JPH09208393A - Production of microwave element material - Google Patents

Production of microwave element material

Info

Publication number
JPH09208393A
JPH09208393A JP2219396A JP2219396A JPH09208393A JP H09208393 A JPH09208393 A JP H09208393A JP 2219396 A JP2219396 A JP 2219396A JP 2219396 A JP2219396 A JP 2219396A JP H09208393 A JPH09208393 A JP H09208393A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
single crystal
liquid phase
magnetic garnet
garnet single
phase epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2219396A
Other languages
Japanese (ja)
Inventor
Satoru Fukuda
Toshihiko Riyuuou
Masayuki Tanno
雅行 丹野
俊彦 流王
悟 福田
Original Assignee
Shin Etsu Chem Co Ltd
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Abstract

PROBLEM TO BE SOLVED: To obtain a single crystal easily, having a high quality and a small half width in a magnetic resonance, and useful as a microwave element material by growing a specific magnetic garnet single crystal on a single crystal preform plate by using a liquid phase epitaxial method.
SOLUTION: This microwave element material consisting of a magnetic garnet single crystal of the formula: R3Fe5-aMaO12 (R is one or more elements selected from Y, La, Gd, Lu and Bi; M is one or more elements selected from Al, Sc, Ga and In; (a) is 0≤a≤0.9) obtained by loading a prescribed amount of R2O3, Fe2O3 and an oxide of a metal M as necessary together with PbO and B2O3 as a flux in a platinum crucible, melting at 1,100-1,200°C, and produced by using a liquid phase epitaxial method from a super cooled molten liquid, is obtained by growing the magnetic garnet single crystal on the surface of a single crystal preform plate in a range of 1,000-1,150°C by using the liquid phase epitaxial method.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明はマイクロ波素子材料の製造方法、特には磁性ガーネット単結晶からなる静磁波または磁気共鳴を利用するマイクロ波素子材料の製造方法に関するものである。 The present invention relates to processes for the preparation of a microwave device material, particularly to a method of manufacturing a microwave device material utilizing magnetostatic wave or magnetic resonance comprising a magnetic garnet single crystal.

【0002】 [0002]

【従来の技術】マイクロ波素子材料については、従来から磁性ガーネット単結晶からなるものが使用されており、具体的には単結晶基板の上に 750〜 950℃でエピタキシャル成長させた式Y 3 Fe 5 O 12で示されるYIGが汎用されている。 The Background of the Invention Microwave element material, conventionally has made of magnetic garnet single crystal is used, wherein Y 3 Fe 5 specifically grown epitaxially at 750 to 950 ° C. on the single-crystal substrate YIG represented by O 12 is widely used.

【0003】 [0003]

【発明が解決しようとする課題】しかし、こうして作製したYIGなどはマイクロ波素子として要求される磁気共鳴半値幅の低減に限界があり、したがってこれを用いて低損失のマイクロ波フィルターやQの高いマイクロ波共振器を作ることが難しいという不利がある。 [SUMMARY OF THE INVENTION] However, in this way, such as YIG produced is limited to the reduction of the magnetic resonance half width required as a microwave device, thus high microwave filters and Q low-loss with this there is a disadvantage that it is difficult to make the microwave resonator.

【0004】 [0004]

【課題を解決するための手段】本発明はこのような不利を解決したマイクロ波素子材料の製造方法に関するもので、これは式R 3 Fe 5-a M a O 12 (ここにRはY、La、G The present invention SUMMARY OF] is a method of manufacturing a microwave device material which solves the above disadvantage, which has the formula R 3 Fe 5-a M a O 12 ( wherein R is Y, La, G
d、Lu、Biから選択される少なくとも一つの元素、 d, at least one element selected Lu, from Bi,
MはAl、Sc、Ga、Inから選択される少なくとも一つの元素、aは0≦a≦0.9 )で示される磁性ガーネット単結晶を、液相エピタキシャル法により単結晶基板上に 1,000〜 1,150℃の温度範囲で成長させることを特徴とするものである。 M is Al, Sc, Ga, at least one element selected from an In, a is 0 ≦ a ≦ 0.9 the magnetic garnet single crystal represented by), by a liquid phase epitaxial method of 1,000 to 1,150 ° C. over a single crystalline substrate it is characterized in that the growing temperature ranges.

【0005】すなわち、本発明者らは上記したような不利、問題点を解決したマイクロ波素子材料の製造方法について種々検討した結果、過冷却状態にしたフラックス融液から液相エピタキシャル法により単結晶基板上に磁性ガーネット単結晶を成長させるに当たり、成長温度を Namely, the present inventors have disadvantages as described above, a result of various studies on a manufacturing method of a microwave device materials to solve the problems, the single crystal by a liquid phase epitaxial method from the flux melt and supercooled Upon growing the magnetic garnet single crystal on a substrate, the growth temperature
1,000〜 1,150℃にすれば、磁性ガーネット単結晶のX If the 1,000~ 1,150 ℃, X of the magnetic garnet single crystal
バンドでの磁気共鳴半値幅が小さな値となり、優れたマイクロ波素子材料として得られることを見出し、この製造方法についての研究をおこなって本発明を完成させた。 Magnetic resonance half-width of the band becomes a small value, found that the resulting as an excellent microwave device material, and completed the present invention by conducting research on the production method. 以下にこれをさらに詳述する。 It will be described in more detail this below.

【0006】 [0006]

【発明の実施の形態】本発明はマイクロ波素子材料の製造方法に関するもので、これは前記したように式R 3 Fe DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for the preparation of a microwave device material, wherein R 3 Fe as this was the
5-a M a O 12 (ここにR、Mは前記の通り、aは0≦a≦0. 5-a M a O 12 (as here R, M is the, a is 0 ≦ a ≦ 0.
9 )で示される磁性ガーネット単結晶を、液相エピタキシャル法で単結晶基板上に 1,000〜 1,150℃の温度範囲で成長させるというものであり、これによれば磁気共鳴半値幅が小さいことからマイクロ波素子材料として有用とされる磁性ガーネット単結晶を容易に得ることができる。 The magnetic garnet single crystal represented by 9) are those that grow in the temperature range of 1,000 to 1,150 ° C. on a single crystal substrate by a liquid phase epitaxial method, a microwave because the magnetic resonance half-width is small, according to this the magnetic garnet single crystal which is useful as device materials can be easily obtained.

【0007】本発明によって得られるマイクロ波素子材料は上記した式で示される磁性ガーネット単結晶を、基板単結晶上に所定の酸化物融液から液相エピタキシャル法で成長させるものであるが、ここに使用される基板単結晶としてはガドリニウム・ガリウム・ガーネット(以下GGGと略記する)、サマリウム・ガリウム・ガーネット、ネオジム・ガリウム・ガーネット、GGGにC [0007] Microwave element material obtained by the present invention a magnetic garnet single crystal represented by the formula described above, but is intended to grow in a liquid phase epitaxial method from a given oxide melt onto a substrate a single crystal, wherein C gadolinium gallium garnet as the substrate single crystal used (hereinafter abbreviated as GGG), samarium gallium garnet, neodymium gallium garnet, GGG in the
a、Mg、Zr、Yの少なくとも一つを添加したGGG GGG added a, Mg, Zr, at least one of Y
系のSOG、NOG、YOG[いずれも信越化学工業(株)製商品名]とすればよく、これらは Gd 2 O 3 、Sm 2 O SOG of the system, NOG, YOG [both Shin-Etsu Chemical Co., trade name] Tosureba well, these are Gd 2 O 3, Sm 2 O
3 、Nd 2 O 3また必要に応じCaO、MgO、ZrO 2 、Y 2 O 3 3, Nd 2 O 3 also necessary CaO, MgO, ZrO 2, Y 2 O 3
などの置換材をそれぞれ所定量のGa 2 O 3と共にるつぼに仕込み、高周波誘導で各々の融点以上に加熱して溶融したのち、この融液からチョクラルスキー法で単結晶を引き上げ、これをウエーハ状にスライスすることによって得られる。 Charged replacement material such as to each crucible with a predetermined amount of Ga 2 O 3, then melted by heating to above the respective melting point of a high frequency induction, pulling a single crystal by the Czochralski method from the melt, the wafer this Jo to be obtained by slicing.

【0008】また、この基板単結晶の面上にエピタキシャル成長される磁性ガーネット単結晶は上記した式R 3 Fe [0008] wherein R 3 Fe magnetic garnet single crystals as described above is epitaxially grown on the surface of the substrate monocrystalline
5-a M a O 12 (ここにR、M、aは前記のとおり)で示されるものとされるので、これにはY 3 Fe 5 O 12 、(YLa) 3 Fe 5-a M a O 12 because (here R, M, a is the as) are those represented by, Y 3 Fe 5 O 12 in which, (YLA) 3 Fe
5 O 12 、(YLaLu) 3 Fe 5 O 12 、(YBi) 3 Fe 5 O 12 、Y 3 (FeAl) 5 O 12 5 O 12, (YLaLu) 3 Fe 5 O 12, (YBi) 3 Fe 5 O 12, Y 3 (FeAl) 5 O 12,
(YLa) 3 (FeGa) 5 O 12 、(YBi) 3 (FeAlGa) 5 O 12などが例示されるが、このガーネット結晶組成物にCa 2+ 、Mg 2+ 、Ge 4+といった2価あるいは4価のイオンとなる酸化物あるいは炭酸塩を添加して、さらに磁気共鳴半値幅を調整することも可能である。 (YLa) 3 (FeGa) 5 O 12, (YBi) 3 (FeAlGa) the like 5 O 12 is illustrated, Ca 2+ in the garnet crystal composition, Mg 2+, Ge 4+ such divalent or 4 by adding an oxide or carbonate the valence of ions, it is also possible to further adjust the magnetic resonance half-width.

【0009】この磁性ガーネット単結晶は、白金るつぼ中にR 2 O 3 、Fe 2 O 3および必要に応じ金属Mの酸化物の所定量を、フラックスとしてのPbO、B 2 O 3と共に仕込み、 1,100〜 1,200℃に加熱してこれらを溶融させたのち、過冷却の融液から液相エピタキシャル法で単結晶を成長させて得られる。 [0009] charged a predetermined amount of the magnetic garnet single crystal, R 2 O 3, Fe 2 O 3 and oxides of a metal M as needed in a platinum crucible, PbO as flux, with B 2 O 3, 1,100 After melted by employing heated to ~ 1,200 ° C., it is obtained by growing a single crystal by a liquid phase epitaxial method from a melt of supercooling. この場合表1に示す組成のガーネット単結晶を、成長温度を 893〜 1,071℃で成長させたところ、得られる磁性ガーネット単結晶は第1表及び第1図に示したように 1,000℃以上にするとXバンドでの磁気共鳴半値幅が、R 3 Fe 5-a M a O 12のa=0のとき0.51O The case Table 1 shows garnet single crystal of the composition, was grown at a growth temperature at 893~ 1,071 ℃, the resulting magnetic garnet single crystal when the 1,000 ° C. or higher, as shown in Table 1 and Figure 1 magnetic resonance half-width in the X band, when a = 0 the R 3 Fe 5-a M a O 12 0.51O
e以下、a=0.3 のとき0.62Oe以下、a=0.8 のとき e following, 0.62Oe following when a = 0.3, when a = 0.8
1.48Oe以下というように小さいものとなるので、マイクロ波素子材料として優れた物性を示すことが確認された。 Since the small and so 1.48Oe below, it was confirmed to exhibit excellent properties as a microwave element material. なお、この成長温度が 1,150℃を越えるとフラックス成分のPbOが多量に蒸発し、磁性ガーネット単結晶の成長中に融液組成の変化が大きくなり成長制御が困難になるため、好ましくは成長温度を 1,150℃以下にするのがよい。 Incidentally, PbO flux components when the growth temperature exceeds 1,150 ° C. is a large amount of evaporation, since the change of the melt composition increases growth control becomes difficult during the growth of the magnetic garnet single crystal, preferably the growth temperature 1,150 ° C. better to below.

【0010】本発明によって得られるマイクロ波素子材料は、磁気共鳴半値幅が従来の製造方法によって得られたYIGよりも小さいので、マイクロ波素子用材料として優れた物性をもち、例えば周波数 1,000MHzから数 [0010] Microwave element material obtained by the present invention, the magnetic resonance half-width is less than the YIG obtained by conventional production methods, have excellent properties as a material for microwave devices, for example, from the frequency 1,000MHz number
10GHzのマイクロ波帯で使用されるシグナルノイズエンハンサなどのマイクロ波素子として有用とされるほか、光アイソレーター、光サーキュレーター用の磁気光学用磁性膜としても有用とされる。 In addition to being useful as a microwave device, such as a signal noise enhancer used in a microwave band of 10 GHz, the optical isolator, it is useful as a magneto-optical magnetic film for optical circulator.

【0011】 [0011]

【実施例】つぎに本発明の実施例、比較例をあげるが、 The following Examples of the present invention, the mentioned comparative example,
例中における各試料の組成式はICP発光分析法による測定結果から求めたものであり、磁気共鳴半値幅は 9.2 Composition formula of each sample in the examples are those obtained from the measurement results by ICP emission spectrometry, magnetic resonance FWHM 9.2
GHzにおける測定値を示したものである。 It shows the measured values ​​in the GHz. 実施例1〜9、比較例1〜7 目的とする磁性ガーネット単結晶を成長させる単結晶基板として、厚さが 400μm、直径2インチのGGG単結晶ウェーハを用意した。 Examples 1-9, as the single crystal substrate for growing a magnetic garnet single crystal according to Comparative Example 1-7 purpose thickness was prepared 400 [mu] m, a GGG single crystal wafer having a diameter of 2 inches. また、純度が 99.99%以上である所定量のY 2 O 3 、La 2 O 3 、Bi 2 O 3 、およびFe 2 O 3 、Ga 2 O Further, purity of 99.99% or more predetermined amount Y 2 O 3, La 2 O 3, Bi 2 O 3, and Fe 2 O 3, Ga 2 O
3をフラックス成分としてのPbO、B 2 O 3と共に白金るつぼに仕込み、1,100〜 1,200℃に加熱して溶融し、この融液を 1,000℃以上の表1に示す温度で過冷却状態にしたのち、上記した単結晶基板ウェーハ上に液相エピタキシャル法で9種類の磁性ガーネット単結晶を厚さ10〜 3 was charged into a platinum crucible PbO, with B 2 O 3 as a flux component, after heated and melted in 1,100~ 1,200 ℃, and subcooled temperature indicating this melt in Table 1 above 1,000 ° C., nine magnetic garnet single crystal thickness 10 in the liquid phase epitaxial method on a single crystal substrate wafer as described above
50μmに成長させた。 Grown to 50μm.

【0012】つぎにこれらの単結晶から 1.0mm角の試料を切り出してこの試料を磁気共鳴装置の 9.2GHzの円柱状キャビティ内に、この試料が印加磁界に対して垂直になるようにセットし磁気共鳴半値幅を測定したところ、表1に示したとおりの結果が得られた。 [0012] Next, this sample cylindrical cavity of 9.2GHz of the magnetic resonance apparatus by cutting out a sample of 1.0mm angle from these single crystals, magnetic set as the sample is perpendicular to the applied magnetic field the measured resonance half widths, the results of as shown in Table 1 were obtained. しかし、比較のために上記における成長温度を 1,000℃未満にして第1表の比較例1〜7に示した組成式の磁性ガーネット単結晶を得たのち、これから切り出した試料を上記と同様に処理してその磁気共鳴半値幅をしらべたところ、表1に併記したとおりの結果が得られた。 However, after obtaining the first table of Comparative Examples 1 to 7 the composition formula of the magnetic garnet single crystal shown in by the growth temperature in the below 1,000 ° C. For comparison, the now cut sample similar to the above processes to was examined its magnetic resonance half-width, the result of as are also shown in Table 1 were obtained.

【0013】 [0013]

【表1】 [Table 1]

【0014】 [0014]

【発明の効果】本発明のマイクロ波素子材料の製造方法により作られたマイクロ波素子材料は高品質で磁気共鳴半値幅が小さいので、本発明によればマイクロ波素子材料として有用とされる磁性ガーネット単結晶を容易に得ることができる。 Since microwave device materials made by the method of manufacturing a microwave device materials of the present invention exhibits magnetic resonance half-width is less high quality, magnetic which is useful as a microwave device material according to the present invention it can be easily obtained garnet single crystal.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明により得られたマイクロ波素子材料用の磁性ガーネット単結晶の、液相エピタキシャル法による成長温度と磁気共鳴半値幅との関係図を示したものである。 [1] of the magnetic garnet single crystal for microwave device material obtained by the present invention, there is shown a graph showing the relationship between the growth temperature and the magnetic resonance half-width by the liquid phase epitaxial process.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 式R 3 Fe 5-a M a O 12 (ここにRはY、La、 1. A formula R 3 Fe 5-a M a O 12 ( wherein R is Y, La,
    Gd、Lu、Biから選択される少なくとも一つの元素、MはAl、Sc、Ga、Inから選択される少なくとも一つの元素、aは0≦a≦0.9 )で示される磁性ガーネット単結晶からなるマイクロ波素子材料の製造方法において、液相エピタキシャル法により単結晶基板上に該磁性ガーネット単結晶を 1,000〜 1,150℃の温度範囲で成長させることを特徴とするマイクロ波素子材料の製造方法。 Gd, Lu, at least one element selected from Bi, M is Al, Sc, Ga, at least one element selected from an In, a is made of a magnetic garnet single crystal represented by 0 ≦ a ≦ 0.9) Micro in the manufacturing method of the wave device material, manufacturing method of a microwave device material characterized by growing magnetic garnet single crystal on a single crystal substrate by a liquid phase epitaxial method in a temperature range of 1,000 to 1,150 ° C..
JP2219396A 1996-02-08 1996-02-08 Production of microwave element material Granted JPH09208393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219396A JPH09208393A (en) 1996-02-08 1996-02-08 Production of microwave element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219396A JPH09208393A (en) 1996-02-08 1996-02-08 Production of microwave element material

Publications (1)

Publication Number Publication Date
JPH09208393A true true JPH09208393A (en) 1997-08-12

Family

ID=12075973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219396A Granted JPH09208393A (en) 1996-02-08 1996-02-08 Production of microwave element material

Country Status (1)

Country Link
JP (1) JPH09208393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905885A1 (en) * 1997-09-24 1999-03-31 Murata Manufacturing Co., Ltd. Magnetostatic wave device
EP0905886A1 (en) * 1997-09-29 1999-03-31 Murata Manufacturing Co., Ltd. Magnetostatic wave device
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905885A1 (en) * 1997-09-24 1999-03-31 Murata Manufacturing Co., Ltd. Magnetostatic wave device
EP0905886A1 (en) * 1997-09-29 1999-03-31 Murata Manufacturing Co., Ltd. Magnetostatic wave device
US6194091B1 (en) 1997-09-29 2001-02-27 Murata Manufacturing Co., Ltd. Magnetostatic wave device
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission

Similar Documents

Publication Publication Date Title
Carosella et al. Pulsed laser deposition of epitaxial BaFe12O19 thin films
Hansen et al. Magnetic and magneto‐optic properties of praseodymium‐and bismuth‐substituted yttrium iron garnet films
US20060112873A1 (en) Magnetic garnet single crystal film formation substrate, optical element and production method of the same
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
US5030613A (en) Epitaxial Ba--Y--Cu--O ceramic superconductor film on perovskite structure substrate
Sui et al. Microstructural origin of the perpendicular anisotropy in M-type barium hexaferrite thin films deposited by RF magnetron sputtering
Yuan et al. Epitaxial barium hexaferrite on sapphire by sputter deposition
US4624901A (en) Intermediary layers for epitaxial hexagonal ferrite films
JP2004083390A (en) Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
Wang et al. Microwave and magnetic properties of double-sided hexaferrite films on (111) magnesium oxide substrates
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
US4608142A (en) Method of manufacturing magneto-optic recording film
US3790405A (en) Controlled epitaxial growth from supercooled nutrient-flux solution
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
US4189521A (en) Epitaxial growth of M-type hexagonal ferrite films on spinel substrates and composite
LINARES Substitution of Aluminum and Gallium in Single‐Crystal Yttrium Iron Garnets
US4293371A (en) Method of making magnetic film-substrate composites
US5186866A (en) Oxide garnet single crystal
Glass et al. Growth and characterization of LPE hexagonal ferrites
JPH06281902A (en) Magneto-optical element material
Glass et al. Attainment of the intrinsic FMR linewidth in yttrium iron garnet films grown by liquid phase epitaxy
US20070160875A1 (en) Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US4932760A (en) Magneto-optic garnet
US4263374A (en) Temperature-stabilized low-loss ferrite films
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050808