JP2001044027A - Magnetic garnet single crystal and faraday rotator using the same - Google Patents

Magnetic garnet single crystal and faraday rotator using the same

Info

Publication number
JP2001044027A
JP2001044027A JP11218656A JP21865699A JP2001044027A JP 2001044027 A JP2001044027 A JP 2001044027A JP 11218656 A JP11218656 A JP 11218656A JP 21865699 A JP21865699 A JP 21865699A JP 2001044027 A JP2001044027 A JP 2001044027A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic garnet
faraday rotator
garnet single
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11218656A
Other languages
Japanese (ja)
Inventor
Atsushi Oido
敦 大井戸
Kazuto Yamazawa
和人 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11218656A priority Critical patent/JP2001044027A/en
Priority to US09/625,417 priority patent/US6641751B1/en
Priority to EP00116332A priority patent/EP1074872A3/en
Priority to KR10-2000-0043761A priority patent/KR100408792B1/en
Priority to CNB001225200A priority patent/CN1165922C/en
Publication of JP2001044027A publication Critical patent/JP2001044027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic garnet single crystal, where occurrence of crystal defect is suppressed and to provide a Faraday rotator improved in quenching ratio, related to a magnetic garnet single crystal and a Faraday rotator using it. SOLUTION: A magnetic garnet single crystal is used, which is grown by a liquid-crystal epitaxial growth method and is represented by a general expression BiaPbbA3-a-bFe5-c-dBcGedO12. Where A is at least one kind of element selected from among Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, B is at least one kind of element selected from among Ga, Al, Sc, Pt, and Si, and 0<a<3.0, 0<b<=2.0, 0<=c<=2.0, 0<d<=2.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性ガーネット単
結晶およびそれを用いた磁気光学効果を利用するファラ
デー回転子に関する。磁性ガーネット単結晶を用いたフ
ァラデー回転子は、例えば光アイソレータ、光サーキュ
レータ、あるいは光アッテネータ等の磁気光学素子に用
いられる。
The present invention relates to a magnetic garnet single crystal and a Faraday rotator utilizing the magneto-optical effect using the same. A Faraday rotator using a magnetic garnet single crystal is used for a magneto-optical element such as an optical isolator, an optical circulator, or an optical attenuator.

【0002】[0002]

【従来の技術】半導体レーザを用いた光通信や光応用機
器には、光アイソレータ、光サーキュレータあるいは光
アッテネータが広く使われている。これらのデバイスに
必須な素子の一つとしてファラデー回転子が挙げられ
る。ファラデー回転子にはYIG(イットリウム鉄ガー
ネット)単結晶、ビスマス(Bi)置換希土類鉄ガーネ
ット単結晶が知られているが、現在では、液相エピタキ
シャル(LPE)法により形成されたビスマス置換希土
類鉄ガーネット単結晶膜を用いたファラデー回転子が主
流になっている。
2. Description of the Related Art An optical isolator, an optical circulator, or an optical attenuator is widely used in optical communication and optical equipment using a semiconductor laser. One of the essential elements of these devices is a Faraday rotator. As the Faraday rotator, a single crystal of YIG (yttrium iron garnet) and a single crystal of bismuth (Bi) -substituted rare earth iron garnet are known. A Faraday rotator using a single crystal film has become mainstream.

【0003】例えば、特公平6−46604号公報に
は、液相エピタキシャル成長法により育成され、一般式
3-(a+b)PbaBibFe5-cc12-d(Rは希土類
元素及びそれと置換可能な元素の中から選ばれた少なく
とも1種の成分、Mは鉄元素と置換可能な元素の中から
選ばれた少なくとも1種の成分、aは0.01〜0.2
の数、bは0.5〜2.0の数、cは0.01〜2.0
の数、dは0〜1の数である)で示される組成を有し、
且つ前記式中のMの一部として周期表IVA族及びIV
B族に属するPb以外の四価元素を上記の一般式の原子
比として0.01以上含有することを特徴とするビスマ
ス置換希土類鉄ガーネットが記載されている。
[0003] For example, Kokoku 6-46604 and JP-grown by liquid phase epitaxial growth method, the general formula R 3- (a + b) Pb a Bi b Fe 5-c M c O 12-d (R is M is at least one component selected from rare earth elements and elements that can be replaced with it, M is at least one component selected from elements that can be replaced with iron elements, and a is 0.01 to 0.2.
, B is a number from 0.5 to 2.0, c is 0.01 to 2.0
And d is a number from 0 to 1).
And groups IVA and IV in the periodic table as part of M in the above formula.
A bismuth-substituted rare earth iron garnet is described which contains a tetravalent element other than Pb belonging to Group B as an atomic ratio of the above general formula of 0.01 or more.

【0004】上記公報に開示されているように、IV族
元素を添加することにより、Bi置換希土類鉄ガーネッ
ト単結晶を液相エピタキシャル法で育成する際にPb4+
を消失させることができ、それによりBi置換希土類鉄
ガーネット単結晶に光が透過する際の吸収損失を低減さ
せることができるようになる。
As disclosed in the above publication, by adding a group IV element, when growing a Bi-substituted rare earth iron garnet single crystal by a liquid phase epitaxial method, Pb 4+
Can be eliminated, whereby absorption loss when light is transmitted through the Bi-substituted rare earth iron garnet single crystal can be reduced.

【0005】[0005]

【発明が解決しようとする課題】ところで、特公平6−
46604号公報に開示された実施例に示されているよ
うに、IV族元素として例えばTiO2を添加して液相
エピタキシャル法により単結晶エピタキシャル膜を育成
すると、得られたBi置換希土類鉄ガーネット単結晶エ
ピタキシャル膜の光吸収損失を低減させる効果が認めら
れる。ところが、得られるエピタキシャル膜の膜厚が約
200μm以上になった場合には、膜表面に多数の結晶
欠陥が確認されるようになる。そのような結晶表面を研
磨して無反射膜を形成し、光アイソレータ用のファラデ
ー回転子を作製したところ、赤外線を用いた観察により
ファラデー回転子の内部に多数の欠陥が確認され、また
消光比も低下することが判明した。
[Problems to be Solved by the Invention]
As shown in Examples disclosed in Japanese Patent No. 46604, when a single crystal epitaxial film is grown by a liquid phase epitaxial method by adding, for example, TiO 2 as a group IV element, the obtained Bi-substituted rare earth iron garnet The effect of reducing the light absorption loss of the crystal epitaxial film is recognized. However, when the thickness of the obtained epitaxial film is about 200 μm or more, many crystal defects are found on the film surface. When such a crystal surface was polished to form a non-reflective film and a Faraday rotator for an optical isolator was fabricated, many defects were confirmed inside the Faraday rotator by infrared observation, and the extinction ratio Was also found to decrease.

【0006】特公平6−46604号公報に記載された
発明は、Bi置換希土類鉄ガーネット単結晶エピタキシ
ャル膜の光吸収損失低減を技術的課題としており、結晶
欠陥の発生を抑えることや消光比を向上させるという課
題に関しては何ら開示していない。Bi置換希土類鉄ガ
ーネット単結晶エピタキシャル膜の結晶欠陥の発生を抑
えることができれば、ファラデー回転子の消光比を向上
させることができ、さらには、ファラデー回転子の消光
比の向上により、光アイソレータを初めとする光通信用
部品の性能を向上させることができるようになる。
The invention described in Japanese Patent Publication No. 46604/1994 has a technical problem of reducing the light absorption loss of a Bi-substituted rare earth iron garnet single crystal epitaxial film, suppressing the generation of crystal defects and improving the extinction ratio. It does not disclose anything about the task of making it work. If the generation of crystal defects in the Bi-substituted rare earth iron garnet single crystal epitaxial film can be suppressed, the extinction ratio of the Faraday rotator can be improved. The performance of the optical communication component can be improved.

【0007】本発明の目的は、結晶欠陥の発生を抑えた
磁性ガーネット単結晶を提供することにある。また、本
発明の目的は、消光比を向上させたファラデー回転子を
提供することにある。
An object of the present invention is to provide a magnetic garnet single crystal in which the occurrence of crystal defects is suppressed. Another object of the present invention is to provide a Faraday rotator having an improved extinction ratio.

【0008】[0008]

【課題を解決するための手段】そこで本発明者達は、結
晶欠陥を多数発生させることなく約200μm以上の単
結晶を得ること、及び光吸収低減を達成するための添加
物を検討した。その結果、添加元素としてGeを用いる
と大きな効果があることを見出した。すなわち、GeO
2を添加して、厚さ200μm以上のBi置換希土類鉄
ガーネット単結晶を育成したところ、エピタキシャル膜
表面の結晶欠陥数は著しく少なくなり、その単結晶内部
を赤外線を用いた偏光顕微鏡による観察を行っても結晶
欠陥は認められず、また光吸収損失をほぼ零(ゼロ)に
することができた。
Therefore, the present inventors have studied to obtain a single crystal of about 200 μm or more without generating many crystal defects and to study an additive for achieving a reduction in light absorption. As a result, they have found that the use of Ge as an additive element has a great effect. That is, GeO
When 2 was added to grow a Bi-substituted rare earth iron garnet single crystal having a thickness of 200 μm or more, the number of crystal defects on the surface of the epitaxial film was significantly reduced, and the inside of the single crystal was observed with a polarizing microscope using infrared rays. However, no crystal defects were observed, and the light absorption loss could be reduced to almost zero (zero).

【0009】上記目的は、液相エピタキシャル成長法に
より育成され、一般式 BiaPbb3-a-bFe5-c-d
cGed12 (式中のAは、Y、La、Ce、Pr、N
d、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Luから選択される少なくとも1種類の元
素、BはGa、Al、Sc、Pt、Siから選択される
少なくとも1種類の元素、a、b、c、dは各々、0<
a<3.0、0<b≦2.0、0≦c≦2.0、0<d
≦2.0)で示されることを特徴とする磁性ガーネット
単結晶によって達成される。上記本発明の磁性ガーネッ
ト単結晶において、その膜厚が200μm以上であるこ
とを特徴とする。また上記目的は、本発明の磁性ガーネ
ット単結晶で形成されることを特徴とするファラデー回
転子によって達成される。
[0009] This object is grown by liquid phase epitaxial growth method, the general formula Bi a Pb b A 3-ab Fe 5-cd B
c Ge d O 12 (where A is Y, La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
At least one element selected from m, Yb and Lu, B is at least one element selected from Ga, Al, Sc, Pt and Si, and a, b, c and d are each 0 <
a <3.0, 0 <b ≦ 2.0, 0 ≦ c ≦ 2.0, 0 <d
.Ltoreq.2.0). The magnetic garnet single crystal according to the present invention is characterized in that the film thickness is 200 μm or more. The above object is also achieved by a Faraday rotator formed of the magnetic garnet single crystal of the present invention.

【0010】本発明の作用について以下に説明する。T
4+やGe4+は、主にBi置換希土類鉄ガーネットの6
配位のFeサイトの格子に置換される。しかしTi4+
イオン半径が6配位のFe3+より大きいためBi置換希
土類鉄ガーネットの格子に歪みが生じ、そのためエピタ
キシャル成長が進み膜厚が厚くなると格子の歪みが蓄積
され、結晶欠陥が多数発生すると考えられる。Ge4+
イオン半径が6配位のFe3+よりも小さいためガーネッ
トの格子に歪みは発生せず、エピタキシャル膜が厚くな
っても結晶欠陥が発生しないと考えられる。このGe4+
を添加した単結晶を用い波長1.13μmおよび1.5
5μmの光でファラデー回転角45度のファラデー回転
子を作製すると結晶内部の欠陥は認められず、40dB
以下となるような消光比不良は発生しなくなった。そし
てこのような添加物としてのGeO2の効果は他のGe
化合物を用いても同様な効果が期待できる。
The operation of the present invention will be described below. T
i 4+ and Ge 4+ are mainly Bi-substituted rare earth iron garnets
It is replaced by the lattice of the coordinated Fe site. However, since Ti 4+ has an ionic radius larger than that of Fe 3+ having six coordinations, the lattice of the Bi-substituted rare earth iron garnet is distorted. Therefore, when the epitaxial growth proceeds and the film becomes thicker, lattice distortion is accumulated, and many crystal defects occur. It is thought to occur. Since Ge 4+ has an ionic radius smaller than that of Fe 3+ having six coordinations, no distortion occurs in the garnet lattice, and it is considered that no crystal defects occur even when the epitaxial film is thickened. This Ge 4+
Wavelength of 1.13 μm and 1.5
When a Faraday rotator having a Faraday rotation angle of 45 degrees was produced using light of 5 μm, no defect inside the crystal was recognized, and 40 dB was obtained.
The following extinction ratio defects did not occur. The effect of GeO 2 as such an additive is another GeO 2
Similar effects can be expected by using a compound.

【0011】また、本発明の磁性ガーネット単結晶にお
いて、aは磁性ガーネット中のBi量を表している。B
i量aはファラデー回転子の回転能(deg/μm)を
決める因子であり、Bi量aが大きいほどファラデー回
転能は大きくなる。ファラデー回転子として用いる場合
の磁性ガーネット単結晶の好適なBi量aは約0.6〜
1.5である。Bi量aが0.6以下ではファラデー回
転能が小さくなりすぎ、1.5以上ではガーネット以外
の相の析出が起こり磁性ガーネットの正常なエピタキシ
ャル成長ができなくなる可能性がある。但し、現状にお
いて実験的にBi量aが0.6以下の磁性ガーネットも
製造可能であり、また真空成膜の技術によればBi量a
が3.0の磁性ガーネットも得られている。従って、フ
ァラデー回転子を作製するための磁性ガーネット単結晶
のBi量aは、本発明においては0<a<3.0に設定
している。
[0011] In the magnetic garnet single crystal of the present invention, a represents Bi content in the magnetic garnet. B
The i amount a is a factor that determines the rotational power (deg / μm) of the Faraday rotator, and the larger the Bi amount a, the larger the Faraday rotational power. The preferred Bi amount a of the magnetic garnet single crystal when used as a Faraday rotator is about 0.6 to
1.5. When the Bi amount a is 0.6 or less, the Faraday rotation ability becomes too small. When the Bi amount a is 1.5 or more, a phase other than garnet is precipitated, and normal epitaxial growth of the magnetic garnet may not be performed. However, a magnetic garnet having a Bi amount a of 0.6 or less can be experimentally manufactured at present, and the Bi amount a
Of 3.0 is also obtained. Therefore, the Bi amount a of the magnetic garnet single crystal for producing the Faraday rotator is set to 0 <a <3.0 in the present invention.

【0012】bは磁性ガーネット中のPb量を表してい
る。Pb量bが少なくとも2.0程度までのガーネット
は焼結体の状態で存在が可能であるので、本発明におい
ては0<b≦2.0に設定している。cは、CaやAl
などのFeに置換し得る非磁性元素の量を表している。
非磁性元素量cが2.0程度を越えると磁性ガーネット
はフェリ磁性体から常磁性体になるためファラデー回転
能は著しく小さくなり回転子として使用できなくなる。
従って、本発明では、非磁性元素量cを0≦c≦2.0
に設定している。dは、Geの量を表している。光吸収
損失を小さくするには2価の元素であるPb量と4価の
元素であるGe量dをほぼ同量にする必要があるので、
Ge量dはPb量と同様に0<d≦2.0に設定してい
る。
B represents the amount of Pb in the magnetic garnet. Since garnet having a Pb amount b of at least about 2.0 can exist in the state of a sintered body, 0 <b ≦ 2.0 is set in the present invention. c is Ca or Al
Represents the amount of nonmagnetic element that can be substituted for Fe.
When the amount c of the non-magnetic element exceeds about 2.0, the magnetic garnet changes from a ferrimagnetic substance to a paramagnetic substance, so that the Faraday rotation ability becomes extremely small and cannot be used as a rotor.
Therefore, in the present invention, the nonmagnetic element amount c is set to 0 ≦ c ≦ 2.0.
Is set to d represents the amount of Ge. In order to reduce the light absorption loss, it is necessary to make the amount of Pb, which is a divalent element, and the amount of Ge, which is a tetravalent element, almost equal.
The Ge amount d is set to 0 <d ≦ 2.0 similarly to the Pb amount.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態では、Geを
含有する膜厚200μm以上のBi置換希土類鉄ガーネ
ット単結晶膜をPbを含むフラックスから育成する。得
られたBi置換希土類鉄ガーネット単結晶膜を用い、光
吸収損失が小さく、結晶欠陥が少なくて消光比の高いフ
ァラデー回転子を安定して製造できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention, a Bi-substituted rare earth iron garnet single crystal film having a thickness of 200 μm or more containing Ge is grown from a flux containing Pb. Using the obtained Bi-substituted rare earth iron garnet single crystal film, a Faraday rotator having a small light absorption loss, few crystal defects and a high extinction ratio can be stably manufactured.

【0014】[0014]

【実施例】以下に、本発明に係る磁性ガーネット単結晶
及びそれを用いたファラデー回転子の具体的な実施例と
して[実施例1]乃至[実施例3]について比較例とと
もに説明する。
EXAMPLES [Examples] to [Example 3] will be described below along with Comparative Examples as specific examples of a magnetic garnet single crystal according to the present invention and a Faraday rotator using the same.

【0015】[実施例1]Pt製のるつぼ内に、Yb2
3(重量:6.747g)、Gd23(重量6.62
4g)、B23(重量:43.214g)、Fe2
3(重量:144.84g)、PbO(重量:118
9.6g)、Bi23(重量:826.4g)、GeO
2(重量2.360g)の材料を充填して約1000℃
で融解して撹件を行い均質化した後、120℃/h(時
間)で降温させ820℃の過飽和状態で温度の安定を取
った。そして2インチφのサイズを有する(Ca、M
g、Zr)置換ガドリニウム・ガリウム・ガーネット
(以下、GGGという)単結晶基板を100回転/分
(r.p.m.)で回転させながら磁性ガーネット単結晶膜を
エピタキシャル成長させ膜厚495μmの単結晶膜を得
た。
[Example 1] Yb 2 was placed in a Pt crucible.
O 3 (weight: 6.747 g), Gd 2 O 3 (weight: 6.62)
4 g), B 2 O 3 (weight: 43.214 g), Fe 2 O
3 (weight: 144.84 g), PbO (weight: 118)
9.6 g), Bi 2 O 3 (weight: 826.4 g), GeO
2 Fill the material (weight 2.360g) and put it at about 1000 ° C
After melting and stirring to homogenize, the temperature was lowered at 120 ° C./h (hour), and the temperature was stabilized in a supersaturated state at 820 ° C. It has a size of 2 inches φ (Ca, M
g, Zr) A magnetic garnet single crystal film was epitaxially grown while rotating a single crystal substrate of gadolinium gallium garnet (hereinafter referred to as GGG) at 100 revolutions / minute (rpm) to obtain a single crystal film having a thickness of 495 μm.

【0016】この磁性ガーネット単結晶膜の表面は鏡面
状態であり、表面の結晶欠陥数を評価すると2インチφ
の単結晶膜で結晶欠陥は12個確認され、単結晶膜に割
れは生じなかった。蛍光X線法により得られた単結晶膜
の組成を分析するとBi1.12Gd1.15Yb0.69Pb0.04
Fe4.96Pt0.01Ge0.0312であった。またこの磁性
ガーネット単結晶膜を波長1.55μmの光でファラデ
ー回転角が45degとなるように研磨加工し両面に無
反射膜を付けて波長1.55μm用ファラデー回転子を
作製した。
The surface of this magnetic garnet single crystal film is mirror-finished, and the number of crystal defects on the surface is evaluated as 2 inches φ.
Twelve crystal defects were confirmed in the single crystal film of No. 1, and no crack was generated in the single crystal film. The composition of the single crystal film obtained by the fluorescent X-ray method was analyzed to find that Bi 1.12 Gd 1.15 Yb 0.69 Pb 0.04
Fe 4.96 Pt 0.01 Ge 0.03 O 12 . The magnetic garnet single crystal film was polished with light having a wavelength of 1.55 μm so that the Faraday rotation angle was 45 deg., And an anti-reflection film was provided on both surfaces to produce a Faraday rotator for a wavelength of 1.55 μm.

【0017】このファラデー回転子を3mm角に切断し
て内部結晶欠陥、ファラデー回転能、挿入損失、温度特
性および消光比を評価すると、赤外線を用いた偏光顕微
鏡観察では欠陥は認められず、膜厚は400μmでファ
ラデー回転係数は0.113deg/μm、挿入損失は
最大0.05dBで最小0.01dB、温度特性は0.
067deg/℃、消光比は最大45.1dBで最小4
2.0dBの値が得られた(表1参照)。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotability, insertion loss, temperature characteristics and extinction ratio, no defects were observed by a polarizing microscope using infrared rays. Is 400 μm, the Faraday rotation coefficient is 0.113 deg / μm, the insertion loss is 0.05 dB at the maximum and 0.01 dB at the minimum, and the temperature characteristic is 0.1 dB.
067 deg / ° C, extinction ratio is 45.1 dB at maximum and 4 at minimum
A value of 2.0 dB was obtained (see Table 1).

【0018】[0018]

【表1】 表1 Bi置換希土類鉄ガーネット単結晶膜の組成と評
価結果
[Table 1] Table 1 Composition and evaluation results of Bi-substituted rare earth iron garnet single crystal film

【0019】[実施例2]Pt製るつぼに、Tb2
3(重量:14.110g)、B23(重量:46.4
5g)、Fe23(重量:148.82g)、PbO
(重量:1054.4g)、Bi23(重量:965.
8g)、GeO2(重量:2.522g)を充填して約
1000℃で融解して撹件を行い均質化した後、120
℃/hで降温させ833℃の過飽和状態で温度の安定を
取った。そして2インチφのサイズを有する(Ca、M
g、Zr)置換GGG単結晶基板を100r.p.m.で回転
させながら磁性ガーネット単結晶膜をエピタキシャル成
長させ膜厚460μmの単結晶膜を得た。
Example 2 Tb 2 O was placed in a Pt crucible.
3 (weight: 14.110 g), B 2 O 3 (weight: 46.4)
5 g), Fe 2 O 3 (weight: 148.82 g), PbO
(Weight: 1054.4 g), Bi 2 O 3 (weight: 965.
8g), filled with GeO 2 (weight: 2.522 g), melted at about 1000 ° C., stirred and homogenized.
The temperature was lowered at a rate of ° C / h, and the temperature was stabilized under a supersaturated state of 833 ° C. It has a size of 2 inches φ (Ca, M
g, Zr) The magnetic garnet single crystal film was epitaxially grown while rotating the substituted GGG single crystal substrate at 100 rpm to obtain a single crystal film having a thickness of 460 μm.

【0020】この磁性ガーネット単結晶膜の表面は鏡面
状態であり、表面の結晶欠陥数を評価すると、2インチ
φの単結晶膜で結晶欠陥は15個確認され単結晶膜に割
れは生じなかった。蛍光X線法により得られた単結晶膜
の組成を分析するとBi0.80Tb2.16Pb0.04Fe4.96
Pt0.01Ge0.0312であった。またこの磁性ガーネッ
ト単結晶膜を波長1.31μmの光でファラデー回転角
が45degとなるように研磨加工し、両面に無反射膜
を付けて波長1.31μm用ファラデー回転子を作製し
た。
The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, fifteen crystal defects were confirmed in the single crystal film of 2 inch φ, and no crack was generated in the single crystal film. . The composition of the single crystal film obtained by the X-ray fluorescence method was analyzed to find that Bi 0.80 Tb 2.16 Pb 0.04 Fe 4.96
Pt 0.01 Ge 0.03 O 12 . Further, this magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both surfaces to produce a Faraday rotator for a wavelength of 1.31 μm.

【0021】このファラデー回転子を3mm角に切断し
て内部結晶欠陥、ファラデー回転能、挿入損失、温度特
性および消光比を評価すると、赤外線を用いた偏光顕微
鏡観察では欠陥は認められず、膜厚は352μmでファ
ラデー回転係数は0.128deg/μm、挿入損失は
最大0.05dBで最小0.02dB、温度特性は0.
037deg/℃、消光比は最大45.8dBで最小4
2.8dBの値が得られた(表1参照)。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotability, insertion loss, temperature characteristics and extinction ratio, no defects were observed by a polarizing microscope using infrared rays. Is 352 μm, the Faraday rotation coefficient is 0.128 deg / μm, the insertion loss is 0.05 dB at the maximum and 0.02 dB at the minimum, and the temperature characteristic is 0.2 μm.
037 deg / ° C, extinction ratio is 45.8 dB at maximum and 4 at minimum
A value of 2.8 dB was obtained (see Table 1).

【0022】[実施例3]PtるつぼにYb23(重
量:8.434g)、Gd23(重量:5.300
g)、B23(重量:43.214g)、Fe23(重
量:144.84g)、PbO(重量:1189.6
g)、Bi23(重量:826.4g)、GeO2(重
量:2.360g)の材料を充填して約1000℃で融
解して撹拌を行い均質化した後、120℃/hで降温さ
せ804℃の過飽和状態で温度の安定を取った。そして
2インチφのサイズを有する(Ca、Mg、Zr)置換
GGG単結晶基板を100r.p.m.で回転させながら磁性
ガーネット単結晶膜をエピタキシャル成長させ膜厚35
0μmの単結晶膜を得た。
Example 3 Yb 2 O 3 (weight: 8.434 g) and Gd 2 O 3 (weight: 5.300) were placed in a Pt crucible.
g), B 2 O 3 (weight: 43.214 g), Fe 2 O 3 (weight: 144.84 g), PbO (weight: 1189.6)
g), Bi 2 O 3 (weight: 826.4 g) and GeO 2 (weight: 2.360 g) were filled, melted at about 1000 ° C., stirred, homogenized, and then cooled at 120 ° C./h. The temperature was lowered and the temperature was stabilized under a supersaturated state of 804 ° C. Then, while rotating a (Ca, Mg, Zr) -substituted GGG single crystal substrate having a size of 2 inches φ at 100 rpm, a magnetic garnet single crystal film is epitaxially grown to a thickness of 35 mm.
A 0 μm single crystal film was obtained.

【0023】この磁性ガーネット単結晶膜の表面は鏡面
状態であり、表面の結晶欠陥数を評価すると、2インチ
φの単結晶膜で結晶欠陥は10個確認され単結晶膜に割
れは生じなかった。蛍光X線法により得られた単結晶膜
の組成を分析するとBi1.30Gd0.90Yb0.76Pb0.04
Fe4.96Pt0.01Ge0.0312であった。またこの磁性
ガーネット単結晶膜を波長1.31μmの光でファラデ
ー回転角が45degとなるように研磨加工し両面に無
反射膜を付けて波長1.31μm用ファラデー回転子を
作製した。
The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, ten single crystal defects were confirmed in the single crystal film of 2 inch φ, and no crack was generated in the single crystal film. . The composition of the single crystal film obtained by the fluorescent X-ray method was analyzed to find that Bi 1.30 Gd 0.90 Yb 0.76 Pb 0.04
Fe 4.96 Pt 0.01 Ge 0.03 O 12 . Further, this magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg., And a non-reflection film was provided on both sides to produce a Faraday rotator for a wavelength of 1.31 μm.

【0024】このファラデー回転子を3mm角に切断し
て内部結晶欠陥、ファラデー回転能、挿入損失、温度特
性および消光比を評価すると、赤外線を用いた偏光顕微
鏡観察では欠陥は認められず、膜厚は200μmでファ
ラデー回転係数は0.225deg/μm、挿入損失は
最大0.03dBで最小0.01dB、温度特性は0.
063deg/℃、消光比は最大45.5dBで最小4
3.1dBの値が得られた(表1参照)。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotability, insertion loss, temperature characteristics and extinction ratio, no defects were observed by observation with a polarizing microscope using infrared rays. Is 200 μm, the Faraday rotation coefficient is 0.225 deg / μm, the insertion loss is 0.03 dB at the maximum and 0.01 dB at the minimum, and the temperature characteristic is 0.2 μm.
063 deg / ° C, extinction ratio is 45.5 dB at maximum and 4 at minimum
A value of 3.1 dB was obtained (see Table 1).

【0025】[比較例]PtるつぼにYb23(重量:
8.434g)、Gd23(重量:5.300g)、B
23(重量:43.214g)、Fe23(重量:14
4.84g)、PbO(重量:1189.6g)、Bi
23(重量:826.4g)、TiO2(重量:1.8
10g)の材料を充填して約1000℃で融解して撹拌
を行い均質化した後、120℃/hで降温させ804℃
の過飽和状態で温度の安定を取った。そして2インチφ
のサイズの(Ca、Mg、Zr)置換GGG単結晶基板
を100r.p.m.で回転させながら磁性ガーネット単結晶
膜をエピタキシャル成長させ膜厚355μmの単結晶膜
を得た。
[Comparative Example] Yb 2 O 3 (weight:
8.434 g), Gd 2 O 3 (weight: 5.300 g), B
2 O 3 (weight: 43.214 g), Fe 2 O 3 (weight: 14
4.84 g), PbO (weight: 1189.6 g), Bi
2 O 3 (weight: 826.4 g), TiO 2 (weight: 1.8)
10 g), melted at about 1000 ° C., stirred and homogenized, then cooled at 120 ° C./h to 804 ° C.
The temperature was stabilized under supersaturated conditions. And 2 inches φ
The magnetic garnet single crystal film was epitaxially grown while rotating the (Ca, Mg, Zr) -substituted GGG single crystal substrate having the above-mentioned size at 100 rpm to obtain a single crystal film having a thickness of 355 μm.

【0026】この磁性ガーネット単結晶膜の表面はにご
っており、表面の結晶欠陥数を評価すると、2インチφ
の単結晶膜で結晶欠陥は166個確認され単結晶膜に割
れは生じなかった。蛍光X線法により得られた単結晶膜
の組成を分析するとBi1.30Gd0.90Yb0.76Pb0.04
Fe4.96Pt0.01Ti0.0312であった。またこの磁性
ガーネット単結晶膜を波長1.31μmの光でファラデ
ー回転角が45degとなるように研磨加工し、両面に
無反射膜を付けて波長1.31μm用ファラデー回転子
を作製した。
The surface of this magnetic garnet single crystal film is dirty, and the number of crystal defects on the surface is evaluated.
In the single crystal film, 166 crystal defects were confirmed, and no crack was generated in the single crystal film. The composition of the single crystal film obtained by the fluorescent X-ray method was analyzed to find that Bi 1.30 Gd 0.90 Yb 0.76 Pb 0.04
Fe 4.96 Pt 0.01 Ti 0.03 O 12 . Further, this magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both surfaces to produce a Faraday rotator for a wavelength of 1.31 μm.

【0027】このファラデー回転子を3mm角に切断し
て内部結晶欠陥、ファラデー回転係数、挿入損失、温度
特性および消光比を評価したところ、赤外線を用いた偏
光顕微鏡観察により1〜2個の欠陥が認められ、膜厚2
00μmでファラデー回転係数は0.225deg/μ
m、挿入損失は最大0.04dBで最小0.02dB、
温度特性は0.063deg/℃、消光比は最大38.
9dBで最小36.9dBであった(表1参照)。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotation coefficient, insertion loss, temperature characteristics and extinction ratio, one or two defects were observed by a polarizing microscope using infrared rays. Accepted, film thickness 2
Faraday rotation coefficient is 0.225 deg / μ at 00 μm
m, insertion loss is 0.04 dB at the maximum and 0.02 dB at the minimum,
The temperature characteristic is 0.063 deg / ° C, and the extinction ratio is 38.
The minimum was 36.9 dB at 9 dB (see Table 1).

【0028】[0028]

【発明の効果】以上の通り、本発明によれば、光吸収損
失が小さいだけでなく結晶欠陥の少ない磁性ガーネット
単結晶を得ることができる。また、消光比の高いファラ
デー回転子を安定して得ることができるようになる。
As described above, according to the present invention, it is possible to obtain a magnetic garnet single crystal having not only a small light absorption loss but also few crystal defects. Further, a Faraday rotator having a high extinction ratio can be stably obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液相エピタキシャル成長法により育成さ
れ、 一般式 BiaPbb3-a-bFe5-c-dcGed12 (式中のAは、Y、La、Ce、Pr、Nd、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu
から選択される少なくとも1種類の元素、BはGa、A
l、Sc、Pt、Siから選択される少なくとも1種類
の元素、a、b、c、dは各々、0<a<3.0、0<
b≦2.0、0≦c≦2.0、0<d≦2.0)で示さ
れることを特徴とする磁性ガーネット単結晶。
1. A grown by liquid phase epitaxial growth method, the general formula Bi a Pb b A 3-ab Fe 5-cd B c Ge d O 12 (A in the formula, Y, La, Ce, Pr, Nd, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
At least one element selected from the group consisting of
At least one element selected from l, Sc, Pt, and Si, a, b, c, and d are respectively 0 <a <3.0, 0 <
b ≦ 2.0, 0 ≦ c ≦ 2.0, 0 <d ≦ 2.0).
【請求項2】請求項1記載の磁性ガーネット単結晶であ
って、 膜厚が200μm以上であることを特徴とする磁性ガー
ネット単結晶。
2. The magnetic garnet single crystal according to claim 1, wherein the thickness of the magnetic garnet single crystal is 200 μm or more.
【請求項3】請求項1又は2に記載の磁性ガーネット単
結晶で形成されることを特徴とするファラデー回転子。
3. A Faraday rotator made of the magnetic garnet single crystal according to claim 1 or 2.
JP11218656A 1999-08-02 1999-08-02 Magnetic garnet single crystal and faraday rotator using the same Pending JP2001044027A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11218656A JP2001044027A (en) 1999-08-02 1999-08-02 Magnetic garnet single crystal and faraday rotator using the same
US09/625,417 US6641751B1 (en) 1999-08-02 2000-07-25 Magnetic garnet single crystal and faraday rotator using the same
EP00116332A EP1074872A3 (en) 1999-08-02 2000-07-27 Magnetic garnet single crystal and faraday rotator using the same
KR10-2000-0043761A KR100408792B1 (en) 1999-08-02 2000-07-28 Magnetic garnet single crystal and Faraday rotator using the same
CNB001225200A CN1165922C (en) 1999-08-02 2000-08-02 Magnetic garnet monocrystal and Farady rotor using said monocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11218656A JP2001044027A (en) 1999-08-02 1999-08-02 Magnetic garnet single crystal and faraday rotator using the same

Publications (1)

Publication Number Publication Date
JP2001044027A true JP2001044027A (en) 2001-02-16

Family

ID=16723371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11218656A Pending JP2001044027A (en) 1999-08-02 1999-08-02 Magnetic garnet single crystal and faraday rotator using the same

Country Status (1)

Country Link
JP (1) JP2001044027A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056887A1 (en) * 2003-12-11 2005-06-23 Lee, Hun-Su Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
EP1821321A1 (en) 2006-02-20 2007-08-22 TDK Corporation Magnetic garnet single crystal and optical element using the same
CN100362146C (en) * 2002-09-27 2008-01-16 株式会社村田制作所 Terbium paramagnetic garnet single crystal and magneto-optical device
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same
US7811465B2 (en) * 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362146C (en) * 2002-09-27 2008-01-16 株式会社村田制作所 Terbium paramagnetic garnet single crystal and magneto-optical device
WO2005056887A1 (en) * 2003-12-11 2005-06-23 Lee, Hun-Su Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
US7811465B2 (en) * 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US8815011B2 (en) 2004-11-19 2014-08-26 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
EP1821321A1 (en) 2006-02-20 2007-08-22 TDK Corporation Magnetic garnet single crystal and optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same

Similar Documents

Publication Publication Date Title
US5277845A (en) Oxide garnet single crystal
CN104073879B (en) Bismuth displacement rare earth iron garnet single crystal and its manufacture method
JP2004083390A (en) Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
JP2001044026A (en) Magnetic garnet single crystal and faraday rotator using the same
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
KR100408792B1 (en) Magnetic garnet single crystal and Faraday rotator using the same
WO2003032339A2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JP3490143B2 (en) Oxide garnet single crystal
JP2022013228A (en) Method for manufacturing bismuth substitution rare earth iron garnet single crystal film, faraday rotor and optical isolator
JPH06281902A (en) Magneto-optical element material
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2004168657A (en) Magnetic garnet single crystal and faraday rotator using it
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JPH0766114B2 (en) Magneto-optical element material
JP7246341B2 (en) Bismuth-substituted rare earth iron garnet single crystal, Faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2004010395A (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator using it, and optical element using it
Silliman et al. Improvement of FMR linewidth in Bi‐substituted lutetium iron garnet thin films for the MSW‐optical‐mode interaction
JPS60145990A (en) Liquid-phase epitaxial magnetic garnet single crystal
JP2008074703A (en) Bismuth substituted-type garnet thick-film material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808