JPS60150614A - Manufacture of magnetic thin film - Google Patents

Manufacture of magnetic thin film

Info

Publication number
JPS60150614A
JPS60150614A JP613484A JP613484A JPS60150614A JP S60150614 A JPS60150614 A JP S60150614A JP 613484 A JP613484 A JP 613484A JP 613484 A JP613484 A JP 613484A JP S60150614 A JPS60150614 A JP S60150614A
Authority
JP
Japan
Prior art keywords
thin film
film
rare earth
amorphous
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP613484A
Other languages
Japanese (ja)
Other versions
JPH0354454B2 (en
Inventor
Manabu Gomi
学 五味
Masanori Abe
正紀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP613484A priority Critical patent/JPS60150614A/en
Priority to PCT/JP1984/000547 priority patent/WO1985002292A1/en
Priority to EP19840904169 priority patent/EP0196332B1/en
Priority to US06/763,789 priority patent/US4608142A/en
Priority to DE8484904169T priority patent/DE3482886D1/en
Publication of JPS60150614A publication Critical patent/JPS60150614A/en
Publication of JPH0354454B2 publication Critical patent/JPH0354454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10591Details for improving write-in properties, e.g. Curie-point temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Abstract

PURPOSE:To prevent an adverse effect generating from the heat treatment to be performed for crystallization as well as to obtain the magnetic thin film having an excellent characteristics in vertical magnetization by a method wherein, after a protective film has been formed on the amorphous rare-earth iron-garnet thin film formed on a substrate, a heat treatment is performed. CONSTITUTION:A (Y, Bi)3(Fe, Al)5O2 amorphous thin film 6 is formed on a quartz glass substrate 2 using a sputtering device. Then, after the first target 4 attached to an electrode plate 1 has been replaced with the second target 7 consisting of SiO2, the sputtering device is evacuated to the prescribed degree of vacuum again, then the mixed gas of Ar and O2 is introduced into the sputtering device, glow discharge is started by applying the prescribed high frequency voltage between electrode plates 1 and 3, and an SiO2 film 8 is formed on the thin film 6. Then, the sample of three-layer structure consisting of a quartz glass substrate 2, the thin film 6 and the SiO2 film 8, which are formed as above, is heat-treated at 700 deg.C for 3hr in the air, and the manufacture of the magnetic thin film is completed.

Description

【発明の詳細な説明】 本発明は、磁性薄膜の製造方法に関し、より詳細には磁
気記録及び光熱磁気記録材料として用いて好適な希土類
鉄ガーネット”tVJ膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic thin film, and more particularly to a method for manufacturing a rare earth iron garnet "tVJ" film suitable for use as a magnetic recording and photothermal magnetic recording material.

近年、希土類鉄ガーネットR3(Fe、M)s O+i
(R:希土類元素、M:八131、Ga”、Sc 3 
*、T134、(Go” +H4+)など)のRの一部
をBiで置換した鉄ガーネットR3−X Big (F
e、M)50 +zが注目されている。このBi置換希
土類鉄ガーネットは、Rの一部をBiで置換することに
より、吸収係数αをあまり大きくすることなくファラデ
ー回転角θ。
In recent years, rare earth iron garnet R3 (Fe, M)s O+i
(R: rare earth element, M: 8131, Ga", Sc 3
Iron garnet R3-X Big (F
e, M) 50 +z is attracting attention. This Bi-substituted rare earth iron garnet has a Faraday rotation angle θ without increasing the absorption coefficient α too much by replacing a part of R with Bi.

を大きくすることができるという性質を有し、光熱磁気
記録材料として一般に優れたものである。
It has the property of being able to increase the temperature, and is generally excellent as a photothermal magnetic recording material.

このような性質を有するBi置換希土類鉄ガーネットの
光熱磁気記録材料としての性能を高めるためには、Bi
置換量Xを大きくしてファラデー回転角θ、を大きくす
ればよいが、従来の液相エピタキシャル法等の製造方法
ではBi置換1ixが大きいBi置換希土類鉄ガーネッ
ト薄膜を製造することは困難であった。
In order to improve the performance of Bi-substituted rare earth iron garnet having such properties as a photothermal magnetic recording material, Bi
Although it is possible to increase the Faraday rotation angle θ by increasing the substitution amount .

本発明者等は、特願昭58−216750号において、
固溶限界(−二面体位置の50%)までBiが固溶して
いる高濃度Bi置換希土類鉄ガーネット単結晶薄膜をス
パッタリング法によりGGG基板上にエピタキシャル成
長させることのできる磁性薄膜の製造方法を提案した。
The present inventors, in Japanese Patent Application No. 58-216750,
We propose a manufacturing method for a magnetic thin film that can epitaxially grow a highly concentrated Bi-substituted rare earth iron garnet single crystal thin film on a GGG substrate by sputtering, in which Bi is dissolved in solid solution up to the solid solution limit (50% of the -dihedral position). did.

しかし、この製造方法は、用いることのできる基板がG
GG基板に限定されてしまう点で不利であるため、例え
ばガラス基板等の非晶質基板上に高湯度Bi置換希土頻
鉄ガーネット薄膜を形成することのできる製造方法が望
まれていた。
However, in this manufacturing method, the substrate that can be used is G.
Since this method is disadvantageous in that it is limited to GG substrates, a manufacturing method that can form a high-temperature Bi-substituted rare earth garnet thin film on an amorphous substrate such as a glass substrate has been desired.

このような要求は上記以外の希土類鉄ガーネット1膜に
ついても従来からあり、種々の試みがなされている。し
かしながら、現在までに得られている薄膜はその面と平
行な方向に磁化が存在する多結晶の面内磁化膜であり、
磁気記録及び光熱磁気記録材料として好ましい垂直磁化
膜は未だ得られていない。また特にBi置換希土類鉄ガ
ーネット垂直磁化膜を非晶質基板上に形成する試みは全
くなされていないのが現状である。
Such requirements have been conventionally met for rare earth iron garnet films other than those mentioned above, and various attempts have been made. However, the thin films obtained to date are polycrystalline in-plane magnetized films with magnetization in the direction parallel to the plane.
A perpendicularly magnetized film suitable for magnetic recording and photothermal magnetic recording materials has not yet been obtained. Furthermore, at present, no attempt has been made to form a Bi-substituted rare earth iron garnet perpendicularly magnetized film on an amorphous substrate.

本発明は、上述の問題にかんがみ、良好な垂直磁化特性
を有する旧置換希土類鉄ガーネット薄膜等の希土類鉄ガ
ーネット薄1模を非晶質基板等の種々の基板上に形成す
ることのできる磁性薄膜の製造方法を提供することを目
的とする。
In view of the above-mentioned problems, the present invention provides a magnetic thin film in which a rare earth iron garnet thin film such as a previously substituted rare earth iron garnet thin film having good perpendicular magnetization characteristics can be formed on various substrates such as an amorphous substrate. The purpose is to provide a manufacturing method for.

即ち1本発明に係る磁性薄膜の製造方法は、所定の基板
上に非晶質の希土類鉄ガーネット薄膜を気相成長法によ
り形成し、上記非晶質の希土類鉄ガーネット薄膜上に保
護膜を形成し2次いで熱処理を行うことにより上記非晶
質の希土類鉄ガーネット薄膜を結晶化させるようにして
いる。このようにすることによって、結晶化のための熱
処理による悪影響を防止することができ、極めて良好な
垂直磁化特性を有する磁性薄膜を製造することができる
。また磁性薄膜を形成すべき基板の材質を種々に選ぶこ
とができるので、製造上極めて好都合である。
That is, 1. The method for producing a magnetic thin film according to the present invention includes forming an amorphous rare earth iron garnet thin film on a predetermined substrate by a vapor phase growth method, and forming a protective film on the amorphous rare earth iron garnet thin film. Second, heat treatment is performed to crystallize the amorphous rare earth iron garnet thin film. By doing so, it is possible to prevent the adverse effects of heat treatment for crystallization, and it is possible to produce a magnetic thin film having extremely good perpendicular magnetization characteristics. Furthermore, since the material of the substrate on which the magnetic thin film is to be formed can be selected from various materials, it is extremely convenient in terms of manufacturing.

以下本発明に係る磁性薄膜の製造方法を(Y、旧)3(
Fe+ AI)s O+z で表されるBi置換希土類
鉄ガーネットの薄膜の製造に適用した一実施例につき図
面を参照しながら説明する。なおこの(Y、Bi)s(
Fe、^1)s O+zは、イ・7トリウム鉄ガーネツ
トY 3 Fe s O+w (Y IG)において、
Yの一部をBtで置換すると共にFeの一部を旧で置換
したものであり、前者は吸収係数αをあまり増大するこ
となくファラデー回転角θ、を高め、後者は吸収係数α
を減少させると共に飽和磁化を小さくして垂直磁化膜を
得られやすくし、またキュリ一温度も下げることが知ら
れている。
The method for manufacturing a magnetic thin film according to the present invention will be described below (Y, old) 3 (
An example applied to the production of a thin film of Bi-substituted rare earth iron garnet represented by Fe+AI)sO+z will be described with reference to the drawings. Note that this (Y, Bi)s(
Fe, ^1) s O+z is I.7thorium iron garnet Y 3 Fe s O+w (Y IG),
A part of Y is replaced with Bt and a part of Fe is replaced with old. The former increases the Faraday rotation angle θ without increasing the absorption coefficient α much, and the latter increases the absorption coefficient α.
It is known that this method reduces the saturation magnetization and makes it easier to obtain a perpendicularly magnetized film, and also lowers the Curie temperature.

まず第1A図に示すように、高周波(RF)スパッタリ
ング装置のステンレス製の電極板(試料台)lの上に石
英ガラス基板2を載置すると共に、電極板3に第1のタ
ーゲット4を取り付ける。なおこの第1のターゲット4
は、組成式 Bi 、、。
First, as shown in FIG. 1A, a quartz glass substrate 2 is placed on a stainless steel electrode plate (sample stage) l of a radio frequency (RF) sputtering device, and a first target 4 is attached to the electrode plate 3. . Note that this first target 4
has the compositional formula Bi.

Y+、olンe *、s 41 HlZ OI2で表さ
れる多結晶状の鉄ガーネットの円盤状の焼結体から成る
It consists of a disc-shaped sintered body of polycrystalline iron garnet represented by Y+, ol*, s 41 HlZ OI2.

次にスパッタリング装置内を所定の真空度に排気した後
、このスパッタリング装置内にArと02との混合ガス
(Ar:Oz −9:1) を7 Pa程度まで導入す
る。真空度が安定した状態で、電極板1と電極板3との
間に所定の高周波電圧を印加してグロー放電を開始させ
る。この放電で生したAr’イオンは第1のターゲット
4の表面をスパッタし、このスパッタにより上記第1の
ターゲット4から旧、 Y 、 Pe、^I、 O等の
原子が離脱する。これらの離脱した原子は、電極板lを
介してヒータ5により例えば440℃に加熱されている
石英ガラス基板2上に被着し、この石英ガラス基板2上
に(Y、Bi)s (Fe、AI) s O+tの非晶
質薄膜(以下薄膜と称する)6が形成される。なおスパ
ッタに用いる電力をll0Wとし、またスパッタ時間を
2時間30分とした場合、得られた薄膜6の厚さは0.
8μmであった・ 次に第1B図に示すように、電極板1に取り付けられて
いる第1のターゲット4をSt 02から成る第2のタ
ーゲット7と交換した後、再びスパッタリング装置内を
所定の真空度に排気し、次にこのスパッタリング装置内
にArと 02との混合ガス(^r:0□−9:1) 
を7 Pa程度まで導入する。真空度が安定した状態で
、電極板1と電極板3との間に所定の高周波電圧を印加
してグロー放電を開始させる。この結果、薄膜6上にS
i 02膜8が形成される。なおこの際、石英ガラス&
板2は室温に保持する。またスパッタに用いる電力を2
00Wとし、またスパッタ時間を30分とした場合、得
られたSt 02膜8の厚さは0.5μmであった。
Next, after evacuating the inside of the sputtering apparatus to a predetermined degree of vacuum, a mixed gas of Ar and 02 (Ar:Oz -9:1) is introduced into the sputtering apparatus up to about 7 Pa. With the degree of vacuum stable, a predetermined high frequency voltage is applied between the electrode plates 1 and 3 to start glow discharge. Ar' ions generated by this discharge sputter the surface of the first target 4, and atoms such as old, Y, Pe, ^I, and O are separated from the first target 4 by this sputtering. These detached atoms adhere to the quartz glass substrate 2 which is heated to, for example, 440° C. by the heater 5 via the electrode plate 1, and (Y, Bi)s (Fe, AI) An amorphous thin film (hereinafter referred to as thin film) 6 of s O+t is formed. Note that when the power used for sputtering is 10W and the sputtering time is 2 hours and 30 minutes, the thickness of the obtained thin film 6 is 0.
Next, as shown in FIG. 1B, after replacing the first target 4 attached to the electrode plate 1 with the second target 7 made of St 02, the inside of the sputtering apparatus was again set at a predetermined position. After evacuating to a vacuum level, a mixed gas of Ar and 02 (^r:0□-9:1) was placed inside this sputtering device.
will be introduced up to about 7 Pa. With the degree of vacuum stable, a predetermined high frequency voltage is applied between the electrode plates 1 and 3 to start glow discharge. As a result, S
An i02 film 8 is formed. At this time, quartz glass &
Plate 2 is kept at room temperature. Also, the power used for sputtering is 2
When the power was 00W and the sputtering time was 30 minutes, the thickness of the obtained St 02 film 8 was 0.5 μm.

次に上述のように形成された石英ガラス基板2、薄膜6
及びSi O□1模8から成る三層構造の試料を空気中
において700℃、3時間の条件で熱処理して磁性薄膜
の製造を終了する。
Next, the quartz glass substrate 2 and thin film 6 formed as described above
A sample with a three-layer structure consisting of SiO□1 and 8 was heat-treated in air at 700° C. for 3 hours to complete the production of the magnetic thin film.

なお本実施例においては、Si (12膜8から成る保
護膜の存在によって上記熱処理中に薄膜6中に含有され
ているBt等の薄膜構成原子が外方拡散(アウトディフ
ュージョン)すること及び膜面の荒れを防止することが
できると共に、薄1196の結晶粒の成長を抑えること
ができる。
In this example, due to the presence of the protective film composed of the Si (12 film 8), the atoms constituting the thin film such as Bt contained in the thin film 6 will outdiffusion during the heat treatment, and the film surface It is possible to prevent the roughness of the 1196 crystal grains and to suppress the growth of thin 1196 crystal grains.

上述の実施例により製造された薄膜6の結晶性をX線回
折により調べたところ、優勢方位のない多結晶であるこ
とが判明した。しかし、光学顕微鏡による観察の結果、
多結晶であるにもかかわらず薄膜6は唐草模様状及びバ
ブル状の磁区構造を有し、また次のような優れた特性を
有する極めて良好な垂直磁化膜であることが測定によっ
て明らかにされた。
When the crystallinity of the thin film 6 manufactured according to the above embodiment was examined by X-ray diffraction, it was found that it was a polycrystal without a dominant orientation. However, as a result of observation using an optical microscope,
Although thin film 6 is polycrystalline, it has an arabesque-like and bubble-like magnetic domain structure, and measurements have revealed that it is an extremely good perpendicularly magnetized film with the following excellent properties. .

即ち、第2図に示すように、膜面に垂直な方向の磁界1
1に対する薄膜6のファラデー回転角θ「のヒステリシ
ス特性を測定したところ、角形性が良好なループが得ら
れ、磁気トルク測定から垂直磁化膜であることが判明し
た。またファラデー回転角θ、は約1.5°と極めて大
きく、また保磁力H6も約2000eと十分に大きい。
That is, as shown in FIG. 2, the magnetic field 1 in the direction perpendicular to the film surface
When we measured the hysteresis characteristics of the Faraday rotation angle θ of the thin film 6 with respect to It is extremely large at 1.5°, and the coercive force H6 is also sufficiently large at about 2000e.

このように1薄膜6は磁気記録材料として極めて好まし
い性質を有していることがわかる。なお第2図に示すよ
うな優れた特性を存する垂直磁化膜が得られることから
、薄膜6中にはより大きな垂直磁気異方性を賦与するB
iが固溶限界程度まで固溶していることが推定される。
It can thus be seen that the 1 thin film 6 has extremely desirable properties as a magnetic recording material. Note that since a perpendicularly magnetized film with excellent properties as shown in FIG.
It is estimated that i is dissolved in solid solution up to the solid solution limit.

なお第2図において、ファラデー回転角θ、測定用の光
源としては、He −Neレーザー(波長6328人)
を用いた。また測定は、上記薄膜6に光を透過させて行
った。
In Fig. 2, the Faraday rotation angle θ is measured using a He-Ne laser (wavelength 6328).
was used. Further, the measurement was performed by transmitting light through the thin film 6.

上述の実施例においては、薄膜6を形成ずべき基板とし
て石英ガラス基板2を用いたが他の種類のガラス基板等
の非晶質基板を用いてもよいことは勿論、例えば金属、
半導体、絶縁体等の結晶性基板を用いてもよい。また保
護膜としては、例えば700℃程度の高温で薄膜6と反
応しなければSi O□膜膜板以外膜でもよく、例えば
ZnO,Ti O□、 Ce O,等の酸化物、 Si
3 N4等の窒化物、 Ba Fv。
In the above-mentioned embodiment, the quartz glass substrate 2 was used as the substrate on which the thin film 6 was to be formed, but it goes without saying that other types of amorphous substrates such as glass substrates may also be used.
A crystalline substrate such as a semiconductor or an insulator may also be used. Further, the protective film may be a film other than the SiO□ film plate as long as it does not react with the thin film 6 at a high temperature of about 700°C, for example, an oxide such as ZnO, TiO□, CeO, etc.
3 Nitride such as N4, Ba Fv.

Ca I’2 等のフッ化物等の膜を用いてよい。なお
保護膜の11りjVは500人以コニであるのが好まし
い。
A film of fluoride such as Ca I'2 may be used. Incidentally, it is preferable that the protective film has a value of 500 or more.

また上述の実施例においては5磁性薄膜及び保護膜を形
成するのにスパッタ法を用いたが、例えば蒸着法、CV
D法、イオンブレーティング法等の他の気相成長法を用
いてもよい。なお保護膜(Si O□膜、Ti O□膜
等)はいわゆる熱分解焼付法によって形成することも’
jI ifl:である。ここで非晶質磁性薄1漠のnり
jVば5μI11以下であるのが好ましい。
Furthermore, in the above embodiments, the sputtering method was used to form the magnetic thin film and the protective film.
Other vapor phase growth methods such as the D method and the ion blating method may also be used. Note that the protective film (SiO□ film, TiO□ film, etc.) can also be formed by the so-called pyrolysis baking method.
jI ifl:. Here, it is preferable that the amorphous magnetic thin film has a n/V value of 5 μI11 or less.

また非晶質磁性薄膜は希十灯(鉄ガーネットであれば磁
性薄11りとなるが、十二面体位置の20%以、]二が
旧に置換されたBi置fAE土頬鉄ガーネ・ノドであれ
ば磁気異方性が増し好ましい。
In addition, the amorphous magnetic thin film is a rare magnetic thin film (if it is iron garnet, it will be magnetic thin 11, but at least 20% of the dodecahedral position). If so, the magnetic anisotropy will increase, which is preferable.

さらに上述の実施例におい−とは、熱処理条件を700
°C,3時間としたが、これに限定されるものでは勿論
なく必要に応して変更することができる。しかし、熱処
理温度が低ずぎると結晶化の程度が小さいので、500
℃以上の温度で熱処理するのが好ましい。また薄膜6を
形成するときの基板温度も実施例の温度に限定されるも
のではなく形成される薄膜6が非晶質であれば他の温度
でもよいが、500℃以下であるのが好まL7い。
Furthermore, in the above-mentioned examples, the heat treatment conditions were set to 700
°C for 3 hours, but it is of course not limited to this and can be changed as necessary. However, if the heat treatment temperature is too low, the degree of crystallization will be small;
Preferably, the heat treatment is carried out at a temperature of 0.degree. C. or higher. Further, the substrate temperature when forming the thin film 6 is not limited to the temperature in the embodiment, and may be any other temperature as long as the thin film 6 to be formed is amorphous, but it is preferably 500°C or less. stomach.

なお上述の実施例においては、Jl晶質の希土類鉄ガー
ネッH3it膜の形成にスパッタ法を用い、その第1の
ターゲットの材料として組成弐旧2.。
In the above embodiment, the sputtering method was used to form the Jl crystalline rare earth iron garnet H3it film, and the first target material had a composition of 2. .

vl、。Fe 3.1+ AI +、z O+z で表
される多結晶状の鉄ガーネットを用いたが、ターゲット
組成はこれに限定されるものではなく、例えば上述の組
成式に含まれる元素をそれぞれ含む混合物であってもよ
い。より一般的には、(旧203)、(RzO’5)y
(Fe z Ox ) z (?h 03) uで表さ
れるような少なくともBi原子、Fe原子及び希土類原
子を含む酸化物から成る材料を用いることができる。こ
こで、0<X≦3/2、Q<y≦3/2.0〈z〈5/
2.0≦U≦5/2である。また1ンはY、Sm等の希
土類元素であり、Mは^13゛、Ga”、Sc”、T1
3*、(Co2+ +Ti”)等である。
vl,. Although polycrystalline iron garnet represented by Fe 3.1+ AI +, z O+z was used, the target composition is not limited to this. For example, a mixture containing each of the elements included in the above composition formula may be used. There may be. More generally, (old 203), (RzO'5)y
A material consisting of an oxide represented by (Fez Ox) z (?h 03) u and containing at least Bi atoms, Fe atoms, and rare earth atoms can be used. Here, 0<X≦3/2, Q<y≦3/2.0〈z〈5/
2.0≦U≦5/2. In addition, 1 is a rare earth element such as Y or Sm, and M is ^13゛, Ga'', Sc'', T1
3*, (Co2+ +Ti”), etc.

以上述べたように、本発明に係る磁性薄膜の製造方法に
よれば、得られる希土類鉄ガーネット薄膜は所定の基板
上に形成された非晶質の希土類鉄ガーネット薄膜を熱処
理により結晶化したものであり、またこの際この結晶化
のための熱処理による悪影響を上記希土類鉄ガー不ノl
−薄膜上に形成した保護膜により防止することができる
ので、極めて良好な垂直磁化特性を有する磁性薄膜を製
造することができる。また磁性薄膜を形成すべき基板の
材質を種々に選ぶことができるので、製造上極めて好都
合である。
As described above, according to the method for manufacturing a magnetic thin film according to the present invention, the obtained rare earth iron garnet thin film is obtained by crystallizing an amorphous rare earth iron garnet thin film formed on a predetermined substrate by heat treatment. Also, at this time, the above rare earth iron oxide may have an adverse effect due to the heat treatment for crystallization.
- Since this can be prevented by a protective film formed on the thin film, a magnetic thin film having extremely good perpendicular magnetization characteristics can be manufactured. Furthermore, since the material of the substrate on which the magnetic thin film is to be formed can be selected from various materials, it is extremely convenient in terms of manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図及び第1B図は本発明に係る磁性薄膜の製造方
法の一実施例をその実施に用いた高周波スパッタリング
装置と共に工程順に示す断面図、第2図は本発明に係る
磁性薄膜の製造方法の一実施例により製造された (Y
、Bi)+ (Fe、AI) s 0 +2薄膜のヒス
テリシス特性を示すグラフである。 なお図面に用いた符号において、 i −−−−一 電極板(試料台) 2 −−−−−−−−一 石英ガラス基板3 −一一−
−−− 電極板 4 −−−−−−− 第1のターゲット5 −−−−−
−−− ヒータ 6−−−−−−−−−−−(Y、旧)3 (Fe、AI
) s 0 +2薄膜7 −−−−−−一 第2のター
ゲット8−−−−−−−− Si O□膜 である。 代理人 上屋 勝 常包芳男
FIGS. 1A and 1B are cross-sectional views showing an embodiment of the method for producing a magnetic thin film according to the present invention in the order of steps together with a high-frequency sputtering apparatus used for carrying out the method, and FIG. 2 is a method for producing a magnetic thin film according to the present invention. (Y
, Bi)+ (Fe, AI) s 0 +2 is a graph showing the hysteresis characteristics of the thin film. In addition, in the symbols used in the drawings, i -----1 electrode plate (sample stand) 2 --------1 quartz glass substrate 3 -11-
--- Electrode plate 4 ------ First target 5 ---
--- Heater 6 ----------- (Y, old) 3 (Fe, AI
) s 0 +2 thin film 7 --------1 Second target 8 ------- SiO□ film. Agent Yoshio Katsutsunekane Ueya

Claims (1)

【特許請求の範囲】[Claims] 所定の基板上に非晶質の希土類鉄ガーネット薄膜を気相
成長法により形成し、上記非晶質の希土類鉄ガーネット
薄膜上に保護膜を形成し、次いで熱処理を行うことによ
り上記非晶質の希土類鉄ガーネット薄膜を結晶化させる
ことを特徴とする磁性薄膜の製造方法。
An amorphous rare earth iron garnet thin film is formed on a predetermined substrate by a vapor phase growth method, a protective film is formed on the amorphous rare earth iron garnet thin film, and then heat treatment is performed to form the amorphous thin film. A method for producing a magnetic thin film characterized by crystallizing a rare earth iron garnet thin film.
JP613484A 1983-11-17 1984-01-17 Manufacture of magnetic thin film Granted JPS60150614A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP613484A JPS60150614A (en) 1984-01-17 1984-01-17 Manufacture of magnetic thin film
PCT/JP1984/000547 WO1985002292A1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film
EP19840904169 EP0196332B1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film
US06/763,789 US4608142A (en) 1983-11-17 1984-11-15 Method of manufacturing magneto-optic recording film
DE8484904169T DE3482886D1 (en) 1983-11-17 1984-11-15 METHOD FOR PRODUCING PHOTOTHERMOMAGNETIC RECORDING FILMS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP613484A JPS60150614A (en) 1984-01-17 1984-01-17 Manufacture of magnetic thin film

Publications (2)

Publication Number Publication Date
JPS60150614A true JPS60150614A (en) 1985-08-08
JPH0354454B2 JPH0354454B2 (en) 1991-08-20

Family

ID=11630028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP613484A Granted JPS60150614A (en) 1983-11-17 1984-01-17 Manufacture of magnetic thin film

Country Status (1)

Country Link
JP (1) JPS60150614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPH01125654A (en) * 1987-11-11 1989-05-18 Canon Inc Information processor
US6759137B1 (en) 1998-08-28 2004-07-06 Centre National De La Recherche Scientifique, Inc. Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device
JP2019192750A (en) * 2018-04-24 2019-10-31 株式会社アルバック Formation method of magnetic film and thermoelectric element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPH01125654A (en) * 1987-11-11 1989-05-18 Canon Inc Information processor
US6759137B1 (en) 1998-08-28 2004-07-06 Centre National De La Recherche Scientifique, Inc. Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device
JP2019192750A (en) * 2018-04-24 2019-10-31 株式会社アルバック Formation method of magnetic film and thermoelectric element

Also Published As

Publication number Publication date
JPH0354454B2 (en) 1991-08-20

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
Henry et al. Ferromagnetic resonance properties of LPE YIG films
US4608142A (en) Method of manufacturing magneto-optic recording film
JPH0354198A (en) Oxide garnet single crystal
JPS60150614A (en) Manufacture of magnetic thin film
JPWO2004070091A1 (en) Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof
EP0196332B1 (en) Method of manufacturing photothermomagnetic recording film
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0558251B2 (en)
JPH0457637B2 (en)
JPH1072296A (en) Production of bismuth substituted rare earth metal-iron garnet single crystal film
JPS60202914A (en) Garnet thin-film element and manufacture thereof
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
US4354254A (en) Devices depending on garnet materials
JPH01317199A (en) Method for producing ferroelectric thin film
JP2543997B2 (en) Bismuth-substituted oxide garnet single crystal and method for producing the same
JP3059332B2 (en) Microwave device material
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JPH06263596A (en) Garnet single crystal film
JPS60131898A (en) Manufacture of thin ferrimagnetic single crystal garnet layer
JP2763040B2 (en) Oxide garnet single crystal
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JPS6276710A (en) Manufacture of magnetic thin film
JP2742537B2 (en) Magneto-optical thin film and method of manufacturing the same