiO2膜8の厚さは0.5μmであつた。 Next, as shown in FIG. 1B, after replacing the first target 4 attached to the electrode plate 1 with a second target 7 made of SiO 2 , the inside of the sputtering apparatus is evacuated to a predetermined degree of vacuum again. Next, a mixed gas of Ar and O 2 (Ar:O 2 =9:1) is introduced into the sputtering apparatus to a pressure of about 7 Pa. With the degree of vacuum stable, a predetermined high frequency voltage is applied between the electrode plates 1 and 3 to start glow discharge. As a result, a SiO 2 film 8 is formed on the thin film 6. Note that at this time, the quartz glass substrate 2 is kept at room temperature. In addition, the power used for spatsuta is 200W.
When the sputtering time was 30 minutes, the thickness of the obtained SiO 2 film 8 was 0.5 μm.
次に上述のように形成された石英ガラス基板
2、薄膜6及びSiO2膜8から成る三層構造の試
料を空気中において700℃、3時間の条件で熱処
理して磁性薄膜の製造を終了する。 Next, the three-layer structure sample consisting of the quartz glass substrate 2, thin film 6, and SiO 2 film 8 formed as described above is heat treated in air at 700°C for 3 hours to complete the production of the magnetic thin film. .
なお本実施例においては、SiO2膜8から成る
保護膜の存在によつて上記熱処理中に薄膜6中に
含有されているBi等の薄膜構成原子が外方拡散
(アウトデイフユージヨン)すること及び膜面の
荒れを防止することができると共に、薄膜6の結
晶粒の成長を抑えることができる。 In this example, due to the presence of the protective film made of the SiO 2 film 8, atoms constituting the thin film such as Bi contained in the thin film 6 diffuse out during the heat treatment. In addition, it is possible to prevent the film surface from becoming rough, and to suppress the growth of crystal grains in the thin film 6.
上述の実施例により製造された薄膜6の結晶性
をX線回折により調べたところ、優勢方位のない
多結晶であることが判明した。しかし、光学顕微
鏡による観察の結果、多結晶であるにもかかわら
ず薄膜6は唐草模様状及びバブル状の磁区構造を
有し、また次のような優れた特性を有する極めて
良好な垂直磁化膜であることが測定によつて明ら
かにされた。 When the crystallinity of the thin film 6 manufactured according to the above-mentioned example was examined by X-ray diffraction, it was found that it was a polycrystal without a dominant orientation. However, as a result of observation using an optical microscope, thin film 6 has an arabesque pattern and bubble-like magnetic domain structure despite being polycrystalline, and is an extremely good perpendicularly magnetized film with the following excellent properties. This was revealed through measurements.
即ち、第2図に示すように、膜面に垂直な方向
の磁界Hに対する薄膜6のフアラデー回転角θFの
ヒステリシス特性を測定したところ、角形性が良
好なループが得られ、磁気トルク測定から垂直磁
化膜であることが判明した。またフアラデー回転
角θFは約1.5゜と極めて大きく、また保磁力HCも約
200Oeと十分に大きい。このように、薄膜6は磁
気記録材料として極めて好ましい性質を有してい
ることがわかる。なお第2図に示すような優れた
特性を有する垂直磁化膜が得られることから、薄
膜6中にはより大きな垂直磁気異方性を賦与する
Biが固溶限界程度まで固溶していることが推定
される。なお第2図において、フアラデー回転角
θF測定用の光源としては、He−Neレーザー(波
長6328〓)を用いた。また測定は、上記薄膜6に
光を透過させて行つた。 That is, as shown in FIG. 2, when we measured the hysteresis characteristics of the Faraday rotation angle θ F of the thin film 6 with respect to the magnetic field H in the direction perpendicular to the film surface, a loop with good squareness was obtained, and from the magnetic torque measurement It turned out to be a perpendicularly magnetized film. Furthermore, the Faraday rotation angle θ F is extremely large at approximately 1.5°, and the coercive force H C is also approximately
It is large enough at 200Oe. Thus, it can be seen that the thin film 6 has extremely favorable properties as a magnetic recording material. Note that since a perpendicularly magnetized film having excellent properties as shown in FIG. 2 can be obtained, larger perpendicular magnetic anisotropy is imparted to the thin film 6.
It is estimated that Bi is dissolved in solid solution up to the solid solution limit. In FIG. 2, a He-Ne laser (wavelength 6328〓) was used as a light source for measuring the Faraday rotation angle θ F . Further, the measurement was performed by transmitting light through the thin film 6.
上述の実施例においては、薄膜6を形成すべき
基板として石英ガラス基板2を用いたが他の種類
のガラス基板等の非晶質基板を用いてもよいこと
は勿論、例えば金属、半導体、絶縁体等の結晶性
基板を用いてもよい。また保護膜としては、例え
ば700℃程度の高温で薄膜6と反応しなければ
SiO2膜8以外の膜でもよく、例えばZnO、TiO2、
CeO2等の酸化物、Si3N4等の窒化物、BaF2、
CaF2等のフツ化物等の膜を用いてよい。なお保
護膜の膜厚は500Å以上であるのが好ましい。 In the above embodiment, the quartz glass substrate 2 was used as the substrate on which the thin film 6 is to be formed, but it goes without saying that other types of amorphous substrates such as glass substrates may also be used. A crystalline substrate such as a solid body may also be used. In addition, as a protective film, it must not react with the thin film 6 at a high temperature of about 700℃, for example.
Films other than the SiO 2 film 8 may be used, such as ZnO, TiO 2 ,
Oxides such as CeO 2 , nitrides such as Si 3 N 4 , BaF 2 ,
A film of fluoride such as CaF 2 may be used. Note that the thickness of the protective film is preferably 500 Å or more.
また上述の実施例においては、磁性薄膜及び保
護膜を形成するのにスパツタ法を用いたが、例え
ば蒸着法、CVD法、イオンプレーテイング法等
の他の気相成長法を用いてもよい。なお保護膜
(SiO2膜、TiO2膜等)はいわゆる熱分解焼付法に
よつて形成することも可能である。ここで非晶質
磁性薄膜の膜厚は5μm以下であるのが好ましい。 Furthermore, in the above embodiments, the sputtering method was used to form the magnetic thin film and the protective film, but other vapor deposition methods such as vapor deposition, CVD, and ion plating may also be used. Note that the protective film (SiO 2 film, TiO 2 film, etc.) can also be formed by a so-called pyrolysis baking method. Here, the thickness of the amorphous magnetic thin film is preferably 5 μm or less.
また非晶質磁性薄膜は希土類鉄ガーネツトであ
れば磁性薄膜となるが、十二面体位置の20%以上
がBiに置換されたBi置換希土類鉄ガーネツトで
あれば磁気異方性が増し好ましい。 Further, if the amorphous magnetic thin film is made of rare earth iron garnet, it will be a magnetic thin film, but if it is Bi-substituted rare earth iron garnet in which 20% or more of the dodecahedral positions are substituted with Bi, magnetic anisotropy increases and it is preferable.
さらに上述の実施例においては、熱処理条件を
700℃、3時間としたが、これに限定されるもの
では勿論なく必要に応じて変更することができ
る。しかし、熱処理温度が低すぎると結晶化の程
度が小さいので、500℃以上の温度で熱処理する
のが好ましい。また薄膜6を形成するときの基板
温度も実施例の温度に限定されるものではなく形
成される薄膜6が非晶質であれば他の温度でもよ
いが、500℃以下であるのが好ましい。 Furthermore, in the above examples, the heat treatment conditions were
Although the temperature was set at 700° C. for 3 hours, the temperature is not limited to this and can be changed as necessary. However, if the heat treatment temperature is too low, the degree of crystallization will be small, so it is preferable to perform the heat treatment at a temperature of 500° C. or higher. Further, the substrate temperature when forming the thin film 6 is not limited to the temperature in the embodiment, and may be any other temperature as long as the thin film 6 to be formed is amorphous, but it is preferably 500° C. or lower.
なお上述の実施例においては、非晶質の希土類
鉄ガーネツト薄膜の形成にスパツタ法を用い、そ
の第1のターゲツトの材料として組成式Bi2.0Y1.0
Fe3.8Al1.2O12で表される多結晶状の鉄ガーネツト
を用いたが、ターゲツト組成はこれに限定される
ものではなく、例えば上述の組成式に含まれる元
素をそれぞれ含む混合物であつてもよい。より一
般的には、(Bi2O3)x(R2O3)y(Fe2O3)z(M2O3)
uで表されるような少なくともBi原子、Fe原子及
び希土類原子を含む酸化物から成る材料を用いる
ことができる。ここで、0<x≦3/2、0<y≦
3/2、0<z<5/2、0≦u≦5/2である。またR
はY、Sm等の希土類元素であり、MはAl3+、
Ga3+、Sc3+、Tl3+、(Co2++Ti4+)等である。 In the above example, a sputtering method was used to form an amorphous rare earth iron garnet thin film, and the first target material had a composition formula of Bi 2.0 Y 1.0.
Although polycrystalline iron garnet represented by Fe 3.8 Al 1.2 O 12 was used, the target composition is not limited to this; for example, a mixture containing each of the elements included in the above composition formula may be used. good. More generally, (Bi 2 O 3 ) x (R 2 O 3 ) y (Fe 2 O 3 ) z (M 2 O 3 )
A material consisting of an oxide containing at least Bi atoms, Fe atoms, and rare earth atoms as represented by u can be used. Here, 0<x≦3/2, 0<y≦
3/2, 0<z<5/2, 0≦u≦5/2. Also R
is a rare earth element such as Y or Sm, and M is Al 3+ ,
These include Ga 3+ , Sc 3+ , Tl 3+ , (Co 2+ +Ti 4+ ), and the like.
以上述べたように、本発明に係る磁性薄膜の製
造方法によれば、得られる希土類鉄ガーネツト薄
膜は所定の基板上に形成された非晶質の希土類鉄
ガーネツト薄膜を熱処理により結晶化したもので
あり、またこの際この結晶化のための熱処理によ
る悪影響を上記希土類鉄ガーネツト薄膜上に形成
した保護膜により防止することができるので、極
めて良好な垂直磁化特性を有する磁性薄膜を製造
することができる。また磁性薄膜を形成すべき基
板の材質を種々に選ぶことができるので、製造上
極めて好都合である。 As described above, according to the method for producing a magnetic thin film according to the present invention, the obtained rare earth iron garnet thin film is obtained by crystallizing an amorphous rare earth iron garnet thin film formed on a predetermined substrate by heat treatment. Moreover, at this time, the adverse effects of the heat treatment for crystallization can be prevented by the protective film formed on the rare earth iron garnet thin film, making it possible to produce a magnetic thin film with extremely good perpendicular magnetization characteristics. . Furthermore, since the material of the substrate on which the magnetic thin film is to be formed can be selected from various materials, it is extremely convenient in terms of manufacturing.
第1A図及び第1B図は本発明に係る磁性薄膜
の製造方法の一実施例をその実施に用いた高周波
スパツタリング装置と共に工程順に示す断面図、
第2図は本発明に係る磁性薄膜の製造方法の一実
施例により製造された(Y、Bi)3(Fe、Al)5O12
薄膜のヒステリシス特性を示すグラフである。
なお図面に用いた符号において、1……電極板
(試料台)、2……石英ガラス基板、3……電極
板、4……第1のターゲツト、5……ヒータ、6
……(Y、Bi)3(Fe、Al)5O12薄膜、7……第2
のターゲツト、8……SiO2膜である。
FIGS. 1A and 1B are cross-sectional views showing an embodiment of the method for manufacturing a magnetic thin film according to the present invention in the order of steps together with a high-frequency sputtering apparatus used for carrying out the method;
FIG. 2 shows (Y, Bi) 3 (Fe, Al) 5 O 12 produced by an embodiment of the method for producing a magnetic thin film according to the present invention.
It is a graph showing hysteresis characteristics of a thin film. In the symbols used in the drawings, 1... electrode plate (sample stand), 2... quartz glass substrate, 3... electrode plate, 4... first target, 5... heater, 6
...(Y, Bi) 3 (Fe, Al) 5 O 12 thin film, 7...Second
The target is 8...SiO 2 film.
Claims (1)
薄膜を気相成長法により形成し、上記非晶質の希
土類鉄ガーネツト薄膜上に保護膜を形成し、次い
で熱処理を行うことにより上記非晶質の希土類鉄
ガーネツト薄膜を結晶化させることを特徴とする
磁性薄膜の製造方法。1. Form an amorphous rare earth iron garnet thin film on a predetermined substrate by vapor phase growth, form a protective film on the amorphous rare earth iron garnet thin film, and then perform heat treatment to form the amorphous thin film. A method for producing a magnetic thin film, characterized by crystallizing a rare earth iron garnet thin film.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP613484A JPS60150614A (en) | 1984-01-17 | 1984-01-17 | Manufacture of magnetic thin film |
US06/763,789 US4608142A (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing magneto-optic recording film |
DE8484904169T DE3482886D1 (en) | 1983-11-17 | 1984-11-15 | METHOD FOR PRODUCING PHOTOTHERMOMAGNETIC RECORDING FILMS. |
EP19840904169 EP0196332B1 (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing photothermomagnetic recording film |
PCT/JP1984/000547 WO1985002292A1 (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing photothermomagnetic recording film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP613484A JPS60150614A (en) | 1984-01-17 | 1984-01-17 | Manufacture of magnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60150614A JPS60150614A (en) | 1985-08-08 |
JPH0354454B2 true JPH0354454B2 (en) | 1991-08-20 |
Family
ID=11630028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP613484A Granted JPS60150614A (en) | 1983-11-17 | 1984-01-17 | Manufacture of magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60150614A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3424467A1 (en) * | 1984-07-03 | 1986-01-16 | Philips Patentverwaltung Gmbh, 2000 Hamburg | METHOD FOR PRODUCING BISMUT-SUBSTITUTED FERRIMAGNETIC GRANATE LAYERS |
JPH01125654A (en) * | 1987-11-11 | 1989-05-18 | Canon Inc | Information processor |
US6759137B1 (en) | 1998-08-28 | 2004-07-06 | Centre National De La Recherche Scientifique, Inc. | Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device |
JP2019192750A (en) * | 2018-04-24 | 2019-10-31 | 株式会社アルバック | Formation method of magnetic film and thermoelectric element |
-
1984
- 1984-01-17 JP JP613484A patent/JPS60150614A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60150614A (en) | 1985-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2004067813A1 (en) | Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same | |
US4968954A (en) | Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device | |
US4608142A (en) | Method of manufacturing magneto-optic recording film | |
Henry et al. | Ferromagnetic resonance properties of LPE YIG films | |
JPWO2003000963A1 (en) | Substrate for forming magnetic garnet single crystal film, optical element and method for manufacturing the same | |
JP2004269305A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
US20060150893A1 (en) | Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same | |
JPH0354454B2 (en) | ||
Goml et al. | Sputtered Iron Garner Fills for Magneto-Optical Storage | |
EP0196332B1 (en) | Method of manufacturing photothermomagnetic recording film | |
Park et al. | Chemical composition, microstructure and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) thin films grown by rf magnetron sputter techniques | |
JPH0457637B2 (en) | ||
JPH0558251B2 (en) | ||
US5320881A (en) | Fabrication of ferrite films using laser deposition | |
JPS60134404A (en) | Magnetooptical material | |
JPH09202697A (en) | Production of bismuth-substituted type garnet | |
JPH0354443B2 (en) | ||
JP2721869B2 (en) | Method for manufacturing diluted magnetic semiconductor thin film | |
US4354254A (en) | Devices depending on garnet materials | |
JP2636860B2 (en) | Method for manufacturing thin film for magneto-optical recording | |
JP2004269283A (en) | Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method | |
JP3059332B2 (en) | Microwave device material | |
JP3743440B2 (en) | LIQUID COMPOSITION FOR FORMING SUBSTITUTED GARNET MAGNETIC THIN FILM, MAGNETIC THIN FILM USING SAME, AND METHOD FOR PRODUCING THE FILM | |
JP2862750B2 (en) | Method for producing garnet single crystal film | |
JP2742537B2 (en) | Magneto-optical thin film and method of manufacturing the same |