JP2721869B2 - Method for manufacturing diluted magnetic semiconductor thin film - Google Patents

Method for manufacturing diluted magnetic semiconductor thin film

Info

Publication number
JP2721869B2
JP2721869B2 JP5620789A JP5620789A JP2721869B2 JP 2721869 B2 JP2721869 B2 JP 2721869B2 JP 5620789 A JP5620789 A JP 5620789A JP 5620789 A JP5620789 A JP 5620789A JP 2721869 B2 JP2721869 B2 JP 2721869B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
temperature
sapphire
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5620789A
Other languages
Japanese (ja)
Other versions
JPH02239196A (en
Inventor
隆 犬飼
直登 杉本
堅一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5620789A priority Critical patent/JP2721869B2/en
Publication of JPH02239196A publication Critical patent/JPH02239196A/en
Application granted granted Critical
Publication of JP2721869B2 publication Critical patent/JP2721869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上利用分野) 本発明は希薄磁性半導体薄膜の製造方法、さらに詳細
には室温で大きなファラデー効果を有する希薄磁性半導
体薄膜の製造方法において、薄膜表面が平坦で、かつ結
晶配向の揃った単結晶薄膜の製造方法に関するものであ
る。
The present invention relates to a method for producing a diluted magnetic semiconductor thin film, and more particularly, to a method for producing a diluted magnetic semiconductor thin film having a large Faraday effect at room temperature. The present invention also relates to a method for producing a single crystal thin film having a uniform crystal orientation.

(従来の技術) CdTeのCdの一部をMnで置き換えた化合物すなわち組成
式Cd1-xMnxTeのxが0<x<0.77で表される閃亜鉛鉱型
結晶構造の化合物は半導体的性質と磁気的性質の両方の
性質を持つことから希薄磁性半導体と呼ばれている。
(Prior Art) A compound in which a part of Cd of CdTe is replaced by Mn, that is, a compound having a zinc blende type crystal structure in which x in the composition formula Cd 1-x Mn x Te is represented by 0 <x <0.77 is semiconducting. Since it has both properties and magnetic properties, it is called a diluted magnetic semiconductor.

Mnイオンの存在によりこの化合物のファラデー効果は
室温および可視光波長領域において従来のZnSe、ZnTeな
どのII−VI族化合物半導体のファラデー効果よりも大き
く、かつ光吸収係数が小さいため、アイソレータなどの
可視光における磁気光学素子用材料として注目されてい
る。
Due to the presence of Mn ions, the Faraday effect of this compound is larger than that of conventional II-VI group compound semiconductors such as ZnSe and ZnTe at room temperature and in the visible light wavelength region, and the light absorption coefficient is small. It is attracting attention as a material for magneto-optical elements in light.

磁気光学素子の小型・軽量化、安定化、高性能化など
のためには導波路型が有効である。
The waveguide type is effective for reducing the size and weight of the magneto-optical element, stabilizing it, and improving its performance.

Cd1-xMnxTeを用いた導波路型の磁気光学素子を作製す
る場合には表面平坦性および結晶性の優れた薄膜が必要
である。
When fabricating a waveguide-type magneto-optical element using Cd 1-x Mn x Te, a thin film having excellent surface flatness and crystallinity is required.

(発明が解決する問題点) これまでにCd1-xMnxTe薄膜はガラス基板およびGaAs基
板上への蒸着法、GaAs基板上へのホットウォール法、Ga
As基板上あるいはCdTe基板上への分子線エピタキシー
(MBE)法、CdTe基板上への原子層エピタキシー法およ
びサファイア基板上へのクラスタイオンビーム(ICB)
法により形成された。これらの方法で形成された薄膜の
中でガラス基板上に形成された薄膜は多結晶であり、薄
膜の表面粗さが大きい欠点があった。GaAs基板およびCd
Te基板上に形成された薄膜は良結晶性の単結晶薄膜であ
る。
(Problems to be solved by the invention) So far, Cd 1-x Mn x Te thin films have been deposited on glass substrates and GaAs substrates, hot-wall methods on GaAs substrates, and Ga.
Molecular beam epitaxy (MBE) on As or CdTe substrate, atomic layer epitaxy on CdTe substrate, and cluster ion beam (ICB) on sapphire substrate
Formed by the method. Among the thin films formed by these methods, a thin film formed on a glass substrate is polycrystalline, and has a disadvantage that the surface roughness of the thin film is large. GaAs substrate and Cd
The thin film formed on the Te substrate is a single crystal thin film with good crystallinity.

しかしGaAsの屈折率は3.6であり、Cd1-xMnxTeの屈折
率である2.8〜3.0よりも大きい。このためCd1-xMnxTe薄
膜に光を導入すると、光は薄膜から基板へ漏洩し、薄膜
中を伝搬しない。
But the refractive index of GaAs is 3.6, greater than 2.8 to 3.0 which is the refractive index of Cd 1-x Mn x Te. Therefore, when light is introduced into the Cd 1-x Mn x Te thin film, the light leaks from the thin film to the substrate and does not propagate through the thin film.

CdTeの屈折率は2.8〜2.9であり、Cd1-xMnxTeの屈折率
と同程度もしくは僅かに大きいので光が基板へ漏洩する
場合がある。またこの化合物は良結晶性の大型結晶が得
られていない欠点もあった。これらの理由からGaAsおよ
びCdTeをCd1-xMnxTeの導波路型磁気光学素子用の基板に
用いることができない。サファイア基板の場合は屈折率
がCd1-xMnxTeの屈折率よりも小さい1.8であるため光の
導波条件を満足する。これまでにサファイアC面の基板
上にICB法により単結晶が形成されていた。しかし導波
光の吸収損失および散乱損失に影響を及ぼす薄膜の結晶
性の程度と表面粗さについては明らかにされていなかっ
た。
The refractive index of CdTe is 2.8~2.9, Cd 1-x Mn x refractive index equal to or slightly larger since the light of Te is sometimes leaks into the substrate. In addition, this compound also has a disadvantage that large crystals of good crystallinity have not been obtained. It can not be used for these reasons the GaAs and CdTe on the substrate for Cd 1-x Mn x Te waveguide type magneto-optical element. When the sapphire substrate satisfies the guided light conditions for a refractive index of 1.8 smaller than the refractive index of Cd 1-x Mn x Te. Until now, a single crystal has been formed on the sapphire C-plane substrate by the ICB method. However, the degree of crystallinity and the surface roughness of the thin film which affect the absorption loss and the scattering loss of guided light have not been clarified.

本発明は上記の点に鑑みなされたものであり、表面が
平坦であり、かつ結晶配向性が揃ったCd1-xMnxTe単結晶
薄膜をサファイア基板上に形成するための製造方法を提
供することにある。
The present invention has been made in view of the above, provides a production method for forming the surface is flat, and a Cd 1-x Mn x Te single crystal thin film crystal orientation are aligned on a sapphire substrate Is to do.

(問題点を解決するための手段) この目的を達成するために、本発明の第一は組成式Cd
1-xMnxTeのxが0.05≦x≦0.77からなる閃亜鉛鉱型結晶
構造を有する単結晶薄膜の製造方法において、薄膜形成
の前にサファイアC面の基板を予め850℃以上の温度で
加熱処理することを特徴とするものであり、第二の発明
は前記の加熱処理した基板を180℃から340℃に保ち、こ
の基板上にCd、MnおよびTe、もしくはこれらの元素を含
む化合物を、1×10-5Paより高真空度の中で蒸着するこ
とにより薄膜を形成することを特徴とする。
(Means for Solving the Problems) In order to achieve this object, a first aspect of the present invention is to provide a composition formula Cd
In the method for producing a single crystal thin film having a zinc blende type crystal structure in which x of 1-x Mn x Te is 0.05 ≦ x ≦ 0.77, a sapphire C-plane substrate is preliminarily formed at a temperature of 850 ° C. or more before forming the thin film. The second invention is characterized in that it is subjected to heat treatment, the second invention keeps the heat-treated substrate at 180 ° C. to 340 ° C., and Cd, Mn and Te, or a compound containing these elements on this substrate. It is characterized in that a thin film is formed by vapor deposition in a degree of vacuum higher than 1 × 10 −5 Pa.

本発明をさらに詳しく説明する。 The present invention will be described in more detail.

本発明の第一の希薄磁性半導体薄膜の製造方法によれ
ばCd1-xMnxTe薄膜のファラデー効果の大きさを表すヴェ
ルデ定数は、Mn量xが0.05より少ないとき、室温および
480nm〜780nmの可視光波長領域においてZnSeなどのII−
VI族化合物半導体の値である0.04deg/Oe・cmよりも小さ
い。このためCd1-xMnxTe薄膜の磁気光学薄膜としての優
位性はない。一方、xが0.77よりも大きいと薄膜には閃
亜鉛鉱型結晶の他にMnTeが混在し、単結晶膜にならな
い。このため結晶配向性および結晶性の目安であるX線
ロッキング曲線の半値幅(FWHMと略記する)はガラス基
板上に形成した薄膜の値と同程度の4゜であり、結晶性
が悪い。これらのことからxとして0.05≦x≦0.77が有
効である。
According to the first method for producing a diluted magnetic semiconductor thin film of the present invention, the Verdet constant representing the magnitude of the Faraday effect of the Cd 1-x Mn x Te thin film, when the amount of Mn x is less than 0.05, room temperature and
II- such as ZnSe in the visible light wavelength range of 480 nm to 780 nm
It is smaller than the value of the group VI compound semiconductor, 0.04 deg / Oe · cm. Therefore, the Cd 1-x Mn x Te thin film does not have an advantage as a magneto-optical thin film. On the other hand, when x is larger than 0.77, MnTe is mixed in the thin film in addition to the zinc blende type crystal, and the thin film does not become a single crystal film. Therefore, the half-width (abbreviated as FWHM) of the X-ray rocking curve, which is a measure of crystal orientation and crystallinity, is 4 °, which is almost the same as the value of a thin film formed on a glass substrate, and the crystallinity is poor. From these, 0.05 ≦ x ≦ 0.77 is effective as x.

基板にはサファイアのC面すなわち(0001)を用い
る。
The C-plane of sapphire, that is, (0001) is used for the substrate.

サファイアのC面とCd1-xMnxTeの(111)の原子配列
は互いに同じであり、サファイアの格子定数(4.758
Å)は Cd1-xMnxTeの原子間距離(4.506Å/4.587Å)に比較
的近い。このためこの基板上に形成したCd1-xMnxTe薄膜
は単結晶である。
The C-plane of sapphire and the atomic arrangement of (111) in Cd 1-x Mn x Te are the same, and the lattice constant of sapphire (4.758)
Å) is relatively close to the interatomic distance of Cd 1-x Mn x Te (4.506Å / 4.587Å). Therefore, the Cd 1-x Mn x Te thin film formed on this substrate is a single crystal.

またサファイアの屈折率はCd1-xMnxTe薄膜の屈折率よ
り小さいので、屈折率に対する光の導波条件を満足す
る。基板には鋭面研磨したものを使用し、薄膜形成の前
に加熱処理を行う。850℃より低い温度で加熱処理した
基板上に形成した薄膜の表面には多数の円形の突起が見
られ、表面粗さが大きい。基板を850℃以上の温度で加
熱処理すると、基板の歪が除去されると共に表面の凹凸
が減少するなど、表面状態が改善される。このため、こ
の基板上に形成した薄膜の表面粗さおよびFWHMが850℃
以下の温度で加熱処理した基板上に形成した薄膜よりも
減少し、結晶性が向上する。この基板の加熱処理による
効果は基板を真空中、空気中、酸素中、窒素中、水素中
あるいはアルゴン中など各種の雰囲気中で加熱した場合
に見られる。またこの効果は加熱処理時間が数分以上で
効果が現われる。加熱処理を行った基板はその後に洗浄
過程を経ても上記の効果が保たれる。
Also, since the refractive index of sapphire is smaller than the refractive index of the Cd 1-x Mn x Te thin film, it satisfies the light guiding condition for the refractive index. A substrate having a sharply polished surface is used, and heat treatment is performed before forming a thin film. The surface of the thin film formed on the substrate heat-treated at a temperature lower than 850 ° C. has a large number of circular projections and large surface roughness. When the substrate is heat-treated at a temperature of 850 ° C. or more, the surface condition is improved, such as removing the distortion of the substrate and reducing the unevenness of the surface. Therefore, the surface roughness and FWHM of the thin film formed on this substrate are 850 ° C.
It is smaller than a thin film formed on a substrate heat-treated at the following temperature, and the crystallinity is improved. The effect of the heat treatment of the substrate is seen when the substrate is heated in various atmospheres such as vacuum, air, oxygen, nitrogen, hydrogen or argon. This effect appears when the heat treatment time is several minutes or more. The above effect can be maintained even after the substrate subjected to the heat treatment undergoes a cleaning process.

上記で述べた基板の加熱処理による効果は基本的には
特定の薄膜形成方法に限定されるものではなく、蒸着
法、MBE法、CVD法など各種の薄膜形成方法を用いても85
0℃以上の温度で加熱処理した基板を用いれば上記の効
果がある。
The effect of the heat treatment of the substrate described above is basically not limited to a specific thin film forming method, and even if various thin film forming methods such as an evaporation method, an MBE method, and a CVD method are used,
Use of a substrate that has been heat-treated at a temperature of 0 ° C. or higher has the above effects.

次に本発明の第二のCd1-xMnxTe薄膜の形成について述
べる。
Next, the formation of the second Cd 1-x Mn x Te thin film of the present invention will be described.

本発明の第二の希薄磁性半導体薄膜の製造方法によれ
ば、蒸着前にサファイアC面の基板を850℃もしくはそ
れ以上の温度で加熱処理し、次に180℃から340℃に保っ
たこの基板上にCd、MnおよびTe、もしくはこれらの元素
を含む化合物を1×10-5Paよりも高真空度の中で蒸着す
ることにより閃亜鉛鉱型結晶構造のCd1-xMnxTe薄膜を形
成する。
According to the second method for producing a diluted magnetic semiconductor thin film of the present invention, a sapphire C-plane substrate is heated at 850 ° C. or higher before vapor deposition, and then kept at 180 ° C. to 340 ° C. By depositing Cd, Mn and Te or a compound containing these elements in a vacuum higher than 1 × 10 -5 Pa, a Cd 1-x Mn x Te thin film having a zinc blende type crystal structure is formed thereon. Form.

加熱処理後の基板上に薄膜を形成するときの基板温度
が180℃よりも低いとき、形成した薄膜が多結晶である
ためFWHMは約4゜となる。この値はガラス基板に形成し
た薄膜の値と同程度であるため、サファイア基板を用い
る利点がない。一方、基板温度が340℃より高くなる
と、薄膜の表面粗さがそれより低温の基板上に形成した
薄膜の粗さより粗くなる欠点がある。さらに薄膜からの
Cdの再蒸発が激しくなり、薄膜中のMn量xが仕込のMn量
より大幅にずれてくる欠点もある。これらのことから基
板温度は180℃から340℃の範囲が適している。
When the substrate temperature at which the thin film is formed on the substrate after the heat treatment is lower than 180 ° C., the FWHM is about 4 ° because the formed thin film is polycrystalline. Since this value is almost the same as the value of the thin film formed on the glass substrate, there is no advantage in using the sapphire substrate. On the other hand, when the substrate temperature is higher than 340 ° C., there is a disadvantage that the surface roughness of the thin film becomes coarser than that of the thin film formed on the substrate at a lower temperature. Furthermore, from thin film
There is also a disadvantage that the re-evaporation of Cd becomes intense, and the Mn amount x in the thin film deviates significantly from the charged Mn amount. From these facts, it is appropriate that the substrate temperature is in the range of 180 ° C. to 340 ° C.

蒸着中の真空度が1×10-5Paより低真空度で形成した
薄膜のFWHMは約4゜であり、結晶配向性が悪い。それよ
りも高真空度で形成した薄膜のFWHMは4゜よりも小さ
く、薄膜は単結晶となる。このことから蒸着中の真空度
は、1×10-5Paより高真空であり、かつより高いことが
望ましい。
The FWHM of a thin film formed at a degree of vacuum lower than 1 × 10 −5 Pa during vapor deposition is about 4 °, and the crystal orientation is poor. The FWHM of a thin film formed at a higher vacuum degree is smaller than 4 °, and the thin film is a single crystal. From this, it is desirable that the degree of vacuum during the deposition be higher than 1 × 10 −5 Pa and higher.

以上で述べた蒸着法に用いる原料には、Cd1-xMnxTe薄
膜が前記Mn量の組成からなるように形成可能であるもの
であれば、Cd、MnおよびTeの元素もしくはこれらの3元
素とCdTe、MnTeおよびCd1-xMnxTe等の化合物との各種の
組み合わせを利用できる。
The raw materials used in the above-described vapor deposition method include elements of Cd, Mn, and Te, or three or more of them, as long as the Cd 1-x Mn x Te thin film can be formed so as to have the composition of the Mn amount. Various combinations of elements and compounds such as CdTe, MnTe and Cd 1-x Mn x Te can be used.

(実施例) 予め真空度1×10-5Paに排気した真空蒸着装置におい
て、まず表面粗さを20Å以下に鏡面研磨したサファイア
C面の基板を600℃〜1000℃で加熱処理し、次に室温か
ら360℃の間の温度に設定したこの基板へCdTeとMnTeを
同時に蒸着することにより、厚さが4000ÅのCd1-xMnxTe
薄膜を形成した。蒸着中のMn量はCdTeとMnTeの蒸発源そ
れぞれに設置した膜厚モニターからのフィードバックに
より各原料の蒸着速度を調節することにより変化させ
た。蒸着中の真空度は排気装置のゲートバルブの開閉に
より調節した。この方法で製造した薄膜の組成はX線マ
イクロ分析により決定した。
(Example) In a vacuum deposition apparatus which was evacuated to a degree of vacuum of 1 × 10 −5 Pa in advance, a sapphire C-plane substrate whose surface roughness was mirror-polished to 20 ° or less was heated at 600 ° C. to 1000 ° C. By simultaneously depositing CdTe and MnTe on this substrate set at a temperature between room temperature and 360 ° C, a Cd 1-x Mn x Te
A thin film was formed. The amount of Mn during the deposition was changed by adjusting the deposition rate of each raw material by feedback from a film thickness monitor installed in each of the CdTe and MnTe evaporation sources. The degree of vacuum during vapor deposition was adjusted by opening and closing a gate valve of an exhaust device. The composition of the thin film produced by this method was determined by X-ray micro analysis.

上記の方法で得られた薄膜のMn量、製造条件、ヴェル
デ定数、X線ロッキング曲線の半値幅(FWHM)および表
面粗さを第1表に示す。
Table 1 shows the amount of Mn, the manufacturing conditions, the Verdet constant, the full width at half maximum (FWHM) of the X-ray rocking curve, and the surface roughness of the thin film obtained by the above method.

試料No.2、3、6および試料No.15は基板の加熱処理
温度が1000℃、基板温度が280℃、真空度が5×10-6Pa
の条件でMn量xを0.05〜0.7の範囲で変えて形成した薄
膜の本発明の実施例であり、試料No.1およびNo.16はx
がそれぞれゼロおよび0.8の薄膜の比較例である。試料N
o.2、3、6およびNo.15のxが0.05〜0.7の範囲からな
る薄膜のヴェルデ定数はZnSeなどのII−VI族化合物半導
体の値である0.04deg/Oe・cmと同等以上であり、FWHMは
ガラス基板に形成した薄膜の値である4゜よりも小さ
く、また表面粗さも極めて小さい。さらに反射電子線回
折によるとこれらの薄膜は単結晶であることが確認され
た。試料No.1のxがゼロの薄膜のヴェルデ定数は0.015d
eg/Oe・cmであり、II−VI族化合物半導体の値よりも小
さい。一方、試料No.16のxが0.8の薄膜はヴェルデ定数
が0.6deg/Oe・cmであり、II−VI族化合物半導体の値に
比較してかなり大きい。しかし薄膜は多結晶であり、表
面粗さが大きい。これはこの薄膜に閃亜鉛鉱型結晶相の
ほかにMnTe相が混在しているためである。xが0.8の薄
膜において異相が混在する本発明は、バルク結晶の閃亜
鉛鉱型結晶単相となるxの範囲が0.77までであることと
一致する。これらのことから組成式Cd1-xMnxTeのxは0.
05≦x≦0.77が有効であることを確認した。
Sample Nos. 2, 3, 6, and 15 have a substrate heat treatment temperature of 1000 ° C., a substrate temperature of 280 ° C., and a degree of vacuum of 5 × 10 −6 Pa.
Examples of the present invention of a thin film formed by changing the Mn amount x in the range of 0.05 to 0.7 under the conditions of
Are comparative examples of the thin films of zero and 0.8, respectively. Sample N
The Verdet constants of the thin films of x. 2, 3, 6 and No. 15 where x is in the range of 0.05 to 0.7 are equal to or more than 0.04 deg / Oe · cm which is the value of II-VI group compound semiconductor such as ZnSe. And FWHM are smaller than 4 ° which is the value of a thin film formed on a glass substrate, and the surface roughness is extremely small. Further, reflection electron beam diffraction confirmed that these thin films were single crystals. The Verde constant of the thin film with zero x of sample No.1 is 0.015d
eg / Oe · cm, which is smaller than the value of the II-VI group compound semiconductor. On the other hand, the thin film of Sample No. 16 having x of 0.8 has a Verdet constant of 0.6 deg / Oe · cm, which is considerably larger than the value of the II-VI compound semiconductor. However, the thin film is polycrystalline and has a large surface roughness. This is because the thin film contains a MnTe phase in addition to the zinc blende type crystal phase. The present invention in which heterophases are mixed in a thin film with x of 0.8 is consistent with the fact that the range of x, which is a bulk zinc-blende single crystal phase, is up to 0.77. From these, x in the composition formula Cd 1-x Mn x Te is 0.
It was confirmed that 05 ≦ x ≦ 0.77 was effective.

試料No.5および試料No.6の薄膜はxが0.4、基板温度
が280℃および真空度が5×10-6Paの条件のもとで、蒸
着前の基板の加熱処理温度をそれぞれ850℃および1000
℃にして形成した薄膜の実施例であり、試料No.4は基板
の加熱処理温度を600℃にして形成した薄膜の比較例で
ある。比較例の600℃で加熱処理した基板に形成した薄
膜は単結晶性であるが、表面粗さが極めて大きい。試料
No.5および試料No.6の、850℃および1000℃で加熱処理
した基板に形成した薄膜の表面粗さおよびFWHMは共に85
0℃よりも低温で加熱処理した基板に形成した薄膜の値
よりも小さくなる。
For the thin films of Sample Nos. 5 and 6, x was 0.4, the substrate temperature was 280 ° C., and the degree of vacuum was 5 × 10 −6 Pa. And 1000
This is an example of a thin film formed at a temperature of 100 ° C., and Sample No. 4 is a comparative example of a thin film formed at a heat treatment temperature of a substrate of 600 ° C. The thin film formed on the substrate heat-treated at 600 ° C. in the comparative example is monocrystalline, but has extremely large surface roughness. sample
The surface roughness and FWHM of the thin films formed on the substrates heat-treated at 850 ° C and 1000 ° C of No. 5 and Sample No. 6 were both 85.
The value becomes smaller than the value of the thin film formed on the substrate heat-treated at a temperature lower than 0 ° C.

このように基板の加熱処理温度が850℃より高いとき
にCd1-xMnxTe薄膜の表面粗さが小さくなり、結晶性が向
上する効果がある。
Thus Cd 1-x Mn x Te surface roughness of the film becomes smaller when the heat treatment temperature of the substrate is higher than 850 ° C., the effect of crystallinity is improved.

試料No.6および試料No.8〜11は基板の加熱処理温度が
1000℃、真空度が5×10-6Paの条件のもとで、180℃〜3
40℃の範囲の異なる温度に設定した基板上に形成した薄
膜の実施例であり、試料No.7と試料No.12はそれぞれ室
温および350℃の基板上に形成した薄膜の比較例であ
る。
Sample No. 6 and Sample Nos. 8 to 11 have different substrate heat treatment temperatures.
180 ° C to 3 ° C under the condition of 1000 ° C and vacuum degree of 5 × 10 -6 Pa
This is an example of a thin film formed on a substrate set at different temperatures in a range of 40 ° C., and Sample No. 7 and Sample No. 12 are comparative examples of a thin film formed on a substrate at room temperature and 350 ° C., respectively.

実施例の試料No.6および試料No.8〜11の180℃〜340℃
の基板上に形成した薄膜のFWHMはガラス基板上に形成し
た薄膜の値である4゜よりも小さく、また表面粗さも60
Å以下と極めて小さい。試料No.11の実施例では、薄膜
を形成する際の仕込Mn量は0.4であるが、Cdが薄膜から
再蒸発するため薄膜のxは仕込Mn量よりも僅かに多い。
この実施例よりも高い温度の360℃に設定した基板上に
形成した試料No.12の比較例では、薄膜からのCdの再蒸
発が激しいため、薄膜のx(0.55)が仕込Mn量である0.
4よりも著しく大きい。またこの薄膜の表面粗さは360℃
より低い温度の基板上に形成した薄膜の粗さよりも極め
て大きい。一方、室温の基板上に形成した試料no.7の比
較例の場合は、FWHMがガラス基板上に形成した薄膜の値
と同程度である。これらのことから、蒸着により、加熱
処理した基板上へ、表面が平坦でかつ結晶配向性の揃っ
たCd1-xMnxTe単結晶薄膜を形成するための基板温度は18
0℃から340℃が適している。
180 ° C. to 340 ° C. of Sample No. 6 and Sample Nos. 8 to 11 in Examples
The FWHM of the thin film formed on the glass substrate is smaller than the value of 4 ° which is the value of the thin film formed on the glass substrate, and the surface roughness is 60 °.
Å Very small, below. In the example of Sample No. 11, the amount of charged Mn when forming the thin film is 0.4, but x of the thin film is slightly larger than the charged amount of Mn because Cd is re-evaporated from the thin film.
In the comparative example of sample No. 12, which was formed on a substrate set at 360 ° C., which was higher than this example, x (0.55) of the thin film was the charged Mn amount because Cd was re-evaporated from the thin film. 0.
Significantly greater than 4. The surface roughness of this thin film is 360 ° C
It is much larger than the roughness of the thin film formed on the lower temperature substrate. On the other hand, in the case of the comparative example of the sample No. 7 formed on the substrate at room temperature, the FWHM is almost equal to the value of the thin film formed on the glass substrate. From these, by evaporation, to the heat-treated substrate, the substrate temperature for the surface to form a flat and Cd 1-x Mn x Te single crystal thin film with uniform crystal orientation is 18
0 ° C to 340 ° C is suitable.

試料No.6および試料No.13はxが0.4、基板の加熱処理
温度が1000℃、基板温度が280℃の条件のもとで、真空
度がそれぞれ5×10-6Paおよび10×10-6Paの中で形成し
た薄膜の実施例であり、試料No.14は20×10-6Paの中で
形成した薄膜の比較例である。これらの薄膜の中で試料
No.6および試料No.13の(5〜10)×10-6Paの真空中で
形成した薄膜のFWHMはガラス基板上に形成した薄膜の値
よりも小さい。これよりも真空度の悪い2×10-5Paの中
で形成した試料No.14の比較例では、薄膜が多結晶であ
るた、FWHMはガラス基板上に形成した薄膜の値と同程度
である。このためサファイア基板を用いる利点がない。
これらのことから蒸着中の真空度は1×10-5Paよりも高
真空である必要がある。
Sample No. 6 and Sample No. 13 had x of 0.4, substrate heat treatment temperature of 1000 ° C. and substrate temperature of 280 ° C., and the degree of vacuum was 5 × 10 −6 Pa and 10 × 10 −, respectively. This is an example of a thin film formed at 6 Pa, and Sample No. 14 is a comparative example of a thin film formed at 20 × 10 −6 Pa. Samples in these thin films
The FWHMs of the thin films of No. 6 and Sample No. 13 formed in a vacuum of (5 to 10) × 10 −6 Pa are smaller than those of the thin films formed on the glass substrate. In the comparative example of sample No. 14 formed in 2 × 10 −5 Pa having a lower degree of vacuum than this, the thin film was polycrystalline, and the FWHM was comparable to the value of the thin film formed on the glass substrate. is there. Therefore, there is no advantage of using a sapphire substrate.
For these reasons, the degree of vacuum during vapor deposition needs to be higher than 1 × 10 −5 Pa.

以上の実施例および比較例から、組成式Cd1-xMnxTeの
xが0.05≦x≦0.77からなる閃亜鉛鉱型結晶構造の薄膜
形成において、サファイアC面の基板を予め850℃以上
の温度で加熱処理し、次に180℃から340℃に保ったこの
基板上に、Cd、MnおよびTe、あるいはこれらの元素を含
む化合物を1×10-5Paよりも高真空度の中で蒸着するこ
とにより、表面が平坦で結晶配向性の優れた単結晶薄膜
が得られることを確認した。
From the above Examples and Comparative Examples, in forming a thin film of a zinc blende type crystal structure in which x of the composition formula Cd 1-x Mn x Te is 0.05 ≦ x ≦ 0.77, the sapphire C-plane substrate was previously heated to 850 ° C. or higher. Cd, Mn and Te, or a compound containing these elements, is deposited on this substrate kept at 180-340 ° C in a vacuum higher than 1 × 10 -5 Pa By doing so, it was confirmed that a single-crystal thin film having a flat surface and excellent crystal orientation was obtained.

(発明の効果) 以上説明したように、本発明による半磁性半導体薄膜
の製造方法によれば、平坦でかつ結晶配向性の揃ったCd
1-xMnxTe単結晶薄膜をサファイア基板上に製造できるた
め、導波路型磁気光学素子用材料として応用できる利点
がある。
(Effect of the Invention) As described above, according to the method of manufacturing a semimagnetic semiconductor thin film according to the present invention, Cd having a flat and uniform crystal orientation is obtained.
Because it can produce 1-x Mn x Te single crystal thin film on a sapphire substrate, there is an advantage that can be applied as a material for a waveguide type magneto-optical device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/365 H01L 21/365 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 21/365 H01L 21/365

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】サファイアC面の基板上に組成式Cd1-xMnx
Teのxが0.05≦x≦0.77からなる閃亜鉛鉱型結晶構造の
単結晶薄膜の製造方法において、薄膜形成の前に基板を
850℃以上の温度で加熱処理を行うことを特徴とする希
薄磁性半導体薄膜の製造方法。
A composition formula Cd 1-x Mn x on a sapphire C-plane substrate.
In the method of manufacturing a single crystal thin film having a zinc blende type crystal structure in which x of Te is 0.05 ≦ x ≦ 0.77, the substrate is formed before the thin film is formed.
A method for producing a diluted magnetic semiconductor thin film, wherein a heat treatment is performed at a temperature of 850 ° C. or higher.
【請求項2】サファイアC面の基板上に組成式Cd1-xMnx
Teのxが0.05≦x≦0.77からなる閃亜鉛鉱型結晶構造の
単結晶薄膜の製造方法において、薄膜形成の前に基板を
850℃以上の温度で加熱処理を行ったのち、上記の加熱
処理した基板を180℃から340℃の範囲に保ち、該基板上
へCd、MnおよびTe、もしくはこれらの元素を含む化合物
を、1×10-5Paより高真空度の中で蒸着することにより
形成することを希薄磁性半導体薄膜の製造方法。
2. The composition formula Cd 1 -x Mn x on a sapphire C-plane substrate.
In the method of manufacturing a single crystal thin film having a zinc blende type crystal structure in which x of Te is 0.05 ≦ x ≦ 0.77, the substrate is formed before the thin film is formed.
After performing the heat treatment at a temperature of 850 ° C. or more, the heat-treated substrate is maintained at a temperature in the range of 180 ° C. to 340 ° C., and Cd, Mn, Te, or a compound containing these elements is deposited on the substrate. A method for producing a diluted magnetic semiconductor thin film, which is formed by vapor deposition in a degree of vacuum higher than × 10 −5 Pa.
JP5620789A 1989-03-10 1989-03-10 Method for manufacturing diluted magnetic semiconductor thin film Expired - Fee Related JP2721869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5620789A JP2721869B2 (en) 1989-03-10 1989-03-10 Method for manufacturing diluted magnetic semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5620789A JP2721869B2 (en) 1989-03-10 1989-03-10 Method for manufacturing diluted magnetic semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH02239196A JPH02239196A (en) 1990-09-21
JP2721869B2 true JP2721869B2 (en) 1998-03-04

Family

ID=13020665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5620789A Expired - Fee Related JP2721869B2 (en) 1989-03-10 1989-03-10 Method for manufacturing diluted magnetic semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2721869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651207B2 (en) * 2001-02-26 2011-03-16 京セラ株式会社 Semiconductor substrate and manufacturing method thereof
CN114040898A (en) * 2019-05-17 2022-02-11 康宁公司 Glass sheet with copper film and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02239196A (en) 1990-09-21

Similar Documents

Publication Publication Date Title
Hung et al. Epitaxial growth of MgO on (100) GaAs using ultrahigh vacuum electron‐beam evaporation
Prinz et al. Molecular beam epitaxial growth of single‐crystal Fe films on GaAs
Ghandhi et al. Highly oriented zinc oxide films grown by the oxidation of diethylzinc
Vedeshwar Optical properties of amorphous and polycrystalline stibnite (Sb2S3) films
Matsunaga et al. Heteroepitaxial growth of LiNbO3 single crystal films by ion plating method
JP2721869B2 (en) Method for manufacturing diluted magnetic semiconductor thin film
Wang et al. Epitaxial Growth and Properties of GaAs on Magnesium Aluminate Spinel
Griffiths et al. SINGLE‐CRYSTAL SELENIUM FILMS
Shimanoe et al. High quality Si-doped GaAs layers grown by molecular beam epitaxy
Baribeau et al. Molecular beam epitaxy growth of Ge on (100) Si
Hinneberg et al. Electrical properties of ion beam sputtered silicon layers on spinel
Matsubara et al. Growth of LiNbO3 epitaxial films by oxygen radical-assisted laser molecular beam epitaxy
JPH0476217B2 (en)
Oishi et al. Growth and characterization of CuGaS2 thin films on (100) Si by vacuum deposition with three sources
JPH0354454B2 (en)
Azab et al. Selenium films epitaxially grown on tellurium substrates
JP2756501B2 (en) Dilute magnetic semiconductor thin film
Partin et al. Growth and characterization of epitaxial bismuth films
Kulinich et al. Lithium niobate–tantalate thin films on Si by thermal plasma spray CVD
Kečkéš et al. Thermal degradation of ZnO/InP interfaces: Heteroepitaxial growth of precipitated indium on InP {111} planes
Vecht Recrystallization in thin films of zinc sulphide
JP2870061B2 (en) Super lattice structure element
Naguib et al. Structure and epitaxy of evaporated cadmium selenide films
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JP2710973B2 (en) Manufacturing method of ferroelectric thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees