JP2004168657A - Magnetic garnet single crystal and faraday rotator using it - Google Patents

Magnetic garnet single crystal and faraday rotator using it Download PDF

Info

Publication number
JP2004168657A
JP2004168657A JP2004035457A JP2004035457A JP2004168657A JP 2004168657 A JP2004168657 A JP 2004168657A JP 2004035457 A JP2004035457 A JP 2004035457A JP 2004035457 A JP2004035457 A JP 2004035457A JP 2004168657 A JP2004168657 A JP 2004168657A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic garnet
amount
faraday rotator
garnet single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004035457A
Other languages
Japanese (ja)
Inventor
Atsushi Oido
敦 大井戸
Kazuto Yamazawa
和人 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004035457A priority Critical patent/JP2004168657A/en
Publication of JP2004168657A publication Critical patent/JP2004168657A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic garnet single crystal in which crystal defects do not occur and a Faraday rotator improved in extinction ratio. <P>SOLUTION: The magnetic garnet single crystal is grown by a liquid phase epitaxial growing method and has a general formula denoted as Bi<SB>a</SB>Pb<SB>b</SB>A<SB>3-a-b</SB>Fe<SB>5-c-d</SB>B<SB>c</SB>Pt<SB>d</SB>O<SB>12</SB>(wherein A is at least an element selected from among Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; B is at least an element selected from among Ga, Al, Sc, Ge and Si; 0<a<3.0; 0<b≤2.0; 0≤c≤2.0; and 0<d≤2.0). <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、磁性ガーネット単結晶およびそれを用いた磁気光学効果を利用するファラデー回転子に関する。磁性ガーネット単結晶を用いたファラデー回転子は、例えば光アイソレータ、光サーキュレータ、あるいは光アッテネータ等の磁気光学素子に用いられる。   The present invention relates to a magnetic garnet single crystal and a Faraday rotator utilizing the magneto-optical effect using the same. A Faraday rotator using a magnetic garnet single crystal is used for a magneto-optical element such as an optical isolator, an optical circulator, or an optical attenuator.

半導体レーザを用いた光通信や光応用機器には、光アイソレータ、光サーキュレータあるいは光アッテネータが広く使われている。これらのデバイスに必須な素子の一つとしてファラデー回転子が挙げられる。
ファラデー回転子にはYIG(イットリウム鉄ガーネット)単結晶、ビスマス(Bi)置換希土類鉄ガーネット単結晶が知られているが、現在では、液相エピタキシャル(LPE)法により形成されたビスマス置換希土類鉄ガーネット単結晶膜を用いたファラデー回転子が主流になっている。
Optical isolators, optical circulators, or optical attenuators are widely used in optical communication and optical equipment using semiconductor lasers. One of the essential elements of these devices is a Faraday rotator.
As the Faraday rotator, a single crystal of YIG (yttrium iron garnet) and a single crystal of bismuth (Bi) -substituted rare earth iron garnet are known. A Faraday rotator using a single crystal film has become mainstream.

例えば、特公平6−46604号公報には、液相エピタキシャル成長法により育成され、一般式 R3-(a+b)PbaBibFe5-cc12-d(Rは希土類元素及びそれと置換可能な元素の中から選ばれた少なくとも1種の成分、Mは鉄元素と置換可能な元素の中から選ばれた少なくとも1種の成分、aは0.01〜0.2の数、bは0.5〜2.0の数、cは0.01〜2.0の数、dは0〜1の数である)で示される組成を有し、且つ前記式中のMの一部として周期表IVA族及びIVB族に属するPb以外の四価元素を上記の一般式の原子比として0.01以上含有することを特徴とするビスマス置換希土類鉄ガーネットが記載されている。 For example, Japanese Patent Kokoku 6-46604, grown by liquid phase epitaxial growth method, the general formula R 3- (a + b) Pb a Bi b Fe 5-c M c O 12-d (R is and rare earth elements At least one component selected from elements that can be substituted therewith, M is at least one component selected from elements that can be substituted for iron, a is a number from 0.01 to 0.2, b is a number of 0.5 to 2.0, c is a number of 0.01 to 2.0, and d is a number of 0 to 1), and one of M in the above formula A bismuth-substituted rare earth iron garnet is described, which contains, as a part, a tetravalent element other than Pb belonging to the groups IVA and IVB of the periodic table in an atomic ratio of the above general formula of 0.01 or more.

上記公報に開示されているように、IV族元素を添加することにより、Bi置換希土類鉄ガーネット単結晶を液相エピタキシャル法で育成する際にPb4+を消失させることができ、それによりBi置換希土類鉄ガーネット単結晶に光が透過する際の吸収損失を低減させることができるようになる。 As disclosed in the above publication, Pb 4+ can be eliminated when a Bi-substituted rare earth iron garnet single crystal is grown by a liquid phase epitaxial method by adding a group IV element, whereby Bi substitution can be performed. It becomes possible to reduce the absorption loss when light passes through the rare earth iron garnet single crystal.

ところで、特公平6−46604号公報に開示された実施例に示されているように、IV族元素として例えばTiO2を添加して液相エピタキシャル法により単結晶エピタキシャル膜を育成すると、得られたBi置換希土類鉄ガーネット単結晶エピタキシャル膜の光吸収損失を低減させる効果が認められる。ところが、得られるエピタキシャル膜の膜厚が約200μm以上になった場合には、膜表面に多数の結晶欠陥が確認されるようになる。そのような結晶表面を研磨して無反射膜を形成し、光アイソレータ用のファラデー回転子を作製したところ、赤外線を用いた観察によりファラデー回転子の内部に多数の欠陥が確認され、また消光比も低下することが判明した。 By the way, as shown in Examples disclosed in Japanese Patent Publication No. 6-46604, when a single crystal epitaxial film was grown by liquid phase epitaxial method by adding, for example, TiO 2 as a group IV element, the obtained result was obtained. The effect of reducing the light absorption loss of the Bi-substituted rare earth iron garnet single crystal epitaxial film is recognized. However, when the thickness of the obtained epitaxial film is about 200 μm or more, many crystal defects are confirmed on the film surface. When such a crystal surface was polished to form a non-reflective film, and a Faraday rotator for an optical isolator was fabricated, many defects were confirmed inside the Faraday rotator by observation using infrared rays, and the extinction ratio Was also found to decrease.

特公平6−46604号公報に記載された発明は、Bi置換希土類鉄ガーネット単結晶エピタキシャル膜の光吸収損失低減を技術的課題としており、結晶欠陥の発生を抑えることや消光比を向上させるという課題に関しては何ら開示していない。Bi置換希土類鉄ガーネット単結晶エピタキシャル膜の結晶欠陥の発生を抑えることができれば、ファラデー回転子の消光比を向上させることができ、さらには、ファラデー回転子の消光比の向上により、光アイソレータを初めとする光通信用部品の性能を向上させることができるようになる。   The invention described in Japanese Patent Publication No. 6-46604 has a technical problem of reducing light absorption loss of a Bi-substituted rare earth iron garnet single crystal epitaxial film, and has a problem of suppressing generation of crystal defects and improving an extinction ratio. Is not disclosed at all. If the generation of crystal defects in the Bi-substituted rare earth iron garnet single crystal epitaxial film can be suppressed, the extinction ratio of the Faraday rotator can be improved. The performance of the optical communication component can be improved.

本発明の目的は、結晶欠陥の発生を抑えた磁性ガーネット単結晶を提供することにある。
また、本発明の目的は、消光比を向上させたファラデー回転子を提供することにある。
An object of the present invention is to provide a magnetic garnet single crystal in which generation of crystal defects is suppressed.
Another object of the present invention is to provide a Faraday rotator having an improved extinction ratio.

そこで本発明者達は、結晶欠陥を多数発生させることなく約200μm以上の単結晶を得ること、及び光吸収低減を達成するための添加物を検討した。その結果、添加元素としてIV族の元素と同様の4価の構造を安定して取り得るPtを用いると大きな効果があることを見出した。すなわち、PtO2またはPtをフラックスに溶解して、厚さ200μm以上のBi置換希土類鉄ガーネット単結晶を育成したところ、エピタキシャル膜表面の結晶欠陥数は著しく少なくなり、その単結晶内部を赤外線を用いた偏光顕微鏡による観察を行っても結晶欠陥は認められず、また光吸収損失をほぼ零(ゼロ)にすることができた。 Therefore, the present inventors have studied to obtain a single crystal having a size of about 200 μm or more without generating many crystal defects and to study an additive for achieving a reduction in light absorption. As a result, it has been found that the use of Pt capable of stably forming a tetravalent structure similar to that of a group IV element has a great effect as an additional element. That is, when PtO 2 or Pt was dissolved in a flux to grow a Bi-substituted rare earth iron garnet single crystal having a thickness of 200 μm or more, the number of crystal defects on the surface of the epitaxial film was significantly reduced. Observation with a polarizing microscope revealed that no crystal defects were observed, and that the light absorption loss was almost zero.

上記目的は、液相エピタキシャル成長法により育成され、一般式 BiaPbb3-a-bFe5-c-dcPtd12 (式中のAは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類の元素、BはGa、Al、Sc、Ge、Siから選択される少なくとも1種類の元素、a、b、c、dは各々、0<a<3.0、0<b≦2.0、0≦c≦2.0、0<d≦2.0)で示されることを特徴とする磁性ガーネット単結晶によって達成される。
上記本発明の磁性ガーネット単結晶において、その膜厚が200μm以上であることを特徴とする。また、0.5≦b/d≦2.0であることが好ましい。
また上記目的は、本発明の記載の磁性ガーネット単結晶で形成されることを特徴とするファラデー回転子によって達成される。
This object is grown by liquid phase epitaxial growth method, the general formula Bi a Pb b A 3-ab Fe 5-cd B c Pt d O 12 (A in the formula, Y, La, Ce, Pr , Nd, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, at least one element selected from the group consisting of Ga, Al, Sc, Ge, and Si; , B, c, and d are represented by 0 <a <3.0, 0 <b ≦ 2.0, 0 ≦ c ≦ 2.0, and 0 <d ≦ 2.0, respectively. Achieved by garnet single crystals.
The magnetic garnet single crystal according to the present invention is characterized in that the film thickness is 200 μm or more. Further, it is preferable that 0.5 ≦ b / d ≦ 2.0.
Further, the above object is achieved by a Faraday rotator formed of the magnetic garnet single crystal according to the present invention.

本発明の作用について以下に説明する。Ti4+やPt4+は、Bi置換希土類鉄ガーネットの格子では6配位のFeサイトに置換される。しかしTi4+はイオン半径が6配位のFe3+より大きいためBi置換希土類鉄ガーネットの格子に歪みが生じ、そのためエピタキシャル成長が進み膜厚が厚くなると格子の歪みが蓄積され、結晶欠陥が多数発生すると考えられる。Pt4+はイオン半径が6配位のFe3+よりも小さいためガーネットの格子に歪みは発生せず、エピタキシャル膜が厚くなっても結晶欠陥が発生しないと考えられる。このPt4+でFe3+を置換した単結晶を用い波長1.31μmおよび1.55μmの光でファラデー回転角45度のファラデー回転子を作製すると結晶内部の欠陥は認められず、40dB以下となるような消光比不良は発生しなくなった。そしてこのような添加物としてのPtO2及びPtの効果は他のPt化合物を用いても同様な効果が期待できる。 The operation of the present invention will be described below. Ti 4+ and Pt 4+ are replaced by hexacoordinate Fe sites in the lattice of Bi-substituted rare earth iron garnet. However, since Ti 4+ has an ionic radius larger than that of Fe 3+ having six coordinations, the lattice of the Bi-substituted rare earth iron garnet is strained. Therefore, when the epitaxial growth proceeds and the film thickness becomes large, the lattice strain is accumulated and many crystal defects occur. It is thought to occur. It is considered that since Pt 4+ has an ionic radius smaller than that of Fe 3+ having six coordinations, no distortion occurs in the garnet lattice, and no crystal defects occur even when the epitaxial film becomes thick. When a Faraday rotator having a Faraday rotation angle of 45 degrees was produced with light having wavelengths of 1.31 μm and 1.55 μm using the single crystal obtained by substituting Fe 3+ with Pt 4+ , no defect inside the crystal was observed, and it was reduced to 40 dB or less. Such an extinction ratio defect no longer occurs. The effect of PtO 2 and Pt as such additives can be expected to be the same even when other Pt compounds are used.

また、本発明の磁性ガーネット単結晶において、aは磁性ガーネット中のBi量を表している。Bi量aはファラデー回転子の回転能(deg/μm)を決める因子であり、Bi量aが大きいほどファラデー回転能は大きくなる。ファラデー回転子として用いる場合の磁性ガーネット単結晶の好適なBi量aは約0.6〜1.5である。Bi量aが0.6以下ではファラデー回転能が小さくなりすぎ、1.5以上ではガーネット以外の相の析出が起こり磁性ガーネットの正常なエピタキシャル成長ができなくなる可能性がある。但し、現状において実験的にBi量aが0.6以下の磁性ガーネットも製造可能であり、また真空成膜の技術によればBi量aが3.0の磁性ガーネットも得られている。従って、ファラデー回転子を作製するための磁性ガーネット単結晶のBi量aは、本発明においては0<a<3.0に設定している。   In the magnetic garnet single crystal of the present invention, a represents the amount of Bi in the magnetic garnet. The Bi amount a is a factor that determines the rotation capability (deg / μm) of the Faraday rotator, and the larger the Bi amount a, the larger the Faraday rotation capability. The preferred Bi amount a of the magnetic garnet single crystal when used as a Faraday rotator is about 0.6 to 1.5. If the Bi amount a is 0.6 or less, the Faraday rotation ability becomes too small. If the Bi amount a is 1.5 or more, a phase other than garnet is precipitated, and normal epitaxial growth of the magnetic garnet may not be performed. However, a magnetic garnet having a Bi amount a of 0.6 or less can be experimentally manufactured under the present circumstances, and a magnetic garnet having a Bi amount a of 3.0 is also obtained by the vacuum film forming technique. Therefore, the Bi amount a of the magnetic garnet single crystal for producing the Faraday rotator is set to 0 <a <3.0 in the present invention.

bは磁性ガーネット中のPb量を表している。Pb量bが少なくとも2.0程度までのガーネットは焼結体の状態で存在が可能であるので、本発明においては0<b≦2.0に設定している。
cは、CaやAlなどのFeに置換し得る非磁性元素の量を表している。非磁性元素量cが2.0程度を越えると磁性ガーネットはフェリ磁性体から常磁性体になるためファラデー回転能は著しく小さくなり回転子として使用できなくなる。従って、本発明では、非磁性元素量cを0≦c≦2.0に設定している。
b represents the amount of Pb in the magnetic garnet. Since garnet having a Pb amount b of at least about 2.0 can exist in the state of a sintered body, 0 <b ≦ 2.0 is set in the present invention.
c represents the amount of nonmagnetic elements that can be substituted for Fe such as Ca and Al. When the amount c of the non-magnetic element exceeds about 2.0, the magnetic garnet changes from a ferrimagnetic substance to a paramagnetic substance, so that the Faraday rotation ability becomes extremely small and cannot be used as a rotor. Therefore, in the present invention, the nonmagnetic element amount c is set to 0 ≦ c ≦ 2.0.

dは、Ptの量を表している。光吸収損失を小さくするには2価の元素であるPb量と4価の元素であるPt量dをほぼ同量にする必要があるので、Pt量dはPb量と同様に0<d≦2.0に設定している。
また、0.5≦b/d≦2.0であることが好ましいのも、光吸収損失(挿入損失)との関係から得られるものである。例えば後述の実施例1では、Pb量bが0.04でPt量dも0.04であるのでPb量b/Pt量d=1となる。このときのファラデー回転子の挿入損失は0.01〜0.05dBである。また例えば実施例2では、Pb量bが0.04でPt量dは0.02であるのでPb量b/Pt量d=2となる。このときのファラデー回転子の挿入損失は0.06〜0.10dBである。光アイソレータ用のファラデー回転子の挿入損失として一般的に要求される値は0.10dBである。Pb量bとPt量dが一致する組成が最も挿入損失が小さくなり、Pb量bとPt量dの割合が異なってくると共に挿入損失は大きくなる。従って一般的な要求値である挿入損失0.10dBを満たすためには0.5≦b/d≦2.0の条件が必要になる。
d represents the amount of Pt. In order to reduce the light absorption loss, the amount of Pb, which is a divalent element, and the amount of Pt, which is a tetravalent element, need to be substantially the same, so that the amount of Pt d is 0 <d ≦ similarly to the amount of Pb. 2.0 is set.
Further, it is preferable that the relationship of 0.5 ≦ b / d ≦ 2.0 is obtained from the relationship with the light absorption loss (insertion loss). For example, in Example 1 described below, the Pb amount b is 0.04 and the Pt amount d is 0.04, so that Pb amount b / Pt amount d = 1. The insertion loss of the Faraday rotator at this time is 0.01 to 0.05 dB. Further, for example, in the second embodiment, since the Pb amount b is 0.04 and the Pt amount d is 0.02, Pb amount b / Pt amount d = 2. At this time, the insertion loss of the Faraday rotator is 0.06 to 0.10 dB. The value generally required for the insertion loss of the Faraday rotator for the optical isolator is 0.10 dB. The composition in which the Pb amount b and the Pt amount d are the same has the smallest insertion loss, the ratio of the Pb amount b and the Pt amount d is different, and the insertion loss is large. Therefore, in order to satisfy the insertion loss of 0.10 dB which is a general required value, a condition of 0.5 ≦ b / d ≦ 2.0 is required.

以上の通り、本発明によれば、光吸収損失が小さいだけでなく結晶欠陥の少ない磁性ガーネット単結晶を得ることができる。また、消光比の高いファラデー回転子を安定して得ることができるようになる。   As described above, according to the present invention, it is possible to obtain a magnetic garnet single crystal having not only a small light absorption loss but also few crystal defects. Further, a Faraday rotator having a high extinction ratio can be stably obtained.

本発明の実施の形態では、Ptを含有する膜厚200μm以上のBi置換希土類鉄ガーネット単結晶膜をPbを含むフラックスから育成する。得られたBi置換希土類鉄ガーネット単結晶膜を用い、光吸収損失が小さく、結晶欠陥が少なくて消光比の高いファラデー回転子を安定して製造できる。   In the embodiment of the present invention, a Pt-containing Bi-substituted rare earth iron garnet single crystal film having a thickness of 200 μm or more is grown from a flux containing Pb. By using the obtained Bi-substituted rare earth iron garnet single crystal film, a Faraday rotator having small light absorption loss, few crystal defects, and high extinction ratio can be stably manufactured.

以下に、本発明に係る磁性ガーネット単結晶及びそれを用いたファラデー回転子の具体的な実施例として[実施例1]乃至[実施例4]について比較例とともに説明する。
[実施例1]
Pt製のるつぼ内に、Yb23(重量:6.747g)、Gd23(重量:6.624g)、B23(重量:43.214g)、Fe23(重量:144.84g)、PbO(重量:1189.6g)、Bi23(重量:826.4g)、PtO2(重量:5.121g)の材料を充填して約1000℃で融解して撹件を行い均質化した後、120℃/h(時間)で降温させ820℃の過飽和状態で温度の安定を取った。そして2インチφのサイズを有する(Ca、Mg、Zr)置換ガドリニウム・ガリウム・ガーネット(以下、GGGという)単結晶基板を100回転/分(r.p.m.)で回転させながら磁性ガーネット単結晶膜をエピタキシャル成長させ膜厚505μmの単結晶膜を得た。
Hereinafter, [Examples 1] to [Example 4] will be described together with comparative examples as specific examples of the magnetic garnet single crystal according to the present invention and the Faraday rotator using the same.
[Example 1]
In a crucible made of Pt, Yb 2 O 3 (weight: 6.747 g), Gd 2 O 3 (weight: 6.624 g), B 2 O 3 (weight: 43.214 g), Fe 2 O 3 (weight: 1444.84 g), PbO (weight: 1189.6 g), Bi 2 O 3 (weight: 826.4 g), PtO 2 (weight: 5.121 g), and melted at about 1000 ° C. After the homogenization, the temperature was lowered at 120 ° C./h (hour), and the temperature was stabilized in a supersaturated state of 820 ° C. Then, while rotating a (Ca, Mg, Zr) -substituted gadolinium gallium garnet (hereinafter referred to as GGG) single crystal substrate having a size of 2 inches φ at 100 revolutions / minute (rpm), a magnetic garnet single crystal film is epitaxially grown. A 505 μm thick single crystal film was obtained.

この磁性ガーネット単結晶膜の表面は鏡面状態であり、表面の結晶欠陥数を評価すると2インチφの単結晶膜で結晶欠陥は10個確認され、単結晶膜に割れは生じなかった。蛍光X線法により得られた単結晶膜の組成を分析するとBi1.12Gd1.15Yb0.69Pb0.04Fe4.96Pt0.0412であった。またこの磁性ガーネット単結晶膜を波長1.55μmの光でファラデー回転角が45degとなるように研磨加工し両面に無反射膜を付けて波長1.55μm用ファラデー回転子を作製した。 The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, ten single crystal defects were confirmed in the single crystal film of 2 inches φ, and no crack was generated in the single crystal film. When the composition of the single crystal film obtained by the fluorescent X-ray method was analyzed, it was Bi 1.12 Gd 1.15 Yb 0.69 Pb 0.04 Fe 4.96 Pt 0.04 O 12 . The magnetic garnet single crystal film was polished with light having a wavelength of 1.55 μm so that the Faraday rotation angle was 45 deg., And a non-reflection film was provided on both surfaces to produce a Faraday rotator for a wavelength of 1.55 μm.

このファラデー回転子を3mm角に切断して内部結晶欠陥、ファラデー回転能、挿入損失、温度特性および消光比を評価すると、赤外線を用いた偏光顕微鏡観察では欠陥は認められず、膜厚は400μmでファラデー回転係数は0.113deg/μm、挿入損失は最大0.05dBで最小0.01dB、温度特性は0.067deg/℃、消光比は最大45.6dBで最小42.1dBの値が得られた(表1参照)。
本実施例1では、ファラデー回転子の挿入損失は0.01〜0.05dBであり、一般的な要求値である挿入損失0.10dB以下を満たしている。このときのPb量bは0.04でPt量dが0.04であるのでPb量b/Pt量d=1となり、0.5≦b/d≦2.0の範囲内に入っている。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotability, insertion loss, temperature characteristics, and extinction ratio, no defects were recognized by polarization microscopy using infrared rays, and the film thickness was 400 μm. The Faraday rotation coefficient was 0.113 deg / μm, the insertion loss was 0.01 dB at the maximum of 0.05 dB, the temperature characteristic was 0.067 deg / ° C., and the extinction ratio was 42.1 dB at the maximum of 45.6 dB. (See Table 1).
In the first embodiment, the insertion loss of the Faraday rotator is 0.01 to 0.05 dB, which satisfies the general required value of 0.10 dB or less. At this time, the Pb amount b is 0.04 and the Pt amount d is 0.04, so that Pb amount b / Pt amount d = 1, which is within the range of 0.5 ≦ b / d ≦ 2.0. .

Figure 2004168657
表1 Bi置換希土類鉄ガーネット単結晶膜の組成と評価結果
Figure 2004168657
Table 1 Composition and evaluation results of Bi-substituted rare earth iron garnet single crystal film

[実施例2]
PtるつぼにYb23(重量:6.747g)、Gd23(重量:6.624g)、B23(重量:43.214g)、Fe23(重量:144.84g)、PbO(重量:1189.6g)、Bi23(重量:826.4g)、PtO2(重量:2.556g)を充填して約1000℃で融解して撹拌を行い均質化した後、120℃/hで降温させ820℃の過飽和状態で温度の安定を取った。そして2インチφのサイズを有する(Ca、Mg、Zr)置換GGG単結晶基板を100r.p.m.で回転させながら磁性ガーネット単結晶膜をエピタキシャル成長させ膜厚500μmの単結晶膜を得た。
[Example 2]
The Pt crucible Yb 2 O 3 (weight: 6.747g), Gd 2 O 3 ( weight: 6.624g), B 2 O 3 ( weight: 43.214g), Fe 2 O 3 ( weight: 144.84g) , PbO (weight: 1189.6 g), Bi 2 O 3 (weight: 826.4 g), and PtO 2 (weight: 2.556 g) were melted at about 1000 ° C., stirred, and homogenized. The temperature was lowered at 120 ° C./h, and the temperature was stabilized under a supersaturated state of 820 ° C. Then, a magnetic garnet single crystal film was epitaxially grown while rotating a (Ca, Mg, Zr) -substituted GGG single crystal substrate having a size of 2 inches φ at 100 rpm to obtain a single crystal film having a thickness of 500 μm.

この磁性ガーネット単結晶膜の表面は鏡面状態であり、表面の結晶欠陥数を評価すると、2インチφの単結晶膜で結晶欠陥は15個確認され単結晶膜に割れは生じなかった。蛍光X線法により得られた単結晶膜の組成を分析するとBi1.12Gd1.15Yb0.69Pb0.04Fe4.98Pt0.0212であった。またこの磁性ガーネット単結晶膜を波長を1.55μmの光でファラデー回転角が45degとなるように研磨加工し、両面に無反射膜を付けて波長1.55μm用ファラデー回転子を作製した。 The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, 15 crystal defects were confirmed in the single crystal film of 2 inch φ, and no crack was generated in the single crystal film. When the composition of the single crystal film obtained by the fluorescent X-ray method was analyzed, it was Bi 1.12 Gd 1.15 Yb 0.69 Pb 0.04 Fe 4.98 Pt 0.02 O 12 . Further, this magnetic garnet single crystal film was polished with light having a wavelength of 1.55 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both surfaces to produce a Faraday rotator for a wavelength of 1.55 μm.

このファラデー回転子を3mm角に切断して内部結晶欠陥、ファラデー回転能、挿入損失、温度特性および消光比を評価すると、赤外線を用いた偏光顕微鏡観察では欠陥は認められず、膜厚は400μmでファラデー回転係数は0.113deg/μm、挿入損失は最大0.10dBで最小0.06dB、温度特性は0.064deg/℃、消光比は最大44.9dBで最小41.6dBの値が得られた(表1参照)。
本実施例2では、ファラデー回転子の挿入損失は0.06〜0.10dBであり、一般的な要求値である挿入損失0.10dB以下を満たしている。このときのPb量bは0.04でPt量dが0.02であるのでPb量b/Pt量d=2となり、0.5≦b/d≦2.0の範囲内に入っている。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotability, insertion loss, temperature characteristics, and extinction ratio, no defects were recognized by polarization microscopy using infrared rays, and the film thickness was 400 μm. The Faraday rotation coefficient was 0.113 deg / μm, the insertion loss was 0.16 dB at the maximum and the minimum was 0.06 dB, the temperature characteristic was 0.064 deg / ° C., and the extinction ratio was 44.9 dB at the maximum and 41.6 dB at the minimum. (See Table 1).
In the second embodiment, the insertion loss of the Faraday rotator is 0.06 to 0.10 dB, which satisfies an insertion loss of 0.10 dB or less, which is a general required value. At this time, the Pb amount b is 0.04 and the Pt amount d is 0.02, so that the Pb amount b / Pt amount d = 2, which is within the range of 0.5 ≦ b / d ≦ 2.0. .

[実施例3]
PtるつぼにYb23(重量:10.677g)、Gd23(重量:7.403g)、B23(重量:48.68g)、Fe23(重量:205.58g)、PbO(重量:430.5g)、Bi23(重量:1605.8g)の材料を充填して約1050℃で融解して撹拌を行い均質化した後、120℃/hで降温させ885℃の過飽和状態で温度の安定を取った。そして2インチφのサイズを有する(Ca、Mg、Zr)置換GGG単結晶基板を100r.p.m.で回転させながら磁性ガーネット単結晶膜をエピタキシャル成長させ膜厚620μmの単結晶膜を得た。
[Example 3]
In a Pt crucible, Yb 2 O 3 (weight: 10.677 g), Gd 2 O 3 (weight: 7.403 g), B 2 O 3 (weight: 48.68 g), Fe 2 O 3 (weight: 205.58 g) , PbO (weight: 430.5 g) and Bi 2 O 3 (weight: 1605.8 g) were filled, melted at about 1050 ° C., stirred, homogenized, and cooled at 120 ° C./h to 885. The temperature was stabilized in a supersaturated state at ° C. Then, while rotating a (Ca, Mg, Zr) -substituted GGG single crystal substrate having a size of 2 inches φ at 100 rpm, a magnetic garnet single crystal film was epitaxially grown to obtain a 620 μm-thick single crystal film.

この磁性ガーネット単結晶膜の表面は鏡面状態であり、表面の結晶欠陥数を評価すると、2インチφの単結晶膜で結晶欠陥は18個確認され単結晶膜に割れは生じなかった。蛍光X線法により得られた単結晶膜の組成を分析するとBi1.16Gd1.08Yb0.72Pb0.04Fe4.97Pt0.0312であった。磁性ガーネットに含まれるPtはPb含有フラックス中にPtるつぼより溶出したものである。またこの磁性ガーネット単結晶膜を波長1.31μmの光でファラデー回転角が45degとなるように研磨加工し、両面に無反射膜を付けて波長1.31μm用ファラデー回転子を作製した。 The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, 18 single crystal films having a diameter of 2 inches were found to have 18 crystal defects and no crack was generated in the single crystal film. When the composition of the single crystal film obtained by the fluorescent X-ray method was analyzed, it was Bi 1.16 Gd 1.08 Yb 0.72 Pb 0.04 Fe 4.97 Pt 0.03 O 12 . The Pt contained in the magnetic garnet was eluted from the Pt crucible into the Pb-containing flux. The magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both sides to produce a Faraday rotator for a wavelength of 1.31 μm.

このファラデー回転子を3mm角に切断して内部結晶欠陥、ファラデー回転係数、挿入損失、温度特性および消光比を評価したところ、赤外線を用いた偏光顕微鏡観察では欠陥は認められず、膜厚240μmでファラデー回転係数は0.188deg/μm、挿入損失は最大0.07dBで最小0.03dB、温度特性は0.064deg/℃、消光比は最大45.6dBで最小41.9dBの値が得られた(表1参照)。
本実施例3では、ファラデー回転子の挿入損失は0.03〜0.07dBであり、一般的な要求値である挿入損失0.10dB以下を満たしている。このときのPb量bは0.04でPt量dが0.03であるのでPb量b/Pt量d≒1.33となり、0.5≦b/d≦2.0の範囲内に入っている。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotation coefficient, insertion loss, temperature characteristics and extinction ratio, no defects were observed by polarized light microscopy using infrared rays. The Faraday rotation coefficient was 0.188 deg / μm, the insertion loss was 0.03 dB at the maximum of 0.07 dB, the temperature characteristic was 0.064 deg / ° C., and the extinction ratio was 41.9 dB at the maximum of 45.6 dB. (See Table 1).
In the third embodiment, the insertion loss of the Faraday rotator is 0.03 to 0.07 dB, which satisfies a general required value of 0.10 dB or less. At this time, the Pb amount b is 0.04 and the Pt amount d is 0.03, so that Pb amount b / Pt amount d ≒ 1.33, which falls within the range of 0.5 ≦ b / d ≦ 2.0. ing.

[実施例4]
PtるつぼにYb23(重量:8.434g)、Gd23(重量:5.300g)、B23(重量:43.214g)、Fe23(重量:144.84g)、PbO(重量:1189.6g)、Bi23(重量:826.4g)、PtO2(重量:5.121g)の材料を充填して約1000℃で融解して撹拌を行い均質化した後、120℃/hで降温させ804℃の過飽和状態で温度の安定を取った。そして2インチφのサイズを有する(Ca、Mg、Zr)置換GGG単結晶基板を100r.p.m.で回転させながら磁性ガーネット単結晶膜をエピタキシャル成長させ膜厚360μmの単結晶膜を得た。
[Example 4]
Yb 2 O 3 (weight: 8.434 g), Gd 2 O 3 (weight: 5.300 g), B 2 O 3 (weight: 43.214 g), Fe 2 O 3 (weight: 144.84 g) in a Pt crucible , PbO (weight: 1189.6 g), Bi 2 O 3 (weight: 826.4 g), and PtO 2 (weight: 5.121 g) were filled, melted at about 1000 ° C., stirred, and homogenized. Thereafter, the temperature was lowered at 120 ° C./h, and the temperature was stabilized under a supersaturated state of 804 ° C. Then, a magnetic garnet single crystal film was epitaxially grown while rotating a (Ca, Mg, Zr) substituted GGG single crystal substrate having a size of 2 inches φ at 100 rpm to obtain a single crystal film having a thickness of 360 μm.

この磁性ガーネット単結晶膜の表面は鏡面状態であり、表面の結晶欠陥数を評価すると、2インチφの単結晶膜で結晶欠陥は10個確認され単結晶膜に割れは生じなかった。蛍光X線法により得られた単結晶膜の組成を分析するとBi1.30Gd0.90Yb0.76Pb0.04Fe4.96Pt0.0412であった。またこの磁性ガーネット単結晶膜を波長1.31μmの光でファラデー回転角が45degとなるように研磨加工し、両面に無反射膜を付けて波長1.31μm用ファラデー回転子を作製した。 The surface of this magnetic garnet single crystal film was in a mirror state, and when the number of crystal defects on the surface was evaluated, 10 crystal defects were confirmed in the single crystal film of 2 inch φ, and no crack was generated in the single crystal film. When the composition of the single crystal film obtained by the fluorescent X-ray method was analyzed, it was Bi 1.30 Gd 0.90 Yb 0.76 Pb 0.04 Fe 4.96 Pt 0.04 O 12 . The magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both sides to produce a Faraday rotator for a wavelength of 1.31 μm.

このファラデー回転子を3mm角に切断して内部結晶欠陥、ファラデー回転係数、挿入損失、温度特性および消光比を評価したところ、赤外線を用いた偏光顕微鏡観察では欠陥は認められず、膜厚200μmでファラデー回転係数は0.225deg/μm、挿入損失は最大0.04dBで最小0.01dB、温度特性は0.063deg/℃、消光比は最大45.7dBで最小42.1dBの値が得られた(表1参照)。
本実施例4では、ファラデー回転子の挿入損失は0.01〜0.04dBであり、一般的な要求値である挿入損失0.10dB以下を満たしている。このときのPb量bは0.04でPt量dが0.04であるのでPb量b/Pt量d=1となり、0.5≦b/d≦2.0の範囲内に入っている。
When this Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotation coefficient, insertion loss, temperature characteristics and extinction ratio, no defects were observed by a polarizing microscope using infrared rays. The Faraday rotation coefficient was 0.225 deg / μm, the insertion loss was 0.01 dB at the maximum of 0.04 dB, the temperature characteristic was 0.063 deg / ° C., and the extinction ratio was 42.1 dB at the maximum of 45.7 dB. (See Table 1).
In the fourth embodiment, the insertion loss of the Faraday rotator is 0.01 to 0.04 dB, which satisfies the general required value of 0.10 dB or less. At this time, the Pb amount b is 0.04 and the Pt amount d is 0.04, so that Pb amount b / Pt amount d = 1, which is within the range of 0.5 ≦ b / d ≦ 2.0. .

[比較例]
PtるつぼにYb23(重量:8.434g)、Gd23(重量:5.300g)、B23(重量:43.214g)、Fe23(重量:144.84g)、PbO(重量:1189.6g)、Bi23(重量:826.4g)、TiO2(重量:1.810g)の材料を充填して約1000℃で融解して撹拌を行い均質化した後、120℃/hで降温させ804℃の過飽和状態で温度の安定を取った。そして2インチφのサイズの(Ca、Mg、Zr)置換GGG単結晶基板を100r.p.m.で回転させながら磁性ガーネット単結晶膜をエピタキシャル成長させ膜厚355μmの単結晶膜を得た。
[Comparative example]
Yb 2 O 3 (weight: 8.434 g), Gd 2 O 3 (weight: 5.300 g), B 2 O 3 (weight: 43.214 g), Fe 2 O 3 (weight: 144.84 g) in a Pt crucible , PbO (weight: 1189.6 g), Bi 2 O 3 (weight: 826.4 g), and TiO 2 (weight: 1.810 g) were charged, melted at about 1000 ° C., stirred, and homogenized. Thereafter, the temperature was lowered at 120 ° C./h, and the temperature was stabilized under a supersaturated state of 804 ° C. Then, a magnetic garnet single crystal film was epitaxially grown while rotating a (Ca, Mg, Zr) -substituted GGG single crystal substrate having a size of 2 inches at 100 rpm to obtain a single crystal film having a thickness of 355 μm.

この磁性ガーネット単結晶膜の表面はにごっており、表面の結晶欠陥数を評価すると、2インチφの単結晶膜で結晶欠陥は166個確認され単結晶膜に割れは生じなかった。蛍光X線法により得られた単結晶膜の組成を分析するとBi1.30Gd0.90Yb0.76Pb0.04Fe4.96Pt0.01Ti0.0312であった。またこの磁性ガーネット単結晶膜を波長1.31μmの光でファラデー回転角が45degとなるように研磨加工し、両面に無反射膜を付けて波長1.31μm用ファラデー回転子を作製した。 The surface of this magnetic garnet single crystal film was rough, and the number of crystal defects on the surface was evaluated. As a result, 166 crystal defects were confirmed in the single crystal film of 2 inch φ, and no crack was generated in the single crystal film. When the composition of the single crystal film obtained by the fluorescent X-ray method was analyzed, it was Bi 1.30 Gd 0.90 Yb 0.76 Pb 0.04 Fe 4.96 Pt 0.01 Ti 0.03 O 12 . The magnetic garnet single crystal film was polished with light having a wavelength of 1.31 μm so that the Faraday rotation angle was 45 deg, and a non-reflection film was provided on both sides to produce a Faraday rotator for a wavelength of 1.31 μm.

このファラデー回転子を3mm角に切断して内部結晶欠陥、ファラデー回転係数、挿入損失、温度特性および消光比を評価したところ、赤外線を用いた偏光顕微鏡観察により1〜2個の欠陥が認められ、膜厚200μmでファラデー回転係数は0.225deg/μm、挿入損失は最大0.04dBで最小0.02dB、温度特性は0.063deg/℃、消光比は最大38.9dBで最小36.9dBであった(表1参照)。
本比較例では、ファラデー回転子の挿入損失は0.02〜0.04dBであり、一般的な要求値である挿入損失0.10dB以下を満たしている。これは、本比較例が、上述の特公平6−46604号公報に開示された発明に包含されているからである。


When the Faraday rotator was cut into 3 mm squares to evaluate internal crystal defects, Faraday rotation coefficient, insertion loss, temperature characteristics and extinction ratio, one to two defects were observed by polarization microscope observation using infrared rays. At a film thickness of 200 μm, the Faraday rotation coefficient is 0.225 deg / μm, the insertion loss is 0.02 dB at a maximum of 0.04 dB, the temperature characteristic is 0.063 deg / ° C., and the extinction ratio is 36.9 dB at a maximum of 38.9 dB. (See Table 1).
In this comparative example, the insertion loss of the Faraday rotator is 0.02 to 0.04 dB, which satisfies a general required value of 0.10 dB or less. This is because the present comparative example is included in the invention disclosed in Japanese Patent Publication No. 6-46604.


Claims (4)

液相エピタキシャル成長法により育成され、
一般式 BiaPbb3-a-bFe5-c-dcPtd12
(式中のAは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類の元素、BはGa、Al、Sc、Ge、Siから選択される少なくとも1種類の元素、a、b、c、dは各々、0<a<3.0、0<b≦2.0、0≦c≦2.0、0<d≦2.0)
で示されること
を特徴とする磁性ガーネット単結晶。
Grown by liquid phase epitaxial growth method,
Formula Bi a Pb b A 3-ab Fe 5-cd B c Pt d O 12
(A in the formula is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B is Ga, At least one element selected from Al, Sc, Ge, and Si, a, b, c, and d are respectively 0 <a <3.0, 0 <b ≦ 2.0, and 0 ≦ c ≦ 2.0. , 0 <d ≦ 2.0)
A magnetic garnet single crystal, characterized by being represented by:
請求項1記載の磁性ガーネット単結晶であって、
膜厚が200μm以上であること
を特徴とする磁性ガーネット単結晶。
The magnetic garnet single crystal according to claim 1,
A magnetic garnet single crystal having a thickness of 200 μm or more.
請求項1又は2に記載の磁性ガーネット単結晶であって、
0.5≦b/d≦2.0であること
を特徴とする磁性ガーネット単結晶。
A magnetic garnet single crystal according to claim 1 or 2,
A magnetic garnet single crystal, wherein 0.5 ≦ b / d ≦ 2.0.
請求項1乃至3のいずれか1項に記載の磁性ガーネット単結晶で形成されることを特徴とするファラデー回転子。


A Faraday rotator made of the magnetic garnet single crystal according to claim 1.


JP2004035457A 2004-02-12 2004-02-12 Magnetic garnet single crystal and faraday rotator using it Withdrawn JP2004168657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035457A JP2004168657A (en) 2004-02-12 2004-02-12 Magnetic garnet single crystal and faraday rotator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035457A JP2004168657A (en) 2004-02-12 2004-02-12 Magnetic garnet single crystal and faraday rotator using it

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11218655A Division JP2001044026A (en) 1999-08-02 1999-08-02 Magnetic garnet single crystal and faraday rotator using the same

Publications (1)

Publication Number Publication Date
JP2004168657A true JP2004168657A (en) 2004-06-17

Family

ID=32709512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035457A Withdrawn JP2004168657A (en) 2004-02-12 2004-02-12 Magnetic garnet single crystal and faraday rotator using it

Country Status (1)

Country Link
JP (1) JP2004168657A (en)

Similar Documents

Publication Publication Date Title
JP2004083390A (en) Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
JP5377785B1 (en) Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
JP2019184782A (en) Faraday rotator, optical isolator, and method for producing faraday rotator
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
KR100408792B1 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP2001044026A (en) Magnetic garnet single crystal and faraday rotator using the same
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
WO2012073671A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP6481552B2 (en) Bismuth-substituted rare earth iron garnet crystal film manufacturing method, bismuth-substituted rare earth iron garnet crystal film
JP2004168657A (en) Magnetic garnet single crystal and faraday rotator using it
JP6894865B2 (en) Method for manufacturing garnet-type crystals
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JP2022013228A (en) Method for manufacturing bismuth substitution rare earth iron garnet single crystal film, faraday rotor and optical isolator
US20010052828A1 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JP3490143B2 (en) Oxide garnet single crystal
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP7246341B2 (en) Bismuth-substituted rare earth iron garnet single crystal, Faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP7246340B2 (en) Bismuth-substituted rare earth iron garnet single crystal, Faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
JPH0766114B2 (en) Magneto-optical element material
JP4874921B2 (en) Magneto-optical element, manufacturing method thereof, and optical device manufactured using the same
JP2004010395A (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator using it, and optical element using it
US20090053558A1 (en) Article comprising a thick garnet film with negative growth-induced anisotropy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070620