JP5416041B2 - Single crystal substrate and method for manufacturing single crystal substrate - Google Patents

Single crystal substrate and method for manufacturing single crystal substrate Download PDF

Info

Publication number
JP5416041B2
JP5416041B2 JP2010136454A JP2010136454A JP5416041B2 JP 5416041 B2 JP5416041 B2 JP 5416041B2 JP 2010136454 A JP2010136454 A JP 2010136454A JP 2010136454 A JP2010136454 A JP 2010136454A JP 5416041 B2 JP5416041 B2 JP 5416041B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crystal substrate
bismuth
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010136454A
Other languages
Japanese (ja)
Other versions
JP2012001381A (en
Inventor
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010136454A priority Critical patent/JP5416041B2/en
Publication of JP2012001381A publication Critical patent/JP2012001381A/en
Application granted granted Critical
Publication of JP5416041B2 publication Critical patent/JP5416041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるために好適に使用可能な単結晶基板とその製造方法に関する。   The present invention relates to a single crystal substrate that can be suitably used for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal and a method for manufacturing the same.

光通信ネットワークにおいて不可欠な、光アイソレータや光サーキュレータ、光磁界センサー等に用いられるファラデー回転子の材料としては、主に液相エピタキシャル法によって単結晶基板上に成長させたビスマス置換希土類鉄ガーネット単結晶膜が用いられている。   Bismuth-substituted rare earth iron garnet single crystal grown on a single crystal substrate mainly by liquid phase epitaxy as a material for Faraday rotators used in optical isolators, optical circulators, optical magnetic field sensors, etc., which are indispensable in optical communication networks A membrane is used.

このビスマス置換希土類鉄ガーネット単結晶膜をエピタキシャル成長によって高品質に成膜するためには、成膜温度から室温にまでのビスマス置換希土類鉄ガーネット膜と単結晶基板との格子定数差が極力小さいこと、すなわち室温において格子定数差が小さく、かつ、線膨張係数が近い単結晶基板を用いることが必要条件とされる。   In order to deposit this bismuth-substituted rare earth iron garnet single crystal film with high quality by epitaxial growth, the lattice constant difference between the bismuth-substituted rare earth iron garnet film and the single crystal substrate from the deposition temperature to room temperature is as small as possible. That is, it is necessary to use a single crystal substrate having a small lattice constant difference at room temperature and a close linear expansion coefficient.

この様な条件をみたす単結晶基板として、特許文献1に示されるCaNbGa12(2.9<x<3.1、1.6<y<1.8、3.1<z<3.3)単結晶(以下、CNGG単結晶と略す)が提案されている。
また、特許文献1ではこのCNGG結晶の結晶育成方法や、その結晶品質について記載されている。
As a single crystal substrate satisfying such a condition, Ca x Nb y Ga z O 12 (2.9 <x <3.1, 1.6 <y <1.8, 3.1 < z <3.3) Single crystals (hereinafter abbreviated as CNGG single crystals) have been proposed.
Patent Document 1 describes the crystal growth method of the CNGG crystal and the crystal quality.

この液相エピタキシャル法に用いられるCNGG単結晶基板は、量産性に富むチョクラルスキー(以下CZとも記載)法で引き上げることができる。
このCNGG単結晶基板は、基板結晶として重要な格子定数の値も12.50Åとビスマス置換希土類鉄ガーネット単結晶膜の格子定数と近似しており、また、室温〜850℃における熱膨張係数がビスマス置換希土類鉄ガーネット単結晶膜に近似して、10×10−6/℃と大きいことより注目されている。
このため、特許文献2に示されるようにCZ法での結晶引き上げ条件が検討されてきた。
The CNGG single crystal substrate used in this liquid phase epitaxial method can be pulled up by the Czochralski (hereinafter also referred to as CZ) method which is rich in mass productivity.
This CNGG single crystal substrate has an important lattice constant value of 12.50Å as a substrate crystal, which is close to the lattice constant of a bismuth-substituted rare earth iron garnet single crystal film, and has a coefficient of thermal expansion from room temperature to 850 ° C. It is attracting attention because it is as large as 10 × 10 −6 / ° C., which is close to a substituted rare earth iron garnet single crystal film.
For this reason, as shown in Patent Document 2, the crystal pulling condition by the CZ method has been studied.

特開平10−139596号公報Japanese Patent Laid-Open No. 10-139596 特開2005−89223号公報JP 2005-89223 A

しかしながら、特許文献2の図4に示されるように、特許文献1に記載されているような組成式のCNGG結晶は、CZ法によって単結晶を引き上げると、固液界面の形状を上に凸とするしかなく、直径制御が極めて困難な方法でしか引き上げることができないという欠点があり、量産性に大きな問題を抱えていた。   However, as shown in FIG. 4 of Patent Document 2, a CNGG crystal having a composition formula as described in Patent Document 1 has a solid-liquid interface shape that protrudes upward when the single crystal is pulled up by the CZ method. However, there is a drawback that the diameter can only be raised by a method that is extremely difficult to control the diameter, resulting in a large problem in mass productivity.

本発明は、上記問題に鑑みなされたものであって、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長によって育成するために必要不可欠な高い品質を有しており、ビスマス置換希土類鉄ガーネット単結晶膜の格子定数と近似した値で、かつ熱膨張係数も近似した値を持ち、さらに工業的に有利なCZ法で育成できる組成式の単結晶基板と、その製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has a high quality indispensable for growing a bismuth-substituted rare earth iron garnet single crystal by liquid phase epitaxial growth. It is an object of the present invention to provide a single crystal substrate having a compositional formula that has a value that approximates the lattice constant of the material and that has a thermal expansion coefficient that is approximate, and that can be grown by an industrially advantageous CZ method, and a method for producing the same .

上記課題を解決するため、本発明では、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるための単結晶基板であって、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表されるものであることを特徴とする単結晶基板を提供する。 In order to solve the above-described problems, the present invention provides a single crystal substrate for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal having the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3.1) I will provide a.

このように、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表される単結晶からなる基板とすることで、ガーネット結晶構造が安定化し、その品質が高いものとすることができる。また、歪みが小さく結晶構造が安定なため、CZ法での製造も容易であり、大量生産に向いている。
更に、その物性値(格子定数、線熱膨張係数など)はビスマス置換希土類鉄ガーネット単結晶の物性値と非常に類似しており、ビスマス置換希土類鉄ガーネット単結晶の液相エピタキシャル成長用の基板として非常に好適な組成である。
すなわち、高品質のビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるのに適し、かつその量産が容易かつ安価な単結晶基板となっている。
Thus, the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9). By using a substrate made of a single crystal represented by <z <3.1), the garnet crystal structure can be stabilized and the quality can be improved. In addition, since the distortion is small and the crystal structure is stable, the production by the CZ method is easy, which is suitable for mass production.
In addition, its physical properties (lattice constant, linear thermal expansion coefficient, etc.) are very similar to those of bismuth-substituted rare earth iron garnet single crystals, and it is very useful as a substrate for liquid phase epitaxial growth of bismuth-substituted rare earth iron garnet single crystals. Is a suitable composition.
That is, the single crystal substrate is suitable for liquid phase epitaxial growth of a high-quality bismuth-substituted rare earth iron garnet single crystal, and is easy and inexpensive to mass-produce.

ここで、前記xが、x=2×y1+y2の関係を満たすものであることが好ましい。
このように、x=2×y1+y2の関係を満たすと、単結晶が電気的に中性になり、より結晶欠陥が少ない高品質な単結晶となる。よって液相エピタキシャル法でのビスマス置換希土類鉄ガーネット結晶の育成により好適な基板とすることができる。
Here, it is preferable that the x satisfies the relationship x = 2 × y1 + y2.
Thus, when the relationship of x = 2 × y1 + y2 is satisfied, the single crystal becomes electrically neutral and becomes a high-quality single crystal with fewer crystal defects. Therefore, a suitable substrate can be obtained by growing bismuth-substituted rare earth iron garnet crystals by liquid phase epitaxy.

また、本発明では、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるための単結晶基板の製造方法であって、チョクラルスキー法によって、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表される単結晶を引き上げ、その後該単結晶を基板に加工して前記単結晶基板を作製することを特徴とする単結晶基板の製造方法を提供する。 The present invention is also a method for producing a single crystal substrate for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal, and the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2 .9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3.1), and then pulling up the single crystal Provided is a method for manufacturing a single crystal substrate, wherein the single crystal substrate is manufactured by processing a single crystal into a substrate.

このように、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表される単結晶とすることによって、単結晶中の式量が安定なものとなり、結晶性の良好な単結晶をCZ法で容易に引き上げることができる。そしてこのような単結晶を一般的な加工工程をして基板に加工することで、液相エピタキシャル法によるビスマス置換希土類鉄ガーネット単結晶を成長させるのに好適な基板を高生産性で製造することができる。 Thus, the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9). By using a single crystal represented by <z <3.1), the formula amount in the single crystal becomes stable, and a single crystal with good crystallinity can be easily pulled up by the CZ method. Then, by processing such a single crystal into a substrate through a general processing process, a substrate suitable for growing a bismuth-substituted rare earth iron garnet single crystal by a liquid phase epitaxial method is manufactured with high productivity. Can do.

ここで、前記xを、x=2×y1+y2の関係を満たすものとすることが好ましい。
このように、xを、x=2×y1+y2の関係を満たすものとすることによって、電気的に中性な単結晶とすることができ、より高結晶性の単結晶基板とすることができる。
Here, it is preferable that x satisfies the relationship x = 2 × y1 + y2.
Thus, by satisfying the relationship x = 2 × y1 + y2, x can be an electrically neutral single crystal, and a single crystal substrate with higher crystallinity can be obtained.

以上説明したように、本発明によれば、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長によって育成するのに適し、かつ工業的に有利なCZ法で育成できる組成式の単結晶基板と、その製造方法が提供される。   As described above, according to the present invention, a single crystal substrate having a composition formula suitable for growing a bismuth-substituted rare earth iron garnet single crystal by liquid phase epitaxial growth and growing by an industrially advantageous CZ method, and its A manufacturing method is provided.

以下、本発明についてより具体的に説明する。
前述のように、ビスマス置換希土類鉄ガーネット単結晶膜の格子定数と近似した値で、かつ熱膨張係数も近似した値を持ち、さらに工業的に有利なCZ法で育成できる組成式の単結晶基板の開発が待たれていた。
Hereinafter, the present invention will be described more specifically.
As described above, a single crystal substrate having a compositional formula that has a value that approximates the lattice constant of the bismuth-substituted rare earth iron garnet single crystal film and that also has a thermal expansion coefficient that can be grown by an industrially advantageous CZ method. The development of was awaited.

そこで、本発明者は、鋭意検討を重ねた結果、例えば特許文献1に記載されているようなCNGG単結晶における組成上の問題点を克服することで、高品質な単結晶を製造することができることを見出し、本発明を完成させた。   Therefore, as a result of intensive studies, the present inventor can manufacture a high-quality single crystal by overcoming the compositional problems in the CNGG single crystal described in Patent Document 1, for example. The present invention has been completed by finding out what can be done.

具体的には、本発明者は、特許文献1,2の記載に基づき、チョクラルスキー法でCNGG結晶の育成を試みた。
しかし、上述のように、特許文献2に記載の方法では、引き上げる結晶の直径を初めとした結晶制御が困難であり、目的とするビスマス置換希土類鉄ガーネット結晶を得るに至らなかった。
Specifically, the present inventors tried to grow CNGG crystals by the Czochralski method based on the descriptions in Patent Documents 1 and 2.
However, as described above, in the method described in Patent Document 2, it is difficult to control the crystal including the diameter of the crystal to be pulled up, and the target bismuth-substituted rare earth iron garnet crystal has not been obtained.

そこで、本発明者は、特許文献1,2に記載されているようなCNGG結晶の結晶育成が困難になる理由を以下のように考察した。
特許文献1に記載されているCNGG結晶の代表的な組成であるCaNb1.7Ga3.212組成は、電気的にはほぼ中性である。つまり、
陽イオンの数は(2)×3+(5)×1.7+(3)×3.2=24.1
陰イオンの数は(2)×12=24
であり、ほぼ一致している。
Then, this inventor considered as follows why the crystal growth of the CNGG crystal as described in patent documents 1 and 2 becomes difficult.
The Ca 3 Nb 1.7 Ga 3.2 O 12 composition, which is a typical composition of the CNGG crystal described in Patent Document 1, is almost neutral electrically. That means
The number of cations is (2 + ) × 3 + (5 + ) × 1.7 + (3 + ) × 3.2 = 24.1
The number of anions is (2 ) × 12 = 24
And is almost consistent.

一方、ガーネット結晶構造は、一般的に{c}{a}(d)12で示される。
CNGG結晶は、{c}サイトについてはCaが式量3.0で問題ないが、{a}サイトはNb5+だけでは不足でイオン半径の小さなGa3+が無理やりこのサイトに入らざるを得ないし、(d)サイトについてはGa3+が{a}サイトに0.3式量入ると、2.9式量となる。
このため、欠損が生じる可能性があり、従ってCNGG結晶は歪やすく、また、結晶がいびつなために育成が困難となったものと推察される。
なお、Gaの量やNbの量を増やすと、今度は陽イオンの数が増加し、電気的な中性が保たれなくなり、やはり結晶育成が困難になってしまう。
On the other hand, the garnet crystal structure is generally represented by {c} 3 {a} 2 (d) 3 O 12 .
The CNGG crystal has no problem with the formula amount of 3.0 for the {c} site, but the {a} site is insufficient with Nb 5+ alone and Ga 3+ with a small ionic radius has to be forced to enter this site. (D) For the site, when Ga 3+ enters 0.3 formula amount into the {a} site, it becomes 2.9 formula amount.
For this reason, there is a possibility that defects may occur. Therefore, the CNGG crystal is easily distorted, and it is presumed that the growth is difficult because the crystal is distorted.
If the amount of Ga or Nb is increased, the number of cations increases this time, the electric neutrality cannot be maintained, and crystal growth becomes difficult.

これに対し、鋭意検討を重ねた結果、本発明者は、CNGG結晶で起きる上記の問題を新しい組成、すなわちCaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)とすることで解決できることを発見し、本発明を完成させた。
例えばCa3.0Nb1.0Ti1.0Ga3.012という組成物については、電気的に中性とすることが可能である。つまり、
陽イオンの数は(2)×3.0+(5)×1.0+(4)×1.0+(3)×3.0=24.0
陰イオンの数は(2)×12=24.0
と完全に一致させることができる。
On the other hand, as a result of intensive studies, the present inventor has solved the above problem occurring in the CNGG crystal with a new composition, that is, Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0 .9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3.1) and found that the problem can be solved, and the present invention has been completed.
For example, a composition of Ca 3.0 Nb 1.0 Ti 1.0 Ga 3.0 O 12 can be electrically neutral. That means
The number of cations is (2 + ) × 3.0 + (5 + ) × 1.0 + (4 + ) × 1.0 + (3 + ) × 3.0 = 24.0
The number of anions is (2 ) × 12 = 24.0
And can be matched perfectly.

そして、ガーネット結晶構造の各サイトの式量は、{c}サイトは一番大きなイオン半径のCa2+イオンが3.0式量入り、{a}サイトには次に大きなイオン半径のNb5+とTi4+が各々1.0式量、合計2.0式量入り、(d)サイトには一番イオン半径の小さなGa3+が3.0式量はいることで無理なくガーネットの陽イオンサイトを占有する構造とすることができる。
この結果、この組成物は結晶育成が容易にでき、歪も生じることがないので比較的容易に高品質の大口径結晶の育成が可能となる。
And the formula weight of each site of the garnet crystal structure is that the {c} site has 3.0 formula weight of Ca 2+ ions having the largest ionic radius, and the {a} site has Nb 5+ having the next largest ionic radius. Ti 4+ each contains 1.0 formula weight, total 2.0 formula weight, (d) The cation site of garnet is reasonably easy because there is 3.0 formula weight of Ga 3+ with the smallest ion radius at the site. It can be an occupied structure.
As a result, this composition can easily grow crystals and does not generate distortion, so it is possible to grow high-quality large-diameter crystals relatively easily.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の単結晶基板は、ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるためのものであって、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表されるものである。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
A single crystal substrate of the present invention is for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal, and has a composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3.1).

このように、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表される単結晶基板は、格子定数、線熱膨張係数などの特性がビスマス置換希土類鉄ガーネット単結晶に類似したものとなっており、液相エピタキシャル成長によって高品質なビスマス置換希土類鉄ガーネット単結晶を成長させることができるものとなっている。
また、組成式が、ガーネット結晶構造の各サイトに適切なイオン半径のイオンが入る割合となっているため、結晶中の歪みが従来に比べて小さく、また結晶構造が安定しており、CZ法等量産に向いている製造方法での育成が容易なものとなっている。
Thus, the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9). The single crystal substrate represented by <z <3.1) has characteristics such as a lattice constant and a linear thermal expansion coefficient similar to those of a bismuth-substituted rare earth iron garnet single crystal, and has high quality by liquid phase epitaxial growth. A bismuth-substituted rare earth iron garnet single crystal can be grown.
In addition, since the composition formula is such that ions of appropriate ionic radii enter each site of the garnet crystal structure, the strain in the crystal is smaller than the conventional one, the crystal structure is stable, and the CZ method It is easy to grow with a manufacturing method suitable for mass production.

なお、x≦2.9やx≧3.1の場合、格子定数や線熱膨張係数が、ビスマス置換希土類鉄ガーネット単結晶と違いが大きくなり、高品質のビスマス置換希土類鉄ガーネット単結晶の製造に適さなくなる。
またy1,y2≦0.9やz≦2.9の場合、陽イオンの数が減少して電気的な中性が保たれず、結晶育成が困難となる。そしてy1,y2≧1.1やz≧3.1の場合、陽イオンの数が増加して電気的な中性が保たれなくなり、同様に結晶育成が困難になる。
そのため、本発明の単結晶基板では、組成式CaNby1Tiy2Ga12のx、y1、y2、zは、2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1の関係を満たすものとする。
In the case of x ≦ 2.9 or x ≧ 3.1, the lattice constant and the linear thermal expansion coefficient are significantly different from those of the bismuth-substituted rare earth iron garnet single crystal, so that high-quality bismuth-substituted rare earth iron garnet single crystal is produced. It is not suitable for.
In the case of y1, y2 ≦ 0.9 or z ≦ 2.9, the number of cations is reduced, the electric neutrality is not maintained, and crystal growth becomes difficult. In the case of y1, y2 ≧ 1.1 and z ≧ 3.1, the number of cations increases and the electrical neutrality cannot be maintained, and the crystal growth is similarly difficult.
Therefore, in the single crystal substrate of the present invention, x, y1, y2, and z of the composition formula Ca x Nb y1 Ti y2 Ga z O 12 are 2.9 <x <3.1, 0.9 <y1 <1. It is assumed that the relationship of 1, 0.9 <y2 <1.1, 2.9 <z <3.1 is satisfied.

ここで、xが、x=2×y1+y2の関係を満たすものであることが望ましく、これによって、単結晶の陽イオン数と陰イオン数が一致し、電気的に中性となる。このため、結晶欠陥が少ない高品質な単結晶とすることができ、より高結晶性のビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるのに非常に適した単結晶基板となる。   Here, it is desirable that x satisfies the relationship of x = 2 × y1 + y2, whereby the number of cations and the number of anions in the single crystal coincide with each other, and it becomes electrically neutral. Therefore, it is possible to obtain a high-quality single crystal with few crystal defects, and a single crystal substrate that is very suitable for liquid phase epitaxial growth of a higher crystalline bismuth-substituted rare earth iron garnet single crystal.

上記のような、本発明の単結晶基板は、以下に例示するような単結晶の製造方法によって製造することができるが、もちろんこれに限定されるものではない。   The single crystal substrate of the present invention as described above can be manufactured by a single crystal manufacturing method as exemplified below, but is not limited to this.

まず、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)を構成する元素の酸化物または炭酸塩(たとえば、CaCO、Nb、TiO、Gaなど)を、粉末状で所定の原子比になるように混合し、気密性の保たれた単結晶製造装置のルツボ内に収容する。 First, the composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3.1) Oxides or carbonates of elements (for example, CaCO 3 , Nb 2 O 5 , TiO 2 , Ga 2 O 3, etc.) are mixed in a powder form so as to have a predetermined atomic ratio. And accommodated in a crucible of a single crystal manufacturing apparatus that is kept airtight.

この時、上記xを、x=2×y1+y2の関係を満たすものとすることができ、これによって、電気的に中性な単結晶とすることができ、より高結晶性の単結晶とすることができる。   At this time, x can satisfy the relationship of x = 2 × y1 + y2, whereby an electrically neutral single crystal can be obtained, and a single crystal having higher crystallinity can be obtained. Can do.

その後、少量の酸素を含む窒素雰囲気下で、前記混合物を融解させて融液とする。
次いで、結晶引き上げ軸を下方に移動させることにより、その下端に取り付けられた種結晶をルツボ中の融液に接触させる。
そして、引き上げ軸を回転させながら上方に引き上げることにより、種結晶の下端に付着してくる融液を凝固させつつ結晶成長させ、単結晶を育成する。
Thereafter, the mixture is melted into a melt under a nitrogen atmosphere containing a small amount of oxygen.
Next, by moving the crystal pulling shaft downward, the seed crystal attached to the lower end thereof is brought into contact with the melt in the crucible.
Then, by pulling up while rotating the pulling shaft, the melt adhering to the lower end of the seed crystal is crystallized while solidifying to grow a single crystal.

このようにして製造される単結晶は、その組成式がCaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)からなるものである。
そしてこのような組成式からなる単結晶は、単結晶中の式量が安定なものとなり、欠陥の発生量が従来のもに比べて少ないものとなっている。そして歪みが小さく、従来CNGG系の結晶に比べて高結晶性であり、高品質である。
すなわち、このような単結晶は、たとえばビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるための単結晶基板材料として好適なものとなっている。
The single crystal manufactured in this way has a composition formula of Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 < y2 <1.1, 2.9 <z <3.1).
A single crystal having such a composition formula has a stable formula amount in the single crystal and has a smaller amount of defects than conventional ones. And distortion is small, it is highly crystalline compared with the conventional CNGG type crystal | crystallization, and is high quality.
That is, such a single crystal is suitable as a single crystal substrate material for liquid phase epitaxial growth of, for example, a bismuth-substituted rare earth iron garnet single crystal.

その後、育成した単結晶を内周刃スライサあるいはワイヤーソー等の切断装置によってスライスした後、面取り、ラッピング、エッチング、研磨等の工程を行い、基板にし、単結晶基板が完成する。   Thereafter, the grown single crystal is sliced by a cutting device such as an inner peripheral slicer or a wire saw, and then chamfering, lapping, etching, polishing, and the like are performed to form a substrate, thereby completing the single crystal substrate.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
純度99.99%の炭酸カルシウム(CaCO)原料、純度99.99%の酸化ニオブ(Nb)、純度99.99%の酸化チタン(TiO)と純度99.99%の酸化ガリウム(Ga)とを組成式CaNbTiGa12組成になるように秤量し、原料調合物を調整した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
99.99% pure calcium carbonate (CaCO 3 ) raw material, 99.99% pure niobium oxide (Nb 2 O 5 ), 99.99% pure titanium oxide (TiO 2 ), and 99.99% pure gallium oxide (Ga 2 O 3 ) was weighed so as to have a composition formula Ca 3 NbTiGa 3 O 12 composition to prepare a raw material formulation.

そしてこの調合物を混合し、白金製のるつぼに投入し、通常の高周波加熱炉を用いて溶融させた。
白金製のるつぼ形状は直径約150mm、高さ約150mmとした。また、種結晶としては10mm角に切出した(111)方位のGGG結晶(GdGa12結晶)を用いた。
育成は酸素濃度2%、残りは窒素ガスとした雰囲気で行い、ガス流量は1リットル/分とし、定法にしたがってCZ法で結晶成長を行った。
Then, this preparation was mixed, put into a platinum crucible, and melted using a normal high-frequency heating furnace.
The shape of the platinum crucible was about 150 mm in diameter and about 150 mm in height. Further, as the seed crystal, a GGG crystal (Gd 3 Ga 5 O 12 crystal) with a (111) orientation cut into a 10 mm square was used.
The growth was performed in an atmosphere in which the oxygen concentration was 2% and the rest was nitrogen gas, the gas flow rate was 1 liter / min, and crystal growth was performed by the CZ method according to a conventional method.

育成できた結晶の直径は80mmで長さは120mmであり、透明な結晶を得ることができた。
この結晶の両端面を切断し、円筒研削後に内周切断機でウェハー状に切断し、ラップ加工、研磨加工を行い、直径76.2mm、厚さ0.8mmのウェハーを作製した。
The grown crystal had a diameter of 80 mm and a length of 120 mm, and a transparent crystal could be obtained.
Both ends of the crystal were cut, and after cylindrical grinding, the wafer was cut into a wafer by an inner peripheral cutting machine, lapping and polishing were performed, and a wafer having a diameter of 76.2 mm and a thickness of 0.8 mm was produced.

このウェハーを熱リン酸でエッチングしたところ、無転位結晶であった。
そしてこの結晶の格子定数を測定した結果、12.5012Åであった。
また、室温から600℃までの熱膨張係数を測定した結果、9×10−6/℃と一般的なビスマス置換希土類鉄ガーネット結晶の値に近似していることが分かった。
When this wafer was etched with hot phosphoric acid, it was dislocation-free crystals.
And as a result of measuring the lattice constant of this crystal, it was 12.5012.
Moreover, as a result of measuring the thermal expansion coefficient from room temperature to 600 degreeC, it turned out that it approximates to the value of a common bismuth substituted rare earth iron garnet crystal with 9 * 10 < -6 > / degreeC.

更に、このウェハーを定法に従い、液相エピタキシャル法でこのウェハーの両面に組成式(BiTbEu)(FeGa)12で示されるビスマス置換希土類鉄ガーネット単結晶膜を育成し、室温で取り出した。
その結果、全くワレが観察されない非常にきれいなエピタキシャル膜であった。
Further, according to a conventional method, a bismuth-substituted rare earth iron garnet single crystal film represented by the composition formula (BiTbEu) 3 (FeGa) 5 O 12 was grown on both surfaces of the wafer by liquid phase epitaxy according to a conventional method, and taken out at room temperature.
As a result, it was a very clean epitaxial film with no cracks observed.

そして、このエピタキシャル膜を15mm角にダイシング加工を行い、ワイヤーソーでCaNbTiGa12組成のウェハー部分を切断し、この組成物をラップ加工で除去し、両面研磨を行うことで15mm角の(BiTbEu)(FeGa)12結晶を取り出した。
この結晶の波長1.55μmにおける挿入損失と消光比を測定した結果、各々0.08dB、43dBと、極めて消光比が大きく、つまり歪が少ない結晶となっていることが確認できた。
Then, the epitaxial film is diced to 15 mm square, the wafer portion of the Ca 3 NbTiGa 3 O 12 composition is cut with a wire saw, the composition is removed by lapping, and double-side polishing is performed. (BiTbEu) 3 (FeGa) 3 O 12 crystal was taken out.
As a result of measuring the insertion loss and extinction ratio of this crystal at a wavelength of 1.55 μm, it was confirmed that the crystals were extremely large extinction ratios, that is, distortions were 0.08 dB and 43 dB, respectively.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (4)

ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるための単結晶基板であって、
組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表されるものであることを特徴とする単結晶基板。
A single crystal substrate for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal,
Composition formula Ca x Nb y1 Ti y2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2.9 <z <3 (1) A single crystal substrate represented by
前記xが、x=2×y1+y2の関係を満たすものであることを特徴とする請求項1に記載の単結晶基板。   The single crystal substrate according to claim 1, wherein x satisfies a relationship of x = 2 × y1 + y2. ビスマス置換希土類鉄ガーネット単結晶を液相エピタキシャル成長させるための単結晶基板の製造方法であって、
チョクラルスキー法によって、組成式CaNby1Tiy2Ga12(2.9<x<3.1、0.9<y1<1.1、0.9<y2<1.1、2.9<z<3.1)で表される単結晶を引き上げ、その後該単結晶を基板に加工して前記単結晶基板を作製することを特徴とする単結晶基板の製造方法。
A method for producing a single crystal substrate for liquid phase epitaxial growth of a bismuth-substituted rare earth iron garnet single crystal,
By the Czochralski method, the composition formula Ca x Nb y 1 Ti y 2 Ga z O 12 (2.9 <x <3.1, 0.9 <y1 <1.1, 0.9 <y2 <1.1, 2 . 9 <z <3.1) A method for manufacturing a single crystal substrate, comprising pulling up the single crystal and then processing the single crystal into a substrate to manufacture the single crystal substrate.
前記xを、x=2×y1+y2の関係を満たすものとすることを特徴とする請求項3に記載の単結晶基板の製造方法。   4. The method for manufacturing a single crystal substrate according to claim 3, wherein x satisfies a relationship of x = 2 * y1 + y2.
JP2010136454A 2010-06-15 2010-06-15 Single crystal substrate and method for manufacturing single crystal substrate Expired - Fee Related JP5416041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136454A JP5416041B2 (en) 2010-06-15 2010-06-15 Single crystal substrate and method for manufacturing single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136454A JP5416041B2 (en) 2010-06-15 2010-06-15 Single crystal substrate and method for manufacturing single crystal substrate

Publications (2)

Publication Number Publication Date
JP2012001381A JP2012001381A (en) 2012-01-05
JP5416041B2 true JP5416041B2 (en) 2014-02-12

Family

ID=45533794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136454A Expired - Fee Related JP5416041B2 (en) 2010-06-15 2010-06-15 Single crystal substrate and method for manufacturing single crystal substrate

Country Status (1)

Country Link
JP (1) JP5416041B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230958A (en) * 2012-05-01 2013-11-14 National Institute For Materials Science Optical isolator material, method for producing the same, optical isolator, and optical processing apparatus
EP2789672B1 (en) * 2012-05-01 2016-12-14 National Institute for Materials Science Optical material and production method therefor, and light emitting diode, optical isolator, and optical processing apparatus which use said optical material
JP6029095B2 (en) * 2012-05-01 2016-11-24 国立研究開発法人物質・材料研究機構 UV light-excited yellow light-emitting material, method for producing the same, and light-emitting device
CN113683399A (en) * 2021-07-23 2021-11-23 桂林理工大学 Low-dielectric-constant microwave dielectric ceramic and preparation method thereof
CN113773054A (en) * 2021-09-22 2021-12-10 桂林理工大学 High Q x f gallate garnet structure microwave dielectric ceramic material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776156B2 (en) * 1988-09-30 1995-08-16 信越化学工業株式会社 Oxide garnet single crystal
JPH10139596A (en) * 1996-11-08 1998-05-26 Tdk Corp Single crystal substrate
JP2005089223A (en) * 2003-09-16 2005-04-07 Tdk Corp Single crystal and its manufacturing method
JP2005306673A (en) * 2004-04-22 2005-11-04 Tdk Corp Method for manufacturing single crystal

Also Published As

Publication number Publication date
JP2012001381A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
JP2012012259A (en) Nitride crystal and method for producing the same
WO2011049102A1 (en) Single crystal, process for producing same, optical isolator, and optical processor using same
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
EP2135978A1 (en) Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, LAMINATE THEREOF AND THEIR PRODUCTION METHODS
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
WO2015147101A1 (en) MANUFACTURING METHOD FOR β-GA2O3 SINGLE CRYSTAL LAYER, SAPPHIRE SUBSTRATE HAVING β-GA2O3 SINGLE CRYSTAL LAYER, FREE-STANDING β-GA2O3 SINGLE CRYSTAL AND MANUFACTURING METHOD THEREFOR
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
JP2014015366A (en) SUBSTRATE WITH β-Ga2O3 SINGLE CRYSTAL FILM AND ITS MANUFACTURING METHOD
JP5462105B2 (en) Garnet-type single crystal for Faraday rotator and optical isolator using the same
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP2011190138A (en) Method for producing multiferroic single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
WO2009119411A1 (en) Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
Klemenz High-quality langasite films grown by liquid phase epitaxy
JP2009234824A (en) METHOD FOR MANUFACTURING SELF-SUPPORTING WAFER OF Mg CONTAINING ZnO MIXED SINGLE CRYSTAL AND Mg CONTAINING ZnO MIXED SINGLE CRYSTAL USED FOR IT
JP2000119100A (en) Nonmagnetic garnet single crystal and magnetic garnet single crystal
JP2000247793A (en) Preparation of langacite type crystal
CN1622409A (en) Zinc oxide bluish violet light semiconductor growth using liquid phase epitaxial method
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2005089223A (en) Single crystal and its manufacturing method
JP2009234825A (en) METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT
JP2009221035A (en) Paramagnetic garnet crystal and method for producing the same
JP2003226599A (en) Method of manufacturing single crystal
EP0834605A1 (en) Oxide single crystal and method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

LAPS Cancellation because of no payment of annual fees