JP3816591B2 - Method for producing bismuth-substituted rare earth iron garnet single crystal film - Google Patents

Method for producing bismuth-substituted rare earth iron garnet single crystal film Download PDF

Info

Publication number
JP3816591B2
JP3816591B2 JP23062196A JP23062196A JP3816591B2 JP 3816591 B2 JP3816591 B2 JP 3816591B2 JP 23062196 A JP23062196 A JP 23062196A JP 23062196 A JP23062196 A JP 23062196A JP 3816591 B2 JP3816591 B2 JP 3816591B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal film
rare earth
bismuth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23062196A
Other languages
Japanese (ja)
Other versions
JPH1072296A (en
Inventor
敦 大井戸
克己 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23062196A priority Critical patent/JP3816591B2/en
Publication of JPH1072296A publication Critical patent/JPH1072296A/en
Application granted granted Critical
Publication of JP3816591B2 publication Critical patent/JP3816591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビスマス置換希土類鉄ガーネット単結晶膜の新規な製造方法、さらに詳しくは、ファラデー回転子などに用いられるビスマス置換希土類鉄ガーネット単結晶膜を、結晶欠陥及び割れなどの発生を抑制して、高品質に製造する方法に関するものである。
【0002】
【従来の技術】
近年、光ファイバーを用いた通信システムの実用化が急速に進められている。これは、光ファイバー通信システムは、従来の電気通信システムに比べて、大容量のデータを高速に、かつ低損失で伝送できる利点を有しているからである。この光ファイバー通信システムにおいては、光源の半導体レーザーは、外部光によって敏感に影響を受け不安定になることが一般に知られているが、光ファイバー通信の低損失化に伴い、近端だけでなく、遠端からの反射光も半導体レーザーに影響を及ぼすようになり、したがって、この反射光の影響を避けるために、光アイソレータの使用が試みられている。この光アイソレータは、一般に偏光子、ファラデー回転子及び検光子から構成されており、順方向の光を低損失で通過させるが、逆方向からの入射光の通過を阻止する機能を有している。
【0003】
このような光アイソレータや、光サーキュレータや、光磁界センサーなどに用いられるファラデー回転子の材料としては、例えばCaMgZr置換ガドリニウム・ガリウムガーネット(以下GGGと略記する)単結晶から成る基板上に、液相エピタキシャル成長させて形成されたビスマス置換希土類鉄ガーネット単結晶膜が知られている(特開昭62−138397号公報)。
【0004】
しかしながら、ビスマス置換希土類鉄ガーネット単結晶と、基板であるCaMgZr置換GGG単結晶とは熱膨張係数が異なるため、液相エピタキシャル成長させて形成されたビスマス置換希土類鉄ガーネット単結晶膜は、結晶欠陥や割れなどが生じやすく、ファラデー回転子としての特性不良や、あるいは液相エピタキシャル成長時や加工時の歩留まり低下などの問題がある[「ジャーナル・オブ・クリスタル・グロース(Journal of Crystal Growth)」,第142巻,第93〜102ページ(1994年)]。
【0005】
また、熱膨張係数が磁性ガーネットに近い基板材料としては、例えばCa2.90Nb1.67Ga3.2912が知られているが[「フィジカ B(physica B)」,第213&214巻,第422ページ(1995年)]、このものはビスマス置換希土類鉄ガーネット単結晶とは熱膨張係数が一致していないため、前記CaMgZr置換GGG単結晶の場合と同様に、結晶欠陥の発生や割れなどを生じやすいという欠点がある。
【0006】
ところで、結晶欠陥や割れなどの発生がない結晶品質の良好なビスマス置換希土類鉄ガーネット単結晶膜を形成させるには、単結晶基板と該単結晶膜の格子定数を室温で一致させる必要があるが、基板と単結晶膜の熱膨張係数が異なると、ビスマス置換希土類鉄ガーネット単結晶膜のエピタキシャル成長温度である700〜900℃においては、該単結晶膜と基板との格子定数が異なることになり、その結果、単結晶膜に結晶欠陥や割れなどを生じ、このような結晶欠陥や割れなどは、該単結晶膜が数百μmの厚さになると特に著しい。
【0007】
したがって、これまで、結晶欠陥や割れなどの発生を抑制するために、組成を変化させて薄い単結晶膜にするか、あるいは基板を厚くするなどの処置がとられてきた。しかしながら、これらの方法においては、形成される単結晶膜がファラデー回転子などとしての特性が不十分であったり、あるいは製造工程に経費がかかり、コスト高になるなどの問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、結晶欠陥や割れなどの発生が抑制された結晶品質の良好な、ファラデー回転子などに好適に用いられる厚膜のビスマス置換希土類鉄ガーネット単結晶膜を液相エピタキシャル成長法により効率よく製造する方法を提供するためになされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、ビスマス置換希土類鉄ガーネット単結晶膜の製造方法について鋭意研究を重ねた結果、特定の組成を有する単結晶基板の熱膨張係数が、所望のビスマス置換希土類鉄ガーネット単結晶膜の熱膨張係数とほぼ一致しており、該単結晶基板上に、特定の組成の金属酸化物の溶融混合物から単結晶を液相エピタキシャル成長させることにより、結晶欠陥や割れを生じない単結晶膜が得られることを見出し、この知見に基づいて本発明を完成するに至った。
【0010】
すなわち、本発明は、一般式
CaxNbyGaz12 (I)
(ただし、x、y及びzは以下に示す範囲の数である。
2.99<x<3.01
1.67<y<1.72
3.15<z<3.21)
で表わされる組成の単結晶基板上に、(A)酸化ビスマスと(B)少なくとも1種の希土類金属酸化物と(C)酸化鉄と場合により用いられる(D)Ga、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属の酸化物とを含む溶融混合物から液相エピタキシャル成長させることを特徴とする、一般式
Bia3-aFe5-bb12 (II)
(式中のRは希土類金属の少なくとも1種、MはGa、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属であり、a及びbは以下に示す範囲の数である。
0<a<3.0
0≦b≦1.5)
で表わされる組成のビスマス置換希土類鉄ガーネット単結晶膜の製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明方法においては、単結晶基板として、その上に形成される単結晶膜との格子整合性が良く、かつ熱膨張係数が単結晶膜のそれに近いもの、すなわち、一般式
CaxNbyGaz12 (I)
で表わされる組成を有する単結晶基板が用いられる。上記一般式(I)におけるx、y及びzは、それぞれ以下に示す範囲の数である。
2.99<x<3.01
1.67<y<1.72
3.15<z<3.21
この一般式(I)で表わされる組成の単結晶基板の熱膨張係数は、常温〜850℃において、1.07×10-5-1程度であり、その上に設けられるビスマス置換希土類鉄ガーネット単結晶膜の熱膨張係数とほぼ一致している。
【0012】
この単結晶基板の形状及び厚さについては特に制限はなく、従来ファラデー回転子用などの単結晶膜の製造において用いられる単結晶基板と同様の形状及び厚さを有するものを使用することができるが、通常円板状であって、厚さ100〜1200μm程度のものを用いるのがよい。
【0013】
本発明方法においては、前記単結晶基板上に、一般式
Bia3-aFe5-bb12 (II)
(式中のRは希土類金属の少なくとも1種、MはGa、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属であり、a及びbは以下に示す範囲の数である。
0<a<3.0
0≦b≦1.5)
で表わされる組成のビスマス置換希土類鉄ガーネット単結晶膜を、液相エピタキシャル成長法により形成させる。ここで、液相エピタキシャル成長法とは、過飽和状態にある溶液あるいは溶融液中に基板を浸せきし、この基板上にエピタキシャル結晶を成長させる方法である。
【0014】
前記一般式(II)においてRで示される希土類金属としては、例えばY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどが挙げられ、これらは1種含まれていてもよいし、2種以上含まれていてもよい。本発明における単結晶膜においては、基板との格子整合性及び熱膨張係数を一致させるために、前記Rで示される希土類金属の一部をビスマスで置換させることが必要である。このビスマスによる置換の割合はaで表わされ、このaの値は、本発明においては、0<a<3.0の範囲であるが、特に0.5〜1.5の範囲にある場合、単結晶膜の熱膨張係数と単結晶基板の熱膨張係数とが極めて近似したものになるので、有利である。また、MはFeと置換可能な非磁性金属元素で、Ga、Al、In、Sc、Si、Ti、Ge、Mgであり、これらは1種含まれていてもよく、2種以上含まれていてもよい。この非磁性金属元素のFeとの置換の割合bは0〜1.5の範囲で選ばれる。
【0015】
次に、本発明方法を好適に実施するには、例えば(A)酸化ビスマスと(B)少なくとも1種の希土類金属酸化物と(C)酸化鉄と場合により用いられる(D)Ga、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属の酸化物とを、それぞれ所定の割合で含有する均質な溶融混合物を調製する。この際、通常析出用媒質として酸化鉛のような構成元素が単結晶中に混入してこない低融点化合物を用いる。また、所望に応じ結晶成長向上剤として酸化ホウ素などを含有させてもよい。
【0016】
次に、この溶融混合物中に、前記単結晶基板を浸せきすることにより、基板上に該溶融混合物から単結晶をエピタキシャル成長させる。この際の溶融混合物の温度は、原料混合物の組成などにより異なるが、通常は600〜1000℃の範囲で選ばれる。また、基板は、溶融混合物中に静置してエピタキシャル成長させてもよいし、適当に回転させながらエピタキシャル成長させてもよい。回転させる場合、その回転数は10〜200rpm程度が有利である。また、成膜速度は、通常0.08〜0.8μm/分程度である。浸せき時間は、成膜速度及び所望の膜厚などにより異なり、一概に定めることはできないが、通常は、10〜100時間程度である。
【0017】
エピタキシャル成長終了後、基板を溶融混合物から引き上げ、付着している溶融混合物を十分に振り切ったのち、室温まで冷却する。次いで、希硝酸などの鉱酸水溶液中に浸せきして、形成した単結晶膜表面に付着している溶融混合物の固化物を取り除いたのち、水洗、乾燥する。
【0018】
このようにして、基板上に形成された、前記一般式(II)で表わされる組成のビスマス置換希土類鉄ガーネット単結晶膜の厚さは、通常100〜1000μmの範囲である。
【0019】
本発明方法により基板上に形成されたビスマス置換希土類鉄ガーネット単結晶膜の結晶構造及び組成は、それぞれX線回折及び蛍光X線による組成分析などにより測定することができる。また、膜の性能は、この単結晶膜を研磨加工処理したのち、その両面に無反射膜を設け、ファラデー回転係数、透過損失及び温度特性などを求めることにより、評価することができる。
【0020】
【発明の効果】
本発明によれば、結晶欠陥が少なく、かつ割れのない結晶品質の良好なビスマス置換希土類鉄ガーネット単結晶膜を効率よく製造することができる。本発明方法で得られたビスマス置換希土類鉄ガーネット単結晶膜は、光アイソレータや光サーキュレータなどの光学材料に使用されるファラデー回転子などとして好適である。
【0021】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0022】
実施例1
白金製ルツボに、Ho23 5.747g、Gd23 6.724g、B23 43.214g、Fe23 126.84g、PbO 989.6g及びBi23826.4gを入れ、約1000℃で溶融しかきまぜて均質化したのち、120℃/hrの速度で降温して、832℃の過飽和状態で保持した。次いで、この溶融液中に、面方位が<111>で直径2インチのCa3.00Nb1.69Ga3.1912単結晶基板を浸せきし、100rpmで基板を回転させながら単結晶を液相エピタキシャル成長させ、基板上に膜厚450μmの単結晶膜を形成させた。
この単結晶膜の表面の結晶欠陥の数から、基板の欠陥の数を引いて単結晶膜のエピタキシャル成長時に発生した結晶欠陥数を求めたところ、径2インチの単結晶膜で4個であった。また、この単結晶膜には割れは認められなかった。得られた単結晶膜は、蛍光X線法により分析したところ、Bi1.1Gd1.1Ho0.8Fe5.012の組成を有するビスマス置換希土類鉄ガーネット単結晶膜であった。また、この単結晶膜及び基板の熱膨張係数を室温〜850℃で求めたところ、それぞれ1.10×10-5-1及び1.07×10-5-1であった。
次に、このようにして得られたビスマス置換希土類鉄ガーネット単結晶膜を研磨加工し、両面に無反射膜を設けて波長1.55μmのファラデー回転係数、ファラデー回転角45度での透過損失及び温度特性を評価したところ、ファラデー回転係数は0.118deg/μm、透過損失は0.03dB、温度特性は0.065deg/℃であった。
【0023】
実施例2
白金製ルツボに、Tb23 14.110g、Nd23 1.521g、B2346.45g、Fe23 148.82g、PbO 1054.4g及びBi2
3 965.8gを入れ、約1000℃で溶融しかきまぜて均質化したのち、120℃/hrの速度で降温して、828℃の過飽和状態で保持した。次いで、この溶融液中に、面方位が<111>で直径2インチのCa3.00Nb1.69Ga3.1912単結晶基板を浸せきし、100rpmで基板を回転させながら単結晶を液相エピタキシャル成長させ、基板上に膜厚550μmの単結晶膜を形成させた。
この単結晶膜の表面の結晶欠陥の数から、基板の欠陥の数を引いて単結晶膜のエピタキシャル成長時に発生した結晶欠陥数を求めたところ、径2インチの単結晶膜で5個であった。また、この単結晶膜には割れは認められなかった。得られた単結晶膜は、蛍光X線法により分析したところ、Bi0.9Tb2.0Nd0.1Fe5.012の組成を有するビスマス置換希土類鉄ガーネット単結晶膜であった。また、この単結晶膜及び基板の熱膨張係数を室温〜850℃で求めたところ、それぞれ1.08×10-5-1及び1.07×10-5-1であった。
次に、このようにして得られたビスマス置換希土類鉄ガーネット単結晶膜を研磨加工し、両面に無反射膜を設けて波長1.55μmのファラデー回転係数、ファラデー回転角45度での透過損失及び温度特性を評価したところ、ファラデー回転係数は0.090deg/μm、透過損失は0.14dB、温度特性は0.042deg/℃であった。
【0024】
実施例3
白金製ルツボに、Y23 9.110g、Ga23 5.765g、B23 39.64g、Fe23 131.68g、PbO 922.4g及びBi23 960.3gを入れ、約1000℃で溶融しかきまぜて均質化したのち、120℃/hrの速度で降温して、764℃の過飽和状態で保持した。次いで、この溶融液中に、面方位が<111>で直径2インチのCa3.00Nb1.69Ga3.1912単結晶基板を浸せきし、100rpmで基板を回転させながら単結晶を液相エピタキシャル成長させ、基板上に膜厚360μmの単結晶膜を形成させた。
この単結晶膜の表面の結晶欠陥の数から、基板の欠陥の数を引いて単結晶膜のエピタキシャル成長時に発生した結晶欠陥数を求めたところ、径2インチの単結晶膜で10個であった。また、この単結晶膜には割れは認められなかった。得られた単結晶膜は、蛍光X線法により分析したところ、Bi1.51.5Fe4.7Ga0.312の組成を有するビスマス置換希土類鉄ガーネット単結晶膜であった。また、この単結晶膜及び基板の熱膨張係数を室温〜850℃で求めたところ、それぞれ1.11×10-5-1及び1.07×10-5-1であった。
次に、このようにして得られたビスマス置換希土類鉄ガーネット単結晶膜を研磨加工し、両面に無反射膜を設けて波長1.55μmのファラデー回転係数、ファラデー回転角45度での透過損失及び温度特性を評価したところ、ファラデー回転係数は0.129deg/μm、透過損失は0.02dB、温度特性は0.070deg/℃であった。
【0025】
実施例4
白金製ルツボに、Tb23 12.110g、La23 3.211g、B2343.208g、Fe23 126.82g、PbO 1124.4g及びBi23 826.3gを入れ、約1000℃で溶融しかきまぜて均質化したのち、120℃/hrの速度で降温して、847℃の過飽和状態で保持した。次いで、この溶融液中に、面方位が<111>で直径2インチのCa3.00Nb1.69Ga3.1912単結晶基板を浸せきし、100rpmで基板を回転させながら単結晶を液相エピタキシャル成長させ、基板上に膜厚920μmの単結晶膜を形成させた。
この単結晶膜の表面の結晶欠陥の数から、基板の欠陥の数を引いて単結晶膜のエピタキシャル成長時に発生した結晶欠陥数を求めたところ、径2インチの単結晶膜で7個であった。また、この単結晶膜には割れは認められなかった。得られた単結晶膜は、蛍光X線法により分析したところ、Bi0.5Tb2.3La0.2Fe5.012の組成を有するビスマス置換希土類鉄ガーネット単結晶膜であった。また、この単結晶膜及び基板の熱膨張係数を室温〜850℃で求めたところ、それぞれ1.04×10-5-1及び1.07×10-5-1であった。
次に、このようにして得られたビスマス置換希土類鉄ガーネット単結晶膜を研磨加工し、両面に無反射膜を設けて波長1.55μmのファラデー回転係数、ファラデー回転角45度での透過損失及び温度特性を評価したところ、ファラデー回転係数は0.056deg/μm、透過損失は0.21dB、温度特性は0.032deg/℃であった。
【0026】
比較例
白金製ルツボに、Tb23 15.059g、Nd23 1.464g、B2347.55g、Fe23 157.76g、PbO 182.6g及びBi23958.8gを入れ、約1000℃で溶融しかきまぜて均質化したのち、120℃/hrの速度で降温して、839℃の過飽和状態で保持した。次いで、この溶融液中に、面方位が<111>で直径2インチのCaMgZr置換GGG単結晶基板を浸せきし、100rpmで基板を回転させながら単結晶を液相エピタキシャル成長させ、基板上に膜厚520μmの単結晶膜を形成させた。
この単結晶膜の表面の結晶欠陥の数から、基板の欠陥の数を引いて単結晶膜のエピタキシャル成長時に発生した結晶欠陥数を求めたところ、径2インチの単結晶膜で76個であった。また、この単結晶膜には、縁から6mm内側の外周部で同心円状の割れが8本生じていた。得られた単結晶膜は、蛍光X線法により分析したところ、Bi0.7Tb2.2Nd0.1Fe5.012の組成を有するビスマス置換希土類鉄ガーネット単結晶膜であった。また、この単結晶膜及び基板の熱膨張係数を室温〜850℃で求めたところ、それぞれ1.06×10-5-1及び0.87×10-5-1であった。
次に、このようにして得られたビスマス置換希土類鉄ガーネット単結晶膜を研磨加工し、両面に無反射膜を設けて波長1.55μmのファラデー回転係数、ファラデー回転角45度での透過損失及び温度特性を評価したところ、ファラデー回転係数は0.076deg/μm、透過損失は0.17dB、温度特性は0.037deg/℃であった。
【0027】
実施例1〜4及び比較例の結果をまとめて表1に示す。
【0028】
【表1】

Figure 0003816591
【0029】
[注]
ビスマス置換量は、前記一般式(II)のBia3-aFe5-bb12
(R、M、a及びbは前記と同じ意味をもつ)におけるaを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing a bismuth-substituted rare earth iron garnet single crystal film, more specifically, a bismuth-substituted rare earth iron garnet single crystal film used for a Faraday rotator and the like, while suppressing the occurrence of crystal defects and cracks. The present invention relates to a method for manufacturing with high quality.
[0002]
[Prior art]
In recent years, communication systems using optical fibers have been rapidly put into practical use. This is because the optical fiber communication system has an advantage that a large amount of data can be transmitted at high speed and with low loss as compared with the conventional telecommunication system. In this optical fiber communication system, it is generally known that a semiconductor laser as a light source is sensitively affected by external light and becomes unstable. However, as the loss of optical fiber communication is reduced, not only the near end but also the far end. Reflected light from the edge also affects the semiconductor laser, and therefore, the use of an optical isolator has been attempted to avoid the influence of this reflected light. This optical isolator is generally composed of a polarizer, a Faraday rotator, and an analyzer, and has a function of passing forward light with low loss but blocking passage of incident light from the reverse direction. .
[0003]
As a material of the Faraday rotator used for such an optical isolator, an optical circulator, an optical magnetic field sensor, etc., for example, a liquid phase is formed on a substrate made of a CaMgZr-substituted gadolinium-gallium garnet (hereinafter abbreviated as GGG) single crystal. A bismuth-substituted rare earth iron garnet single crystal film formed by epitaxial growth is known (Japanese Patent Laid-Open No. 62-13897).
[0004]
However, since the thermal expansion coefficient differs between the bismuth-substituted rare earth iron garnet single crystal and the CaMgZr-substituted GGG single crystal as the substrate, the bismuth-substituted rare earth iron garnet single crystal film formed by liquid phase epitaxial growth has crystal defects and cracks. Etc., and there is a problem such as poor characteristics as a Faraday rotator, or a decrease in yield during liquid phase epitaxial growth or processing ["Journal of Crystal Growth", Vol. 142 93-102 (1994)].
[0005]
As a substrate material having a thermal expansion coefficient close to that of magnetic garnet, for example, Ca 2.90 Nb 1.67 Ga 3.29 O 12 is known [Physica B), 213 & 214, page 422 (1995). )], Because this does not have the same thermal expansion coefficient as that of the bismuth-substituted rare earth iron garnet single crystal, it has the disadvantage that it tends to cause crystal defects and cracks as in the case of the CaMgZr-substituted GGG single crystal. is there.
[0006]
By the way, in order to form a bismuth-substituted rare earth iron garnet single crystal film having good crystal quality free from the occurrence of crystal defects and cracks, it is necessary to match the lattice constant of the single crystal substrate and the single crystal film at room temperature. When the thermal expansion coefficients of the substrate and the single crystal film are different, the lattice constant of the single crystal film and the substrate is different at the epitaxial growth temperature of 700 to 900 ° C. of the bismuth-substituted rare earth iron garnet single crystal film, As a result, crystal defects and cracks are generated in the single crystal film, and such crystal defects and cracks are particularly remarkable when the single crystal film has a thickness of several hundred μm.
[0007]
Therefore, until now, in order to suppress the occurrence of crystal defects and cracks, measures have been taken such as changing the composition to a thin single crystal film or increasing the thickness of the substrate. However, in these methods, there is a problem that the formed single crystal film has insufficient characteristics as a Faraday rotator or the like, or the manufacturing process is expensive and expensive.
[0008]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a thick bismuth-substituted rare earth iron garnet single crystal film suitably used for a Faraday rotator or the like with good crystal quality in which generation of crystal defects and cracks is suppressed. The present invention has been made to provide a method for efficiently producing the material by liquid phase epitaxial growth.
[0009]
[Means for Solving the Problems]
As a result of intensive research on a method for producing a bismuth-substituted rare earth iron garnet single crystal film, the present inventors have found that a single crystal substrate having a specific composition has a thermal expansion coefficient of a desired bismuth-substituted rare earth iron garnet single crystal film. A single crystal film that does not cause crystal defects or cracks is obtained by liquid phase epitaxial growth of a single crystal from a molten mixture of metal oxides having a specific composition on the single crystal substrate. Based on this finding, the present invention has been completed.
[0010]
That is, the present invention has the general formula Ca x Nb y Ga z O 12 (I)
(However, x, y, and z are numbers in the following ranges.
2.99 <x <3.01
1.67 <y <1.72
3.15 <z <3.21)
(A) Bismuth oxide, (B) at least one rare earth metal oxide, and (C) iron oxide, optionally used (D) Ga, Al, In, Sc, Si, wherein the Ti, to liquid phase epitaxial growth from a molten mixture comprising an oxide of at least one metal selected from among Ge and Mg, the general formula Bi a R 3-a Fe 5 -b M b O 12 (II)
(Wherein R is at least one rare earth metal, M is at least one metal selected from Ga, Al, In, Sc, Si, Ti, Ge and Mg, and a and b are as follows: The number of ranges to show.
0 <a <3.0
0 ≦ b ≦ 1.5)
The manufacturing method of the bismuth substitution rare earth iron garnet single crystal film of the composition represented by these is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, as the single crystal substrate, as its upper good lattice matching between the single crystal film formed on, and thermal expansion coefficient close to that of the single crystal film, i.e., the general formula Ca x Nb y Ga z O 12 (I)
A single crystal substrate having a composition represented by: In the general formula (I), x, y, and z are numbers in the following ranges, respectively.
2.99 <x <3.01
1.67 <y <1.72
3.15 <z <3.21
The thermal expansion coefficient of the single crystal substrate having the composition represented by the general formula (I) is about 1.07 × 10 −5 K −1 at room temperature to 850 ° C., and the bismuth-substituted rare earth iron garnet provided thereon. It almost coincides with the thermal expansion coefficient of the single crystal film.
[0012]
The shape and thickness of the single crystal substrate are not particularly limited, and those having the same shape and thickness as those of single crystal substrates conventionally used in the production of single crystal films for Faraday rotators and the like can be used. However, it is usually preferable to use a disc having a thickness of about 100 to 1200 μm.
[0013]
In the process of the present invention, the single crystal substrate, the general formula Bi a R 3-a Fe 5 -b M b O 12 (II)
(Wherein R is at least one rare earth metal, M is at least one metal selected from Ga, Al, In, Sc, Si, Ti, Ge and Mg, and a and b are as follows: The number of ranges to show.
0 <a <3.0
0 ≦ b ≦ 1.5)
A bismuth-substituted rare earth iron garnet single crystal film having a composition represented by the following formula is formed by a liquid phase epitaxial growth method. Here, the liquid phase epitaxial growth method is a method in which a substrate is immersed in a supersaturated solution or melt and an epitaxial crystal is grown on the substrate.
[0014]
Examples of the rare earth metal represented by R in the general formula (II) include Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. These may be contained in one kind or in two or more kinds. In the single crystal film of the present invention, it is necessary to replace a part of the rare earth metal represented by R with bismuth in order to match the lattice matching with the substrate and the thermal expansion coefficient. The ratio of substitution with bismuth is represented by a, and the value of a is in the range of 0 <a <3.0 in the present invention, but is particularly in the range of 0.5 to 1.5. This is advantageous because the thermal expansion coefficient of the single crystal film and the thermal expansion coefficient of the single crystal substrate are very close to each other. Further, M is a nonmagnetic metal element that can be substituted for Fe, and is Ga, Al, In, Sc, Si, Ti, Ge, or Mg. These may be included in one kind or in two or more kinds. May be. The ratio b of substitution of this nonmagnetic metal element with Fe is selected in the range of 0 to 1.5.
[0015]
Next, for suitably carrying out the method of the present invention, for example, (A) bismuth oxide, (B) at least one rare earth metal oxide, and (C) iron oxide are optionally used (D) Ga, Al, A homogeneous molten mixture containing at least one oxide of at least one metal selected from In, Sc, Si, Ti, Ge, and Mg in a predetermined ratio is prepared. At this time, a low melting point compound in which a constituent element such as lead oxide is not mixed in the single crystal is usually used as a deposition medium. Further, if desired, boron oxide or the like may be included as a crystal growth improver.
[0016]
Next, the single crystal substrate is immersed in the molten mixture, so that a single crystal is epitaxially grown from the molten mixture on the substrate. The temperature of the molten mixture at this time varies depending on the composition of the raw material mixture, but is usually selected in the range of 600 to 1000 ° C. Further, the substrate may be allowed to stand in the molten mixture for epitaxial growth, or may be epitaxially grown while being appropriately rotated. When rotating, the rotation speed is advantageously about 10 to 200 rpm. The film formation rate is usually about 0.08 to 0.8 μm / min. The immersion time varies depending on the film formation rate, the desired film thickness, and the like, and cannot be generally determined, but is usually about 10 to 100 hours.
[0017]
After the epitaxial growth is completed, the substrate is lifted from the molten mixture, and after the attached molten mixture is sufficiently shaken, it is cooled to room temperature. Next, it is immersed in a mineral acid aqueous solution such as dilute nitric acid to remove the solidified product of the molten mixture adhering to the surface of the formed single crystal film, and then washed with water and dried.
[0018]
Thus, the thickness of the bismuth-substituted rare earth iron garnet single crystal film having the composition represented by the general formula (II) formed on the substrate is usually in the range of 100 to 1000 μm.
[0019]
The crystal structure and composition of the bismuth-substituted rare earth iron garnet single crystal film formed on the substrate by the method of the present invention can be measured by X-ray diffraction and composition analysis by fluorescent X-ray, respectively. Further, the performance of the film can be evaluated by polishing the single crystal film and then providing a non-reflective film on both sides thereof to obtain the Faraday rotation coefficient, transmission loss, temperature characteristics, and the like.
[0020]
【The invention's effect】
According to the present invention, it is possible to efficiently produce a bismuth-substituted rare earth iron garnet single crystal film with few crystal defects and good crystal quality without cracks. The bismuth-substituted rare earth iron garnet single crystal film obtained by the method of the present invention is suitable as a Faraday rotator used for optical materials such as optical isolators and optical circulators.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
[0022]
Example 1
In a platinum crucible, Ho 2 O 3 5.747 g, Gd 2 O 3 6.724 g, B 2 O 3 43.214 g, Fe 2 O 3 126.84 g, PbO 989.6 g and Bi 2 O 3 826.4 g were added. The mixture was melted, stirred at about 1000 ° C. and homogenized, and then cooled at a rate of 120 ° C./hr, and kept in a supersaturated state at 832 ° C. Next, a Ca 3.00 Nb 1.69 Ga 3.19 O 12 single crystal substrate having a surface orientation of <111> and a diameter of 2 inches is immersed in the melt, and the single crystal is grown by liquid phase epitaxial growth while rotating the substrate at 100 rpm. A single crystal film having a thickness of 450 μm was formed thereon.
The number of crystal defects generated during epitaxial growth of the single crystal film was determined by subtracting the number of defects on the substrate from the number of crystal defects on the surface of the single crystal film, and found to be 4 for the single crystal film having a diameter of 2 inches. . Further, no cracks were observed in this single crystal film. When the obtained single crystal film was analyzed by a fluorescent X-ray method, it was a bismuth-substituted rare earth iron garnet single crystal film having a composition of Bi 1.1 Gd 1.1 Ho 0.8 Fe 5.0 O 12 . The thermal expansion coefficients of the single crystal film and the substrate were determined from room temperature to 850 ° C., and were 1.10 × 10 −5 K −1 and 1.07 × 10 −5 K −1 , respectively.
Next, the bismuth-substituted rare earth iron garnet single crystal film thus obtained was polished and provided with a non-reflective film on both sides, a transmission loss at a Faraday rotation coefficient of a wavelength of 1.55 μm, a Faraday rotation angle of 45 degrees, and When the temperature characteristics were evaluated, the Faraday rotation coefficient was 0.118 deg / μm, the transmission loss was 0.03 dB, and the temperature characteristics were 0.065 deg / ° C.
[0023]
Example 2
In a platinum crucible, Tb 2 O 3 14.110 g, Nd 2 O 3 1.521 g, B 2 O 3 46.45 g, Fe 2 O 3 148.82 g, PbO 1054.4 g and Bi 2
After adding 965.8 g of O 3 , melting and stirring at about 1000 ° C. and homogenizing, the temperature was lowered at a rate of 120 ° C./hr and maintained at a supersaturated state of 828 ° C. Next, a Ca 3.00 Nb 1.69 Ga 3.19 O 12 single crystal substrate having a surface orientation of <111> and a diameter of 2 inches is immersed in the melt, and the single crystal is grown by liquid phase epitaxial growth while rotating the substrate at 100 rpm. A single crystal film having a thickness of 550 μm was formed thereon.
The number of crystal defects generated during the epitaxial growth of the single crystal film was determined by subtracting the number of defects on the substrate from the number of crystal defects on the surface of the single crystal film, and found to be 5 for the single crystal film having a diameter of 2 inches. . Further, no cracks were observed in this single crystal film. When the obtained single crystal film was analyzed by a fluorescent X-ray method, it was a bismuth-substituted rare earth iron garnet single crystal film having a composition of Bi 0.9 Tb 2.0 Nd 0.1 Fe 5.0 O 12 . Further, the thermal expansion coefficients of the single crystal film and the substrate were determined from room temperature to 850 ° C., and were 1.08 × 10 −5 K −1 and 1.07 × 10 −5 K −1 , respectively.
Next, the bismuth-substituted rare earth iron garnet single crystal film thus obtained was polished and provided with a non-reflective film on both sides, a transmission loss at a Faraday rotation coefficient of a wavelength of 1.55 μm, a Faraday rotation angle of 45 degrees, and When the temperature characteristics were evaluated, the Faraday rotation coefficient was 0.090 deg / μm, the transmission loss was 0.14 dB, and the temperature characteristics were 0.042 deg / ° C.
[0024]
Example 3
In a platinum crucible, Y 2 O 3 9.110 g, Ga 2 O 3 5.765 g, B 2 O 3 39.64 g, Fe 2 O 3 131.68 g, PbO 922.4 g and Bi 2 O 3 960.3 g were added. The mixture was melted, stirred and homogenized at about 1000 ° C., then cooled at a rate of 120 ° C./hr, and maintained at a supersaturated state of 764 ° C. Next, a Ca 3.00 Nb 1.69 Ga 3.19 O 12 single crystal substrate having a surface orientation of <111> and a diameter of 2 inches is immersed in the melt, and the single crystal is grown by liquid phase epitaxial growth while rotating the substrate at 100 rpm. A single crystal film having a thickness of 360 μm was formed thereon.
The number of crystal defects generated during the epitaxial growth of the single crystal film was determined by subtracting the number of defects in the substrate from the number of crystal defects on the surface of the single crystal film. As a result, the number of single crystal films having a diameter of 2 inches was ten. . Further, no cracks were observed in this single crystal film. When the obtained single crystal film was analyzed by a fluorescent X-ray method, it was a bismuth-substituted rare earth iron garnet single crystal film having a composition of Bi 1.5 Y 1.5 Fe 4.7 Ga 0.3 O 12 . Further, the thermal expansion coefficients of the single crystal film and the substrate were determined from room temperature to 850 ° C., and were 1.11 × 10 −5 K −1 and 1.07 × 10 −5 K −1 , respectively.
Next, the bismuth-substituted rare earth iron garnet single crystal film thus obtained was polished and provided with a non-reflective film on both sides, a transmission loss at a Faraday rotation coefficient of a wavelength of 1.55 μm, a Faraday rotation angle of 45 degrees, and When the temperature characteristics were evaluated, the Faraday rotation coefficient was 0.129 deg / μm, the transmission loss was 0.02 dB, and the temperature characteristics were 0.070 deg / ° C.
[0025]
Example 4
In a platinum crucible, Tb 2 O 3 12.110 g, La 2 O 3 3.211 g, B 2 O 3 43.208 g, Fe 2 O 3 126.82 g, PbO 1124.4 g and Bi 2 O 3 826.3 g The mixture was melted, stirred at about 1000 ° C. and homogenized, and then cooled at a rate of 120 ° C./hr, and kept in a supersaturated state at 847 ° C. Next, a Ca 3.00 Nb 1.69 Ga 3.19 O 12 single crystal substrate having a surface orientation of <111> and a diameter of 2 inches is immersed in the melt, and the single crystal is grown by liquid phase epitaxial growth while rotating the substrate at 100 rpm. A single crystal film having a thickness of 920 μm was formed thereon.
From the number of crystal defects on the surface of the single crystal film, the number of crystal defects generated during the epitaxial growth of the single crystal film by subtracting the number of defects on the substrate was found to be 7 for the single crystal film having a diameter of 2 inches. . Further, no cracks were observed in this single crystal film. When the obtained single crystal film was analyzed by a fluorescent X-ray method, it was a bismuth-substituted rare earth iron garnet single crystal film having a composition of Bi 0.5 Tb 2.3 La 0.2 Fe 5.0 O 12 . Further, the thermal expansion coefficients of the single crystal film and the substrate were determined from room temperature to 850 ° C., and were 1.04 × 10 −5 K −1 and 1.07 × 10 −5 K −1 , respectively.
Next, the bismuth-substituted rare earth iron garnet single crystal film thus obtained was polished and provided with a non-reflective film on both sides, a transmission loss at a Faraday rotation coefficient of a wavelength of 1.55 μm, a Faraday rotation angle of 45 degrees, and When the temperature characteristics were evaluated, the Faraday rotation coefficient was 0.056 deg / μm, the transmission loss was 0.21 dB, and the temperature characteristics were 0.032 deg / ° C.
[0026]
Comparative Example To a platinum crucible, 15.059 g of Tb 2 O 3, 1.464 g of Nd 2 O 3, 47.55 g of B 2 O 3, 157.76 g of Fe 2 O 3, 182.6 g of PbO and Bi 2 O 3 958. 8 g was added, and the mixture was melted, stirred and homogenized at about 1000 ° C., then the temperature was lowered at a rate of 120 ° C./hr, and maintained at a supersaturated state of 839 ° C. Next, a CaMgZr-substituted GGG single crystal substrate having a surface orientation of <111> and a diameter of 2 inches is immersed in the melt, and the single crystal is grown by liquid phase epitaxial growth while rotating the substrate at 100 rpm. A film thickness of 520 μm is formed on the substrate. A single crystal film was formed.
The number of crystal defects generated during the epitaxial growth of the single crystal film was determined by subtracting the number of defects on the substrate from the number of crystal defects on the surface of the single crystal film, and it was 76 for the single crystal film having a diameter of 2 inches. . Further, in this single crystal film, eight concentric cracks occurred at the outer peripheral portion 6 mm inside from the edge. When the obtained single crystal film was analyzed by a fluorescent X-ray method, it was a bismuth-substituted rare earth iron garnet single crystal film having a composition of Bi 0.7 Tb 2.2 Nd 0.1 Fe 5.0 O 12 . Further, the thermal expansion coefficients of the single crystal film and the substrate were determined from room temperature to 850 ° C., and were 1.06 × 10 −5 K −1 and 0.87 × 10 −5 K −1 , respectively.
Next, the bismuth-substituted rare earth iron garnet single crystal film thus obtained was polished and provided with a non-reflective film on both sides to obtain a transmission loss at a Faraday rotation coefficient of 1.55 μm, a Faraday rotation angle of 45 degrees, and When the temperature characteristics were evaluated, the Faraday rotation coefficient was 0.076 deg / μm, the transmission loss was 0.17 dB, and the temperature characteristics were 0.037 deg / ° C.
[0027]
Table 1 summarizes the results of Examples 1 to 4 and the comparative example.
[0028]
[Table 1]
Figure 0003816591
[0029]
[note]
Bismuth substitution amount is, Bi a R 3-a Fe 5-b M b O 12 in the general formula (II)
(R, M, a, and b have the same meaning as described above).

Claims (2)

一般式
CaxNbyGaz12
(ただし、x、y及びzは以下に示す範囲の数である。
2.99<x<3.01
1.67<y<1.72
3.15<z<3.21)
で表わされる組成の単結晶基板上に、(A)酸化ビスマスと(B)少なくとも1種の希土類金属酸化物と(C)酸化鉄と場合により用いられる(D)Ga、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属の酸化物とを含む溶融混合物から液相エピタキシャル成長させることを特徴とする、一般式
Bia3-aFe5-bb12
(式中のRは希土類金属の少なくとも1種、MはGa、Al、In、Sc、Si、Ti、Ge及びMgの中から選ばれた少なくとも1種の金属であり、a及びbは以下に示す範囲の数である。
0<a<3.0
0≦b≦1.5)
で表わされる組成のビスマス置換希土類鉄ガーネット単結晶膜の製造方法。
Formula Ca x Nb y Ga z O 12
(However, x, y, and z are numbers in the following ranges.
2.99 <x <3.01
1.67 <y <1.72
3.15 <z <3.21)
(A) Bismuth oxide, (B) at least one rare earth metal oxide, and (C) iron oxide, optionally used (D) Ga, Al, In, Sc, Si, wherein the Ti, to liquid phase epitaxial growth from a molten mixture comprising an oxide of at least one metal selected from among Ge and Mg, the general formula Bi a R 3-a Fe 5 -b M b O 12
(Wherein R is at least one rare earth metal, M is at least one metal selected from Ga, Al, In, Sc, Si, Ti, Ge and Mg, and a and b are as follows: The number of ranges to show.
0 <a <3.0
0 ≦ b ≦ 1.5)
The manufacturing method of the bismuth substituted rare earth iron garnet single crystal film of the composition represented by these.
ビスマス置換希土類鉄ガーネット単結晶膜が、その組成式におけるaが0.5〜1.5の範囲の数である請求項1記載の製造方法。The manufacturing method according to claim 1, wherein the bismuth-substituted rare earth iron garnet single crystal film has a in the composition formula a in the range of 0.5 to 1.5.
JP23062196A 1996-08-30 1996-08-30 Method for producing bismuth-substituted rare earth iron garnet single crystal film Expired - Fee Related JP3816591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23062196A JP3816591B2 (en) 1996-08-30 1996-08-30 Method for producing bismuth-substituted rare earth iron garnet single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23062196A JP3816591B2 (en) 1996-08-30 1996-08-30 Method for producing bismuth-substituted rare earth iron garnet single crystal film

Publications (2)

Publication Number Publication Date
JPH1072296A JPH1072296A (en) 1998-03-17
JP3816591B2 true JP3816591B2 (en) 2006-08-30

Family

ID=16910651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23062196A Expired - Fee Related JP3816591B2 (en) 1996-08-30 1996-08-30 Method for producing bismuth-substituted rare earth iron garnet single crystal film

Country Status (1)

Country Link
JP (1) JP3816591B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699629B2 (en) * 2000-02-22 2005-09-28 Tdk株式会社 Magnetic garnet material and magneto-optical element using the same
EP1820886A4 (en) 2004-11-19 2010-12-22 Tdk Corp Magnetic garnet single crystal, optical device using same and method for producing single crystal
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
JP4720730B2 (en) 2006-01-27 2011-07-13 Tdk株式会社 Optical element manufacturing method
JP4702090B2 (en) 2006-02-20 2011-06-15 Tdk株式会社 Magnetic garnet single crystal and optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same

Also Published As

Publication number Publication date
JPH1072296A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
EP0409691A2 (en) Oxide garnet single crystal
JP5377785B1 (en) Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
JP3699629B2 (en) Magnetic garnet material and magneto-optical element using the same
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
KR100552094B1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
JPH11255600A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPWO2004070091A1 (en) Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof
JP2001044026A (en) Magnetic garnet single crystal and faraday rotator using the same
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
JPH06281902A (en) Magneto-optical element material
JPH10139596A (en) Single crystal substrate
JPH05117095A (en) Production of bismuth-substituted rare earth iron garnet
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2000119100A (en) Nonmagnetic garnet single crystal and magnetic garnet single crystal
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2002308696A (en) Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JP2794306B2 (en) Magnetic garnet material and Faraday rotating element
JP2004331454A (en) Bismuth substitution type magnetic garnet film and its manufacturing method
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees