JP2000119100A - Nonmagnetic garnet single crystal and magnetic garnet single crystal - Google Patents

Nonmagnetic garnet single crystal and magnetic garnet single crystal

Info

Publication number
JP2000119100A
JP2000119100A JP10291819A JP29181998A JP2000119100A JP 2000119100 A JP2000119100 A JP 2000119100A JP 10291819 A JP10291819 A JP 10291819A JP 29181998 A JP29181998 A JP 29181998A JP 2000119100 A JP2000119100 A JP 2000119100A
Authority
JP
Japan
Prior art keywords
single crystal
garnet single
crystal
substrate
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10291819A
Other languages
Japanese (ja)
Inventor
Shinzo Fujii
信三 藤井
Hirotaka Kawai
博貴 河合
Hiromitsu Umezawa
浩光 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP10291819A priority Critical patent/JP2000119100A/en
Publication of JP2000119100A publication Critical patent/JP2000119100A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonmagnetic garnet single crystal having a large lattice constant and excellent crystallinity, transparent in the wavelength region used by an optical communication, and suitable as the substrate for growing a magnetooptic crystal by an LPE method, and further to obtain a magnetic garnet LPE single crystal film by using the nonmagnetic garnet single crystal, capable of enlarging a Faraday rotational capacity by substituting a large amount of Bi. SOLUTION: This nonmagnetic garnet single crystal is composed of oxides comprising the all cations of Gd, Eu, Sc and Ga. Typically, the composition formula is represented by Gd3-sEusSCtGa5-tO12 (with the proviso that s and t satisfy the equations 0<s<3 and 1.8<t<2.2), and the lattice constant can be freely adjusted by changing the composition within the range of 1.256-1.262 nm. The magnetic garnet single crystal for a magnetooptic element is obtained by using the nonmagnetic garnet single crystal as a substrate, and carrying out LPE (liquid phase epitaxial)-growing thereof, and represented by the composition formula Gd3-x-yLaxBiyFe5O12 (with the proviso that x and y satisfy the relations 0.1<=x<=0.5 and 1.5<=y<=1.8).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Gd(ガドリニウ
ム),Eu(ユーロピウム),Sc(スカンジウム),
Ga(ガリウム)を含む非磁性ガーネット単結晶、及び
それを基板として液相エピタキシャル(LPE)法で育
成したBi(ビスマス)多量置換希土類鉄ガーネット単
結晶に関するものである。この非磁性ガーネット単結晶
は、格子定数が大きく、結晶性が良好で、光通信で使用
する波長域で透明なため、特にLPE法により磁気光学
素子を製造するのに有用である。
[0001] The present invention relates to Gd (gadolinium), Eu (europium), Sc (scandium),
The present invention relates to a nonmagnetic garnet single crystal containing Ga (gallium) and a Bi (bismuth) heavily substituted rare earth iron garnet single crystal grown by a liquid phase epitaxy (LPE) method using the same as a substrate. This nonmagnetic garnet single crystal has a large lattice constant, good crystallinity, and is transparent in a wavelength range used for optical communication, and is therefore particularly useful for manufacturing a magneto-optical element by the LPE method.

【0002】[0002]

【従来の技術】光アイソレータ、光サーキュレータ、光
スイッチ、あるいは光アッテネータ等の各種の光磁気デ
バイスでは、入射光の偏波面を回転させるファラデー回
転子が用いられ、その部品として磁気光学素子が組み込
まれている。この磁気光学素子としては、近年、Bi
(ビスマス)置換希土類鉄ガーネット単結晶が用いられ
ている。これは、希土類元素の一部をBiで置換するこ
とによって、ファラデー回転係数を大きくでき、必要な
ファラデー回転角を得るための単結晶の膜厚が数百μm
程度と薄くできるからである。
2. Description of the Related Art Various magneto-optical devices, such as optical isolators, optical circulators, optical switches, and optical attenuators, use a Faraday rotator for rotating the plane of polarization of incident light, and incorporate a magneto-optical element as a component thereof. ing. In recent years, as this magneto-optical element, Bi
A (bismuth) substituted rare earth iron garnet single crystal is used. This is because by replacing a part of the rare earth element with Bi, the Faraday rotation coefficient can be increased, and the thickness of the single crystal for obtaining a required Faraday rotation angle is several hundred μm.
This is because it can be made as thin as possible.

【0003】現在、この種の磁性ガーネット単結晶の製
造方法としてはLPE法が広く採用されている。これ
は、例えばPbO−Bi2 3 −B2 3 をフラックス
とし、(RBi)3 (FeM)5 12(但し、RはYを
含む希土類元素、MはTi,Si,Mn,Al,Ga
等)で示されるBi置換希土類鉄ガーネットの原料を溶
融した後、800℃前後に冷却してガーネットの過飽和
状態を作り、非磁性ガーネット基板をその融液に接触さ
せて、該基板上に液相エピタキシャル成長させる方法で
ある。このLPE法は、他の単結晶育成方法に比して量
産性に優れており、高品質の単結晶膜を安価に製造でき
る利点がある。
At present, the LPE method is widely used as a method for producing this kind of magnetic garnet single crystal. This is achieved by, for example, using PbO—Bi 2 O 3 —B 2 O 3 as a flux, (RBi) 3 (FeM) 5 O 12 (where R is a rare earth element containing Y, M is Ti, Si, Mn, Al, Ga
After melting the raw material of the Bi-substituted rare earth iron garnet shown in (1), it is cooled to about 800 ° C. to create a supersaturated state of the garnet, and the non-magnetic garnet substrate is brought into contact with the melt to form a liquid phase on the substrate. This is a method of performing epitaxial growth. This LPE method is superior in mass productivity to other single crystal growing methods, and has the advantage that a high quality single crystal film can be manufactured at low cost.

【0004】基板には、育成するLPE膜と同等の格子
定数を有し、且つ結晶性の良好な非磁性ガーネット単結
晶を用いる。例えば、格子定数が1.249nm程度のS
GGG(陽イオン置換ガドリニウム・ガリウム・ガーネ
ット)、格子定数が1.256nmのGSGG(ガドリニ
ウム・スカンジウム・ガリウム・ガーネット)、格子定
数が1.238nmのGGG(ガドリニウム・ガリウム・
ガーネット)等が一般に使用されている。
As a substrate, a nonmagnetic garnet single crystal having a lattice constant equivalent to that of the LPE film to be grown and having good crystallinity is used. For example, when the lattice constant of S is about 1.249 nm,
GGG (cation-substituted gadolinium gallium garnet), GSGG (gadolinium scandium gallium garnet) with a lattice constant of 1.256 nm, GGG (gadolinium gallium garnet) with a lattice constant of 1.238 nm
Garnet) is generally used.

【0005】ところで磁気光学素子用のBi置換希土類
鉄ガーネットLPE膜の特性指標の一つであるファラデ
ー回転能は、一般に膜中のビスマス含有量に比例して大
きくなる。しかし、ビスマス含有量に比例して膜結晶の
格子定数も大きくなるため、上記のような基板材料より
も大きな格子定数をもつ非磁性ガーネット単結晶が必要
であり、その開発が盛んに行われている。その例として
は、格子定数が1.265nm程度のGLSGG(ガドリ
ニウム・ルテチウム・スカンジウム・ガリウム・ガーネ
ット:特開平4−202096号公報)、あるいは格子
定数が1.262nm程度のNGSGG(ネオジム・ガド
リニウム・スカンジウム・ガリウム・ガーネット:特開
平8−21981号公報)などがある。
By the way, the Faraday rotation ability, which is one of the characteristic indices of a Bi-substituted rare earth iron garnet LPE film for a magneto-optical element, generally increases in proportion to the bismuth content in the film. However, since the lattice constant of the film crystal also increases in proportion to the bismuth content, a nonmagnetic garnet single crystal having a lattice constant larger than that of the above-described substrate material is required, and its development is actively performed. I have. Examples thereof include GLSGG (gadolinium / lutetium / scandium / gallium / garnet: JP-A-4-202096) having a lattice constant of about 1.265 nm, or NGSGG (neodymium / gadolinium / scandium) having a lattice constant of about 1.262 nm. Gallium garnet: JP-A-8-21981).

【0006】[0006]

【発明が解決しようとする課題】上記のようにビスマス
置換量の大きな(ファラデー回転能の大きな)LPE膜
を育成するためには、GLSGGあるいはNGSGGな
どの格子定数の大きな基板結晶を用いることが望まし
い。しかし、これらの基板結晶には次のような問題があ
る。即ち、GLSGGの場合には、原料に使用する酸化
ルテチウムの価格が高い。またNGSGGの場合には、
光通信で使用する波長1550nm付近でネオジムイオン
特有の光吸収があり、そのため、その基板上に育成した
LPE膜を磁気光学素子として使用する場合には、予め
基板結晶を研削などの手段で除去しておかねばならな
い。
In order to grow an LPE film having a large bismuth substitution amount (a large Faraday rotation capability) as described above, it is desirable to use a substrate crystal having a large lattice constant such as GLSGG or NGSGG. . However, these substrate crystals have the following problems. That is, in the case of GLSGG, the price of lutetium oxide used as a raw material is high. In the case of NGSGG,
There is light absorption peculiar to neodymium ions near the wavelength of 1550 nm used in optical communication. Therefore, when the LPE film grown on the substrate is used as a magneto-optical element, the substrate crystal is removed in advance by grinding or other means. Must be kept.

【0007】本発明の目的は、格子定数が大きく、結晶
性が良好で、光通信で使用される波長域で透明であり、
LPE法による磁気光学結晶の育成用の基板として好適
な非磁性ガーネット単結晶を提供することである。本発
明の他の目的は、Biを多量置換することでファラデー
回転能を大きくできる磁性ガーネットLPE単結晶膜を
提供することである。
An object of the present invention is to have a large lattice constant, good crystallinity, and transparency in a wavelength range used in optical communication.
An object of the present invention is to provide a nonmagnetic garnet single crystal suitable as a substrate for growing a magneto-optical crystal by the LPE method. Another object of the present invention is to provide a magnetic garnet LPE single crystal film that can increase the Faraday rotation ability by replacing a large amount of Bi.

【0008】[0008]

【課題を解決するための手段】本発明は、少なくとも陽
イオンがGd,Eu,Sc,Gaの全てを含む酸化物か
らなる非磁性ガーネット単結晶である。典型的には、組
成式がGd3-s EusSct Ga5-t 12(但し、0<
s<3,1.8<t<2.2)で示される非磁性ガーネ
ット単結晶である。ここでsの値は、0〜3の間で自由
に変えても綺麗な単結晶ができる。tの値は、1.8〜
2.2の範囲から外れると綺麗な単結晶ができない。こ
の非磁性ガーネット単結晶は、組成を変えることで、格
子定数を1.256nm〜1.262nmの範囲で自由に調
整可能である。この非磁性ガーネット単結晶は、特に磁
気光学素子として用いるビスマス多量置換希土類鉄ガー
ネットLPE膜育成用の基板として有用であるが、その
他、装飾用宝石としての用途にも有用である。
SUMMARY OF THE INVENTION The present invention is a nonmagnetic garnet single crystal in which at least a cation comprises an oxide containing all of Gd, Eu, Sc, and Ga. Typically, composition formula Gd 3-s Eu s Sc t Ga 5-t O 12 ( where 0 <
It is a nonmagnetic garnet single crystal represented by s <3, 1.8 <t <2.2). Here, a beautiful single crystal can be formed even if the value of s is freely changed between 0 and 3. The value of t is from 1.8 to
If it is out of the range of 2.2, a clean single crystal cannot be formed. The lattice constant of the nonmagnetic garnet single crystal can be freely adjusted in the range of 1.256 nm to 1.262 nm by changing the composition. This nonmagnetic garnet single crystal is particularly useful as a substrate for growing a bismuth heavily substituted rare earth iron garnet LPE film used as a magneto-optical element, but is also useful as a decorative jewelry.

【0009】また本発明は、格子定数が1.256nm〜
1.262nmの上記の少なくとも陽イオンがGd,E
u,Sc,Gaの全てを含む酸化物からなる非磁性ガー
ネット単結晶を基板とし、該基板上にLPE成長させ
た、組成式がGd3-x-y Lax Biy Fe5 12(但
し、0.1≦x≦0.5,1.5≦y≦1.8)で表さ
れる磁気光学素子用の磁性ガーネット単結晶である。
Further, according to the present invention, the lattice constant is 1.256 nm or more.
The at least cation at 1.262 nm is Gd, E
u, Sc, the non-magnetic garnet single crystal of an oxide containing all of Ga and substrate was LPE-grown on the substrate, a composition formula Gd 3-xy La x Bi y Fe 5 O 12 ( where 0 .1 ≦ x ≦ 0.5, 1.5 ≦ y ≦ 1.8) is a magnetic garnet single crystal for a magneto-optical element.

【0010】このようにLPE法により育成した磁性ガ
ーネット単結晶膜は、 Bi(ビスマス)を多量に置換することにより、ファ
ラデー回転係数が大きくなる。 結晶の格子定数を大きくすることにより、800nm〜
1000nmの鉄の吸収を短波長側にシフトさせることが
できる。 吸収の無い元素だけで構成することで、吸収が小さく
なる。 などの効果があり、980nm帯〜1500nm帯までの広
範囲で、特性の良好な磁気光学特性が発現する。
The magnetic garnet single crystal film grown by the LPE method has a large Faraday rotation coefficient by replacing a large amount of Bi (bismuth). By increasing the lattice constant of the crystal, 800 nm
The absorption of iron at 1000 nm can be shifted to shorter wavelengths. By using only an element having no absorption, the absorption is reduced. Thus, magneto-optical characteristics with excellent characteristics are exhibited in a wide range from the 980 nm band to the 1500 nm band.

【0011】[0011]

【発明の実施の態様】本発明の基板材料である非磁性ガ
ーネット単結晶は、次のようにして作製できる。原料と
して主にそれぞれの成分の酸化物を所定のモル比で秤量
後、ボールミルなどを用いて湿式混合する。十分に混合
した後、乾燥させ、静水圧プレスで加圧成形する。成形
体を予め焼成して、ガーネット相を形成させておいても
よい。その後、引き上げ法(チョクラルスキー法)で単
結晶を育成する。あるいはフローティングゾーン法など
の育成法を用いてもよい。引き上げ法ではイリジウム製
坩堝を用いる。また育成雰囲気は、イリジウムの酸化及
びイリジウムの析出などを抑制するために1容積%程度
の低酸素雰囲気で行う。
BEST MODE FOR CARRYING OUT THE INVENTION A non-magnetic garnet single crystal as a substrate material of the present invention can be produced as follows. Oxides of the respective components are mainly weighed at predetermined molar ratios as raw materials, and then wet-mixed using a ball mill or the like. After sufficient mixing, the mixture is dried and pressed by a hydrostatic press. The garnet phase may be formed by previously firing the molded body. Thereafter, a single crystal is grown by a pulling method (Czochralski method). Alternatively, a growing method such as a floating zone method may be used. In the lifting method, an iridium crucible is used. The growth is performed in a low-oxygen atmosphere of about 1% by volume in order to suppress oxidation of iridium, precipitation of iridium, and the like.

【0012】本組成系においては、結晶の組成によって
融点は異なるが、おおよそ1850℃以下である。高周
波加熱を用いて原料を融解後、種結晶を融液に接触させ
て引き上げることによって単結晶を育成する。結晶の引
き上げ速度は0.1〜20mm/h程度とし、結晶回転数
は1〜60rpm 程度とする。所定量の結晶を引き上げた
時点で結晶を融液から切り離し、徐冷する。このような
方法で、結晶ねじれやクラック等のマクロな欠陥、及び
結晶転位といったミクロな欠陥が非常に少ない良質の単
結晶を育成することができる。なお、本組成系において
は、格子定数の微調整のために他元素を少量添加しても
よい。
In this composition system, the melting point varies depending on the composition of the crystal, but it is about 1850 ° C. or less. After melting the raw material using high-frequency heating, a single crystal is grown by bringing the seed crystal into contact with the melt and pulling it up. The crystal pulling speed is about 0.1 to 20 mm / h, and the crystal rotation speed is about 1 to 60 rpm. When a predetermined amount of crystals has been pulled up, the crystals are separated from the melt and slowly cooled. By such a method, a high-quality single crystal having very few macro defects such as crystal twists and cracks and micro defects such as crystal dislocations can be grown. In this composition system, a small amount of another element may be added for fine adjustment of the lattice constant.

【0013】このようにして得られたGd3-s Eus
t Ga5-t 12(但し、0<s<3,1.8<t<
2.2)で示される非磁性ガーネット単結晶は、その格
子定数がs量に応じて1.256nm(s=0の場合)〜
1.262nm(s=3の場合)程度の範囲で調整可能で
ある。また各成分の偏析係数がほぼ1に近いため、育成
した単結晶において格子定数の変動は非常に小さい。更
に、約800nm〜1800nm付近までの波長帯域で透明
である。これらの特徴から、磁気光学素子として使用す
るためのビスマス多量置換希土類鉄ガーネットLPE単
結晶膜育成用基板として極めて有用である。
The thus obtained Gd 3-s Eu s S
c t Ga 5-t O 12 ( however, 0 <s <3,1.8 <t <
The nonmagnetic garnet single crystal represented by 2.2) has a lattice constant of 1.256 nm (when s = 0) or less depending on the amount of s.
It can be adjusted within a range of about 1.262 nm (when s = 3). Further, since the segregation coefficient of each component is almost equal to 1, the fluctuation of the lattice constant in the grown single crystal is very small. Further, it is transparent in a wavelength band from about 800 nm to around 1800 nm. From these characteristics, it is extremely useful as a substrate for growing a bismuth heavily substituted rare earth iron garnet LPE single crystal film for use as a magneto-optical element.

【0014】[0014]

【実施例】まずLPE膜作製用の基板として用いる非磁
性ガーネット単結晶についての実施例について説明す
る。結晶育成は引き上げ法で行った。
EXAMPLE First, an example of a nonmagnetic garnet single crystal used as a substrate for producing an LPE film will be described. The crystal was grown by the pulling method.

【0015】(実施例A1)出発原料として、Gd2
3 :Eu2 3 :Sc2 3 :Ga2 3 を1.8:
1.2:1.9:3.1のモル比となるように秤量し、
ボールミルを用いて湿式混合し、静水圧プレス1000
kg/cm2 の圧力でペレットを作製し、その後、大気雰囲
気のもとで1300℃で20時間焼成することによっ
て、多結晶体ガーネットを合成した。その組成はGd
1.8 Eu1.2 Sc1.9 Ga3.1 12である。この焼成原
料約400gを、外径50mm、高さ50mmのイリジウム
坩堝に投入して、窒素99%、酸素1%の雰囲気下で、
高周波誘導加熱により約1700℃で融解した。種結晶
としてNGSGGを用い、これを30rpm で回転させな
がら融液に浸し、1mm/hの速度で引き上げることによ
って1インチ径の単結晶を育成した。固化率が50%に
達した時点で、結晶を融液から切り離して、徐冷した。
これによって、茶褐色透明でクラック及び結晶ねじれが
無い単結晶を得ることができた。なお引き上げ方位は<
111>で行ったが、特にこの方位でなくてもよい。
(Example A1) Gd 2 O was used as a starting material.
3 : Eu 2 O 3 : Sc 2 O 3 : Ga 2 O 3 1.8:
Weighed to a molar ratio of 1.2: 1.9: 3.1,
Wet mixing using a ball mill, isostatic press 1000
Pellets were produced at a pressure of kg / cm 2 , and then fired at 1300 ° C. for 20 hours in an air atmosphere to synthesize polycrystalline garnet. Its composition is Gd
1.8 Eu 1.2 Sc 1.9 Ga 3.1 O 12 . About 400 g of this calcined raw material is put into an iridium crucible having an outer diameter of 50 mm and a height of 50 mm, and under an atmosphere of 99% nitrogen and 1% oxygen,
Melted at about 1700 ° C. by high frequency induction heating. NGSGG was used as a seed crystal, immersed in the melt while rotating at 30 rpm, and pulled up at a rate of 1 mm / h to grow a single crystal having a diameter of 1 inch. When the solidification rate reached 50%, the crystals were separated from the melt and slowly cooled.
As a result, a single crystal having a brownish-brown color and free from cracks and crystal distortion could be obtained. The lifting direction is <
111>, but the orientation does not have to be particularly limited.

【0016】次に、育成した単結晶の上部と下部からウ
エハを切り出し、結晶品位をエッチング法及びX線トポ
グラフ法で測定したところ、ほぼ無転位で且つ結晶性の
良好な単結晶であることが確認できた。また結晶の格子
定数をX線ボンド法で測定したところ、結晶上部では
1.2576nm、下部では1.2577nmであった。結
晶の組成はICP発光分光法で測定した。結晶上部、下
部ともほぼ仕込み組成と同組成であったことから、各成
分の偏析係数はほぼ1に近いことがわかった。光透過率
はウエハの両面を鏡面研磨し、分光光度計で測定した。
その結果を図1に示す。横軸は波長(nm)、縦軸は透過
率(%)である。また比較のために従来品(NGSG
G)の透過率も併記する。本発明品(EGSGG)で
は、波長800〜1800nmの範囲で透明であることが
分かる。
Next, a wafer was cut out from the upper and lower portions of the grown single crystal, and the crystal quality was measured by an etching method and an X-ray topography method. As a result, it was found that the single crystal had almost no dislocation and good crystallinity. It could be confirmed. When the lattice constant of the crystal was measured by the X-ray bonding method, it was 1.2576 nm in the upper part of the crystal and 1.2577 nm in the lower part. The composition of the crystals was measured by ICP emission spectroscopy. Since both the upper and lower parts of the crystal had almost the same composition as the charged composition, it was found that the segregation coefficient of each component was almost equal to 1. The light transmittance was measured with a spectrophotometer after mirror polishing both surfaces of the wafer.
The result is shown in FIG. The horizontal axis is the wavelength (nm), and the vertical axis is the transmittance (%). For comparison, a conventional product (NGSG
The transmittance of G) is also shown. It can be seen that the product of the present invention (EGGSGG) is transparent in the wavelength range of 800 to 1800 nm.

【0017】(実施例A2)仕込み組成がGd2.9 Eu
0.1 Sc1.8 Ga3.2 12であること以外は、実施例A
1と同様の方法で結晶を育成し評価した。結晶の格子定
数は1.2564nmであり、結晶上下部で差はなかっ
た。結晶品質も良好であった。
(Example A2) The charged composition is Gd 2.9 Eu.
Example A except for 0.1 Sc 1.8 Ga 3.2 O 12
Crystals were grown and evaluated in the same manner as in Example 1. The lattice constant of the crystal was 1.2564 nm, and there was no difference between the upper and lower portions of the crystal. The crystal quality was also good.

【0018】(実施例A3)仕込み組成がGd0.1 Eu
2.9 Sc2.1 Ga2.9 12であること以外は、実施例A
1と同様の方法で結晶を育成し評価した。結晶の格子定
数は1.2611nmであり、結晶上下部で差はなかっ
た。結晶品質も良好であった。
(Example A3) The charged composition is Gd 0.1 Eu.
Example A except for 2.9 Sc 2.1 Ga 2.9 O 12
Crystals were grown and evaluated in the same manner as in Example 1. The lattice constant of the crystal was 1.2611 nm, and there was no difference between the upper and lower portions of the crystal. The crystal quality was also good.

【0019】次に、直径25mm、厚さ500μmの本発
明に係る非磁性ガーネット単結晶を基板として用い、L
PE法により磁性ガーネット単結晶膜を育成した。その
実施例について説明する。また、比較のために従来の基
板結晶を用いてLPE法により磁性ガーネット単結晶膜
を育成した。そして、波長980nm及び1550nmでの
各LPE膜の磁気光学特性、即ちファラデー回転係数θ
(deg/cm)及び吸収係数α(dB/cm )を測定し、45度
回転損失L(dB)を算出して評価した。
Next, the nonmagnetic garnet single crystal of the present invention having a diameter of 25 mm and a thickness of 500 μm was used as a substrate,
A magnetic garnet single crystal film was grown by the PE method. The embodiment will be described. For comparison, a magnetic garnet single crystal film was grown by LPE using a conventional substrate crystal. Then, the magneto-optical characteristics of each LPE film at wavelengths of 980 nm and 1550 nm, that is, the Faraday rotation coefficient θ
(Deg / cm) and absorption coefficient α (dB / cm 2) were measured, and a 45 ° rotation loss L (dB) was calculated and evaluated.

【0020】(実施例B1)使用した基板結晶は、組成
がGd1.8 Eu1.2 Sc1.9 Ga3.1 12で、格子定数
が1.2576nmの非磁性ガーネット単結晶(前記の実
施例A1)であり、Gd1.1 La0.1 Bi1.8 Fe5
12を育成した。育成方法の詳細は、はじめにGd
2 3 ,La2 3 ,Bi2 3 ,Fe2 3 ,Pb
O,B2 3 からなる原料500gを白金坩堝に入れ、
950℃で10時間溶融し、引き続いて950℃で3時
間攪拌し、その後690℃まで降温し、基板結晶をその
融液に接触させて25時間かけて育成した。育成したL
PE膜の厚さは250μmであった。このLPE単結晶
膜を、鏡面加工し、反射防止膜を蒸着した後、磁気光学
特性を測定した。
[0020] (Example B1) substrate crystal used was composition with Gd 1.8 Eu 1.2 Sc 1.9 Ga 3.1 O 12, a non-magnetic garnet single crystal in lattice constant 1.2576Nm (above in Example A1), Gd 1.1 La 0.1 Bi 1.8 Fe 5 O
Fostered 12 For details of the breeding method,
2 O 3 , La 2 O 3 , Bi 2 O 3 , Fe 2 O 3 , Pb
500 g of a raw material composed of O and B 2 O 3 is placed in a platinum crucible,
The mixture was melted at 950 ° C. for 10 hours, subsequently stirred at 950 ° C. for 3 hours, and then cooled to 690 ° C., and the substrate crystal was brought into contact with the melt and grown for 25 hours. L cultivated
The thickness of the PE film was 250 μm. This LPE single crystal film was mirror-finished and an antireflection film was deposited, and then the magneto-optical characteristics were measured.

【0021】(実施例B2)基板結晶として、組成がG
2.9 Eu0.1 Sc1.8 Ga3.2 12で、格子定数が
1.2564nmの非磁性ガーネット単結晶(前記の実施
例A2)を使用し、Gd1.3 La0.2 Bi1.5 Fe5
12を育成した。育成方法は実施例B1と同様である。但
し、育成温度は730℃、膜厚は350μmであった。
実施例B1と同様の方法で試料を調製し、磁気光学特性
を測定した。
(Example B2) As a substrate crystal, the composition was G
A nonmagnetic garnet single crystal having a lattice constant of 1.2564 nm (Example A2 described above) of d 2.9 Eu 0.1 Sc 1.8 Ga 3.2 O 12 was used, and Gd 1.3 La 0.2 Bi 1.5 Fe 5 O 5 was used.
Fostered 12 The breeding method is the same as in Example B1. However, the growth temperature was 730 ° C., and the film thickness was 350 μm.
A sample was prepared in the same manner as in Example B1, and the magneto-optical characteristics were measured.

【0022】(実施例B3)基板結晶として、組成がG
0.1 Eu2.9 Sc2.1 Ga2.9 12で、格子定数が
1.2611nmの非磁性ガーネット単結晶(前記の実施
例A3)を使用し、Gd0.8 La0.5 Bi1.7 Fe5
12を育成した。育成方法は実施例B1と同様である。但
し、育成温度は700℃、膜厚は300μmであった。
実施例B1と同様の方法で試料を調製し、磁気光学特性
を測定した。
Example B3 A substrate crystal having a composition of G
d 0.1 Eu 2.9 Sc 2.1 Ga 2.9 In O 12, lattice constant using a non-magnetic garnet single crystal 1.2611Nm (the Example A3), Gd 0.8 La 0.5 Bi 1.7 Fe 5 O
Fostered 12 The breeding method is the same as in Example B1. However, the growth temperature was 700 ° C., and the film thickness was 300 μm.
A sample was prepared in the same manner as in Example B1, and the magneto-optical characteristics were measured.

【0023】(比較例1)基板結晶として、組成がNd
1.21Gd1.74Sc2.07Ga2.9812で、格子定数が1.
2619nmの非磁性ガーネット単結晶を使用し、Nd
1.69Bi1.31Fe512を育成した。育成方法は実施例
B1と同様である。実施例B1と同様の方法で試料を調
製し、磁気光学特性を測定した。
(Comparative Example 1) As a substrate crystal, the composition was Nd
1.21 Gd 1.74 Sc 2.07 Ga 2.98 O 12 with a lattice constant of 1.
Using a non-magnetic garnet single crystal of 2619 nm, Nd
1.69 Bi 1.31 Fe 5 O 12 was grown. The breeding method is the same as in Example B1. A sample was prepared in the same manner as in Example B1, and the magneto-optical characteristics were measured.

【0024】(比較例2)基板結晶として、組成が(C
aGd)3 (ZrMgGa)5 12で、格子定数が1.
2496nmの非磁性ガーネット単結晶を使用し、Tb
1.85Bi1.15Fe4. 75Al0.2512を育成した。育成方
法は実施例B1と同様である。実施例B1と同様の方法
で試料を調製し、磁気光学特性を測定した。
(Comparative Example 2) As a substrate crystal, the composition was (C
aGd) 3 (ZrMgGa) 5 O 12 with a lattice constant of 1.
Using a non-magnetic garnet single crystal of 2496 nm, Tb
1.85 Bi 1.15 Fe 4. was grown 75 Al 0.25 O 12. The breeding method is the same as in Example B1. A sample was prepared in the same manner as in Example B1, and the magneto-optical characteristics were measured.

【0025】上記各実施例及び各比較例についての測定
結果と評価結果を表1に示す。
Table 1 shows the measurement results and the evaluation results of the above Examples and Comparative Examples.

【0026】[0026]

【表1】 [Table 1]

【0027】特性合否の判定基準は、波長980nmで4
5度回転損失が4dB、波長1550nmで45度回転損
失が0.2dBとし、それ以下を合格とした。その理由
は、次のようなことによる。波長980nmの光は光増幅
器の励起光源として用いられるが、光増幅器への入力パ
ワーとして30mW程度が必要であり、出力は120mW程
度である。従って、結合損失を2dBとすると、4dB
が許容の上限である。波長1550nmの光は、通信光と
して用いられ、通常0.2dB程度が上限であると考え
られている。なお、特に波長980nmではファラデー回
転係数が大きいのでLPE膜厚は薄くて済むが、逆に薄
くなりすぎるために基板結晶を研削できず、そのまま残
すことになる。そのため、本発明のように波長約800
nm〜1800nmの間で透明な基板結晶は、基板結晶を残
したまま磁気光学素子として使用する場合に極めて好都
合である。
The criterion for determining whether the characteristic is acceptable is 4 at a wavelength of 980 nm.
The 5-degree rotation loss was 4 dB, and the 45-degree rotation loss at a wavelength of 1550 nm was 0.2 dB. The reason is as follows. Light having a wavelength of 980 nm is used as an excitation light source for an optical amplifier. The input power to the optical amplifier requires about 30 mW, and the output is about 120 mW. Therefore, if the coupling loss is 2 dB, 4 dB
Is the upper limit of tolerance. Light having a wavelength of 1550 nm is used as communication light, and it is generally considered that the upper limit is about 0.2 dB. In particular, at a wavelength of 980 nm, the Faraday rotation coefficient is large, so that the LPE film thickness can be made small. On the contrary, the substrate crystal cannot be ground because it is too thin, so that it remains as it is. Therefore, as in the present invention, a wavelength of about 800
A substrate crystal transparent between nm and 1800 nm is very convenient when used as a magneto-optical element while leaving the substrate crystal.

【0028】[0028]

【発明の効果】本発明に係る非磁性ガーネット単結晶
は、結晶品質が良好で、光通信波長帯で透明であり、各
成分の配合比を変化させることで約1.256nm〜1.
262nmまでの範囲で任意の格子定数を設定できる効果
がある。そのため、ビスマスを多量に置換する希土類鉄
ガーネットLPE膜を育成するための基板結晶として特
に有用である。
The non-magnetic garnet single crystal according to the present invention has a good crystal quality, is transparent in the optical communication wavelength band, and is varied from about 1.256 nm to 1.
There is an effect that an arbitrary lattice constant can be set in a range up to 262 nm. Therefore, it is particularly useful as a substrate crystal for growing a rare earth iron garnet LPE film that replaces bismuth in a large amount.

【0029】本発明による磁性ガーネット単結晶は、波
長約980nm〜約1550nmまでの広範囲にわたって、
磁気光学特性が良好であり、高性能の磁気光学素子が得
られる。特に、広い波長範囲においても一系統の組成で
対応できるため、製造し易い利点がある。
The magnetic garnet single crystal according to the present invention has a wide range of wavelengths from about 980 nm to about 1550 nm.
Good magneto-optical characteristics and a high-performance magneto-optical element can be obtained. In particular, there is an advantage that it can be easily manufactured because a single composition can be used even in a wide wavelength range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明品と従来品の波長に対する透過率の関係
を示すグラフ。
FIG. 1 is a graph showing the relationship between the wavelength and the transmittance of a product of the present invention and a conventional product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅澤 浩光 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 4G077 AA02 AA03 BC21 BC23 BC27 BC28 CF10 QA71 5E049 AB06 AB09 AC03 BA22 MC09 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiromitsu Umezawa 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. F-term (reference) 4G077 AA02 AA03 BC21 BC23 BC27 BC28 CF10 QA71 5E049 AB06 AB09 AC03 BA22 MC09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも陽イオンがGd,Eu,S
c,Gaの全てを含む酸化物からなる非磁性ガーネット
単結晶。
1. At least a cation is Gd, Eu, S
A non-magnetic garnet single crystal made of an oxide containing all of c and Ga.
【請求項2】 液相エピタキシャル法で用いる基板材料
であって、組成式がGd3-s Eus Sct Ga5-t 12
(但し、0<s<3,1.8<t<2.2)で示される
非磁性ガーネット単結晶。
2. A substrate material used in the liquid phase epitaxial method, a composition formula Gd 3-s Eu s Sc t Ga 5-t O 12
(However, a nonmagnetic garnet single crystal represented by 0 <s <3, 1.8 <t <2.2).
【請求項3】 格子定数が1.256nm〜1.262nm
である請求項1又は2に記載の非磁性ガーネット単結晶
を基板として、該基板上に液相エピタキシャル成長させ
た、組成式がGd3-x-y Lax Biy Fe5 12(但
し、0.1≦x≦0.5,1.5≦y≦1.8)で表さ
れる磁気光学素子用の磁性ガーネット単結晶。
3. A lattice constant of 1.256 nm to 1.262 nm.
As a substrate a non-magnetic garnet single crystal according to claim 1 or 2 is, was a liquid phase epitaxial growth on the substrate, a composition formula Gd 3-xy La x Bi y Fe 5 O 12 ( where 0.1 ≦ x ≦ 0.5, 1.5 ≦ y ≦ 1.8) A magnetic garnet single crystal for a magneto-optical element.
JP10291819A 1998-10-14 1998-10-14 Nonmagnetic garnet single crystal and magnetic garnet single crystal Pending JP2000119100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291819A JP2000119100A (en) 1998-10-14 1998-10-14 Nonmagnetic garnet single crystal and magnetic garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291819A JP2000119100A (en) 1998-10-14 1998-10-14 Nonmagnetic garnet single crystal and magnetic garnet single crystal

Publications (1)

Publication Number Publication Date
JP2000119100A true JP2000119100A (en) 2000-04-25

Family

ID=17773835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291819A Pending JP2000119100A (en) 1998-10-14 1998-10-14 Nonmagnetic garnet single crystal and magnetic garnet single crystal

Country Status (1)

Country Link
JP (1) JP2000119100A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032339A2 (en) * 2001-10-05 2003-04-17 Agere Systems, Inc. Process for fabricating an article comprising a magneto-optic garnet material
JP2008134595A (en) * 2006-10-30 2008-06-12 Namiki Precision Jewel Co Ltd Faraday rotator for short wavelength light and optical isolator provided with faraday rotator
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
CN106087056A (en) * 2016-08-03 2016-11-09 成都新源汇博光电科技有限公司 A kind of growth technique for YAG crystal
JP2017024960A (en) * 2015-07-27 2017-02-02 住友金属鉱山株式会社 Method for producing bismuth-substituted rare earth iron garnet crystal film and bismuth-substituted rare earth iron garnet crystal film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032339A2 (en) * 2001-10-05 2003-04-17 Agere Systems, Inc. Process for fabricating an article comprising a magneto-optic garnet material
WO2003032339A3 (en) * 2001-10-05 2003-07-31 Agere Systems Inc Process for fabricating an article comprising a magneto-optic garnet material
JP2008134595A (en) * 2006-10-30 2008-06-12 Namiki Precision Jewel Co Ltd Faraday rotator for short wavelength light and optical isolator provided with faraday rotator
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012116673A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
CN103221585A (en) * 2010-11-29 2013-07-24 住友金属矿山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
US9322111B2 (en) 2010-11-29 2016-04-26 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator
JP2017024960A (en) * 2015-07-27 2017-02-02 住友金属鉱山株式会社 Method for producing bismuth-substituted rare earth iron garnet crystal film and bismuth-substituted rare earth iron garnet crystal film
CN106087056A (en) * 2016-08-03 2016-11-09 成都新源汇博光电科技有限公司 A kind of growth technique for YAG crystal

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
KR100552094B1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
JP3699629B2 (en) Magnetic garnet material and magneto-optical element using the same
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
JP2000119100A (en) Nonmagnetic garnet single crystal and magnetic garnet single crystal
JPH11255600A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
CN111005071A (en) Dysprosium vanadate-doped magneto-optical crystal, and preparation growth method and application thereof
US4202930A (en) Lanthanum indium gallium garnets
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
CN110172734B (en) Cubic phase doped cerium ferrite magneto-optical material and preparation method and application thereof
CN114150365A (en) Preparation method of large-size yttrium iron garnet single crystal
US6165263A (en) Method for growing single crystal
JP2874320B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2715053B2 (en) Magneto-optical element material
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPS627631A (en) Magneto-optical element
CN110750002B (en) Perovskite type cubic phase doped bismuth ferrite magneto-optical material and preparation method and application thereof
JPH101397A (en) Garnet crystal for substrate of magneto-optical element and its production
JP3190038B2 (en) Garnet crystal for magneto-optical crystal film and method for producing the same
CN117265662A (en) Garnet crystal with strong magneto-optical effect, high Curie temperature and high bismuth-containing neodymium-doped rare earth iron suitable for 1310nm wave band