JP2009234825A - METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT - Google Patents

METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT Download PDF

Info

Publication number
JP2009234825A
JP2009234825A JP2008080639A JP2008080639A JP2009234825A JP 2009234825 A JP2009234825 A JP 2009234825A JP 2008080639 A JP2008080639 A JP 2008080639A JP 2008080639 A JP2008080639 A JP 2008080639A JP 2009234825 A JP2009234825 A JP 2009234825A
Authority
JP
Japan
Prior art keywords
single crystal
zno
zno single
substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080639A
Other languages
Japanese (ja)
Inventor
Hideyuki Sekiwa
秀幸 関和
Jun Kobayashi
純 小林
Miyuki Miyamoto
美幸 宮本
Naoki Ohashi
直樹 大橋
Isao Sakaguchi
勲 坂口
Yoshiki Wada
芳樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
National Institute for Materials Science
Original Assignee
Mitsubishi Gas Chemical Co Inc
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, National Institute for Materials Science filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008080639A priority Critical patent/JP2009234825A/en
Priority to CN2009801101420A priority patent/CN101978102A/en
Priority to PCT/JP2009/055301 priority patent/WO2009119411A1/en
Priority to EP09726041.8A priority patent/EP2267193A4/en
Priority to KR1020107023512A priority patent/KR20110003346A/en
Priority to US12/934,835 priority patent/US20110024742A1/en
Priority to TW098109335A priority patent/TW200951252A/en
Publication of JP2009234825A publication Critical patent/JP2009234825A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-supporting ZnO single crystal having a low Li concentration. <P>SOLUTION: ZnO as a solute is mixed with a solvent and melted. A ZnO single crystal is grown on a seed-crystal substrate 7 by liquid phase epitaxy by bringing the seed-crystal substrate 7 into direct contact with the resulting melt 8 and pulling up the seed-crystal substrate 7 continuously or intermittently. After the ZnO single crystal is grown, by removing the substrate 7 by abrasion or etching and abrading or etching the -c plane side grown by liquid phase epitaxy of the single crystal, the self-supporting ZnO single crystal is obtained. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ZnO系半導体材料に関し、特に、光学分野、電気・電子工業分野において有用なZnO単結晶の製造方法とそれによって得られた自立ZnO単結晶ウエファーに関する。   The present invention relates to a ZnO-based semiconductor material, and more particularly to a method for producing a ZnO single crystal useful in the fields of optics and electric / electronic industry and a free-standing ZnO single crystal wafer obtained thereby.

従来より、様々な機能を有する光・電子デバイスには、Si、GaAsおよびGaN等が用いられてきた。最近では、GaNを用いた発光デバイスや電子デバイス開発が活発に行われている。一方、酸化物に着目すると、ZnOは、バリスタ、ガスセンサー、日焼け止め等に用いられてきたが、最近その光学特性、電子素子特性および圧電特性から光学素子、電子素子、圧電素子および透明電極等への応用が図られ、注目を集めている。特に、ZnOがGaNと同様に直接遷移型の3.3〜3.4eVのバンドギャップを有し、380nmの紫外光を出すことが知られており、青色から紫外域に至る短波長の光を発光する発光素子用半導体に対する用途および応用に対する研究開発が盛んとなっている。   Conventionally, Si, GaAs, GaN, and the like have been used for optical and electronic devices having various functions. Recently, light-emitting devices and electronic devices using GaN have been actively developed. On the other hand, focusing on oxides, ZnO has been used for varistors, gas sensors, sunscreens, etc. Recently, optical elements, electronic elements, piezoelectric elements, transparent electrodes, etc., due to its optical characteristics, electronic element characteristics and piezoelectric characteristics. Has been attracting attention. In particular, it is known that ZnO has a direct transition type band gap of 3.3 to 3.4 eV like GaN and emits 380 nm ultraviolet light, and emits light of a short wavelength from blue to ultraviolet region. Research and development for applications and applications for semiconductors for light-emitting elements that emit light has become active.

また、ZnO系半導体単結晶積層体において、電界効果トランジスタとは異なり、電界を印加しない状態で半導体同士を接触させて電荷分離を生じさせる方法のひとつとして変調ドーピング法がある。例えば、特開2005−72067号公報(特許文献1)は、バンドギャップが広く電子濃度の高い半導体とバンドギャップが狭く電子移動度の高い半導体とを積層することにより、電子濃度の高い半導体から電子移動度の高い半導体への電荷移動が誘起され、高い移動度をもった層を電子が移動することによって高い電子濃度と高電子移動度を共に満足する半導体材料を開示している。   In addition, unlike a field effect transistor in a ZnO-based semiconductor single crystal stacked body, there is a modulation doping method as one method for causing charge separation by bringing semiconductors into contact with each other without applying an electric field. For example, Japanese Patent Laying-Open No. 2005-72067 (Patent Document 1) discloses that a semiconductor having a wide band gap and a high electron concentration and a semiconductor having a narrow band gap and a high electron mobility are stacked to form an electron from a semiconductor having a high electron concentration. A semiconductor material that satisfies both a high electron concentration and a high electron mobility is disclosed by inducing charge transfer to a semiconductor with high mobility and moving electrons through a layer with high mobility.

更に、ZnOを用いた紫外線発光デバイスを製造するために、広いバンドギャップを持つII−VI族半導体混晶のZn1-xMgxOがパルスレーザー堆積法により成長温度600℃で得られ、組成xを調整することでZnOより広いバンドギャップが得られることが示されている(A.Ohtomo et.al , Applied Physics Letters , Vol.72 , No.19 , 11 May 1998 , 2466-2468)(非特許文献1)。また、発光素子への応用を考慮した場合、発光効率を上げるためには、ダブルへテロ構造を採用する必要がある。上記構造を採用することにより、キャリヤの閉じ込めや光取り出し効率が向上し、発光効率が向上する。上記構造を形成するためには、発光層をバンドギャップが高いn層とp層で挟み込む必要があり、そのためには、ZnOよりバンドギャップが高いZnO系混晶単結晶が必要となり、同時にn型およびp型のZnO単結晶が必要となる。 Furthermore, in order to manufacture an ultraviolet light emitting device using ZnO, a Zn 1-x Mg x O of a II-VI group semiconductor mixed crystal having a wide band gap was obtained by a pulse laser deposition method at a growth temperature of 600 ° C. It has been shown that a wider band gap than ZnO can be obtained by adjusting x (A. Ohtomo et.al, Applied Physics Letters, Vol.72, No.19, 11 May 1998, 2466-2468) Patent Document 1). In consideration of application to a light emitting element, it is necessary to adopt a double hetero structure in order to increase the light emission efficiency. By employing the above structure, carrier confinement and light extraction efficiency are improved, and light emission efficiency is improved. In order to form the above structure, it is necessary to sandwich the light emitting layer between an n layer and a p layer having a high band gap, and for this purpose, a ZnO mixed crystal single crystal having a band gap higher than that of ZnO is required, and at the same time, an n-type In addition, a p-type ZnO single crystal is required.

ZnO系半導体単結晶の電子素子特性や光学素子特性を発揮させるためには、高い結晶性が必要となる。ZnO系半導体単結晶は、従来、ZnO、ScAlMgO4およびサファイヤ等の絶縁性基板を用いた気相成長法で成長させていた。高い結晶性を実現するためには、格子不整合が少ない基板を用いる必要がある。そのためには、ZnO単結晶を基板として使用することが望ましい。しかしながら、市販のZnO単結晶基板は、水熱合成法で成長されており、鉱化剤として用いられるLiOHに基づくLiのZnO単結晶への混入が避けられない。ZnO中のLiは拡散しやすく、デバイス稼動時にLiが移動してデバイス動作を不安定にする問題点があり、ZnO基板中のLiは少なければ少ないほど良い。そこで、ポストグロースアニールで、水熱合成基板内のLi濃度を低減させる手法が特開2007−204324号公報(特許文献2)に開示されている。同公報によれば、1100℃で1〜2時間のアニールで8.4×1016個/cm3から2.0×1017個/cm3程度、1300℃で2時間程度アニール処理すると9×1014個/cm3程度までZnO中のLi濃度を低減できると記載されている。同公報によればアニール処理することでLi濃度を低減させることは可能である。しかし、この方法ではアニール工程が必要になるため工程が煩雑になり、またアニール処理を施してもLiが1×1015個/cm3程度残存するという問題点があった。 High crystallinity is required to exhibit the electronic element characteristics and optical element characteristics of the ZnO-based semiconductor single crystal. Conventionally, a ZnO-based semiconductor single crystal has been grown by a vapor phase growth method using an insulating substrate such as ZnO, ScAlMgO 4 and sapphire. In order to achieve high crystallinity, it is necessary to use a substrate with less lattice mismatch. For that purpose, it is desirable to use a ZnO single crystal as a substrate. However, a commercially available ZnO single crystal substrate is grown by a hydrothermal synthesis method, and it is inevitable that Li based on LiOH used as a mineralizer is mixed into the ZnO single crystal. Li in ZnO is easily diffused, and there is a problem that Li moves when the device is operated to make the device operation unstable. The smaller the Li in the ZnO substrate, the better. Therefore, a technique for reducing the Li concentration in the hydrothermal synthesis substrate by post-growth annealing is disclosed in Japanese Patent Application Laid-Open No. 2007-204324 (Patent Document 2). According to the publication, annealing at 1100 ° C. for 1 to 2 hours is about 8.4 × 10 16 pieces / cm 3 to 2.0 × 10 17 pieces / cm 3 , and annealing at 1300 ° C. for about 2 hours is 9 ×. It is described that the Li concentration in ZnO can be reduced to about 10 14 atoms / cm 3 . According to the publication, it is possible to reduce the Li concentration by annealing. However, this method requires an annealing process, and thus the process becomes complicated, and there is a problem that about 1 × 10 15 pieces / cm 3 of Li remains even after annealing.

一方、膜厚が厚いZnO系半導体単結晶を成長させ、その後水熱合成基板を研磨やエッチングで除去することにより該ZnO系半導体単結晶を自立化させることができれば、水熱合成基板からのLi不純物の混入を著しく低減できる。更には、導電性を付与できる不純物を同時にドープし、自立化させることができれば、Li濃度が低く導電性を有する自立導電性ZnO単結晶ウエファーを提供することが可能となる。   On the other hand, if the ZnO-based semiconductor single crystal can be made self-supporting by growing a thick ZnO-based semiconductor single crystal and then removing the hydrothermal synthetic substrate by polishing or etching, Li Impurity contamination can be significantly reduced. Furthermore, if an impurity capable of imparting conductivity can be simultaneously doped and self-supported, it is possible to provide a self-supporting conductive ZnO single crystal wafer having a low Li concentration and conductivity.

本発明者らは、先に「液相成長法によるZnO単結晶の製造方法」(国際公開第2007/100146号パンフレット(特許文献3)を出願している。この公報に記載の発明を用いれば、膜厚が厚いZnO単結晶を成長可能である。しかしながら、この発明を用いた場合、クラックフリーで自立ZnO単結晶を製造する場合、歩留が低いことが判明した。本発明者らが鋭意研究したところ、基板をホールドするPt冶工具近傍でのフラックス析出が歩留を低下させる要因であることが分かった。このように、本発明者らが出願した方法を用いれば、膜厚が厚いZnO単結晶を成長させ、成長に用いた基板を除去すれば、自立したZnO単結晶を製造することは可能であるが、成長に用いたPt冶工具に析出するフラックス成分を基点としたクラックが成長、冷却および研削/研磨過程で発生するという問題点があった。   The present inventors have previously filed a “method for producing a ZnO single crystal by a liquid phase growth method” (International Publication No. 2007/100146 pamphlet (Patent Document 3). If the invention described in this publication is used, However, when this invention is used, it has been found that the yield is low when a free-standing ZnO single crystal is produced without cracks. As a result of research, it has been found that flux precipitation in the vicinity of the Pt jig holding the substrate is a factor that reduces the yield, and thus, if the method applied by the present inventors is used, the film thickness is large. It is possible to produce a self-supporting ZnO single crystal by growing the ZnO single crystal and removing the substrate used for the growth, but based on the flux component deposited on the Pt jig tool used for the growth. Rack growth, there is a problem that occurs in the cooling and grinding / polishing process.

本発明者らは、上記の問題点を鋭意検討し、以下の問題点があることを見出した。図1を用いて説明する。これまでの方法では、酸化亜鉛A−1を基板として結晶層を液相エピタキシャル(Liquid phase epitaxial:LPE)成長させるため(以下、成長した結晶層を「LPE層」という場合がある。)、成長後は、水熱合成基板中のLi濃度が減少したB−3部と元々のLi濃度を有するB−1部となる。また、LPE層B−2を成長させる際、初期に成長した部分では水熱合成基板中のLiが拡散し、LPE成長膜中にLi濃度が増加したB−4層が形成される。このため、B−1およびB−3を取り除くのみでは、得られた自立基板は、本来得るべきLPE層B−2とLi拡散層B−4とから構成されるものであった。これを成長用基板として光学素子あるいは電子素子を形成すると、B−2に比べて、僅かにLi濃度が高いB−4層が原因となり、デバイス特性を不安定化させていた。
また、ZnO基板と成長する不純物ドープZnO膜とでは、少なからず格子不整合が発生するが、歪みの緩和の面でも厚膜成長が必要となる。しかしながら、気相成長では成長速度が低く、厚膜成長が極めて困難であった。一方、液相成長法では、過飽和度を制御することで成長速度を制御でき、比較的高い成長速度が可能となる。
The present inventors diligently studied the above problems and found that there are the following problems. This will be described with reference to FIG. In the conventional method, the crystal layer is grown by liquid phase epitaxial (LPE) using zinc oxide A-1 as a substrate (hereinafter, the grown crystal layer may be referred to as “LPE layer”). After that, the B-3 part in which the Li concentration in the hydrothermal synthesis substrate is reduced and the B-1 part having the original Li concentration are obtained. Further, when the LPE layer B-2 is grown, Li in the hydrothermal synthesis substrate diffuses in the initially grown portion, and a B-4 layer having an increased Li concentration is formed in the LPE growth film. For this reason, only by removing B-1 and B-3, the obtained self-supporting substrate is composed of the LPE layer B-2 and the Li diffusion layer B-4 that should be originally obtained. When an optical element or an electronic element was formed using this as a growth substrate, the B-4 layer having a slightly higher Li concentration than B-2 caused the device characteristics to become unstable.
In addition, there is a considerable lattice mismatch between the ZnO substrate and the grown impurity-doped ZnO film, but thick film growth is also necessary in terms of strain relaxation. However, in vapor phase growth, the growth rate is low, and thick film growth is extremely difficult. On the other hand, in the liquid phase growth method, the growth rate can be controlled by controlling the degree of supersaturation, and a relatively high growth rate is possible.

一方、前述したように、気相成長および液相成長においては、絶縁性材料を基板に用いることが多い。このため、ZnO系混晶単結晶を用いた電子素子や光学素子を形成するためには、同一方向に電極を形成すること等の工夫が必要であった。この方法では、電子素子や光学素子の作製工程が複雑となり、コスト高の要因となる上、n型コンタクト層(n+)層の一部に電界が集中し素子寿命が短くなる、等の問題点があった。しかしながら、絶縁性基板を用いて電気伝導性を持ったZnO膜を厚く成長させ、不要となる絶縁性基板を研磨等で除去できれば、表裏に電極を形成でき、デバイスの作製工程においても、デバイス特性や寿命の面でも性能向上が期待できる(図2参照)。 On the other hand, as described above, an insulating material is often used for a substrate in vapor phase growth and liquid phase growth. For this reason, in order to form an electronic element or an optical element using a ZnO-based mixed crystal single crystal, it is necessary to devise such as forming electrodes in the same direction. This method complicates the manufacturing process of the electronic element and the optical element, which causes high costs, and also has a problem that the electric field is concentrated on a part of the n-type contact layer (n + ) layer and the element life is shortened. There was a point. However, if an electrically conductive ZnO film is grown thick using an insulating substrate and unnecessary insulating substrates can be removed by polishing or the like, electrodes can be formed on the front and back surfaces, and device characteristics can be obtained even in the device fabrication process. In addition, it can be expected to improve performance in terms of life (see Fig. 2).

更に、上記材料の研究としてのZnO系半導体単結晶およびその積層体は非熱平衡成長である気相成長法により成長されており(例えば特開2003−046081号公報(特許文献4))、非熱平衡成長欠陥の混入が避けられず、結晶品質が十分なものとはいえない。従来の半導体素子の一例である電界効果トランジスタやpn接合発光素子などでは、その結晶性が光学特性や半導体特性に大きく関与する。前述したように気相成長法による結晶の結晶品質は十分なものではなかったため、本来の性能を十分発揮できないという問題点があった。そのため上記の用途などに適用および発展させていくためには、結晶品質の高いZnO単結晶の製造方法を確立させることが重要な課題となる。   Further, the ZnO-based semiconductor single crystal and the laminated body thereof as a study of the above materials are grown by a vapor phase growth method which is non-thermal equilibrium growth (for example, Japanese Patent Application Laid-Open No. 2003-046081 (Patent Document 4)). Mixing of growth defects is unavoidable, and the crystal quality is not sufficient. In a field effect transistor, a pn junction light emitting element, or the like, which is an example of a conventional semiconductor element, the crystallinity is greatly involved in optical characteristics and semiconductor characteristics. As described above, since the crystal quality of the crystal by the vapor phase growth method was not sufficient, there was a problem that the original performance could not be sufficiently exhibited. Therefore, in order to apply and develop the above-mentioned uses, it is important to establish a method for producing a ZnO single crystal with high crystal quality.

ZnO系半導体単結晶を成長させる方法としては、従来、スパッタ法、CVD法およびPLD法等が用いられてきた。これらの方法では、ZnO系半導体層の成長方位は−c面方位であった。−c面成長では、アクセプターを取り込みにくいという問題点があった(Maki et al. Jpn. J. Appl. Phys. 42 (2003) 75-77)(非特許文献2)。ZnO系半導体層の場合、n型成長は比較的容易であるが、p型成長が困難であることを考慮すると、−c面成長では、よりp型層を成長することが困難となるという問題点があった。
特開2005−72067 特開2007−204324 国際公開第2007/100146号パンフレット 特開2003−046081 A.Ohtomo et.al , Applied Physics Letters , Vol.72 , No.19 , 11 May 1998 , 2466-2468 Maki et al. Jpn. J. Appl. Phys. 42 (2003) 75-77
Conventionally, sputtering, CVD, PLD, and the like have been used as methods for growing a ZnO-based semiconductor single crystal. In these methods, the growth orientation of the ZnO-based semiconductor layer was the -c plane orientation. -C-plane growth has a problem that it is difficult to incorporate acceptors (Maki et al. Jpn. J. Appl. Phys. 42 (2003) 75-77) (Non-patent Document 2). In the case of a ZnO-based semiconductor layer, n-type growth is relatively easy, but considering that p-type growth is difficult, it is difficult to grow a p-type layer by -c plane growth. There was a point.
JP-A-2005-72067 JP2007-204324A International Publication No. 2007/100146 Pamphlet JP 2003-046081 A A.Ohtomo et.al, Applied Physics Letters, Vol.72, No.19, 11 May 1998, 2466-2468 Maki et al. Jpn. J. Appl. Phys. 42 (2003) 75-77

ZnO水熱合成基板は鉱化剤に基づくLiが混入しており、これを基板としてZnO単結晶のLPE成長を行うとLPE成長膜側へLiが拡散する問題点があった。更には、LPE成長法を用いて膜厚が厚いZnO単結晶を成長させた後、基板部分を研磨またはエッチングで除去しても成長膜側へLiが拡散するため、LPE成長膜を自立化させてもLiに基づくデバイス特性の不安定化の問題点があった。更には、自立ZnO単結晶を作製するため、膜厚が厚いZnO単結晶のLPE成長を行うと、Pt冶工具を基点としたフラックス析出が起こり、フラックス析出部を基点とした成長中、冷却中および研削/研磨中のクラックが発生しやすいという問題点があった。
このような背景の下、Li濃度が低い自立ZnO単結晶を提供することが望まれている。
The ZnO hydrothermal synthesis substrate is mixed with Li based on the mineralizer, and when this is used as a substrate for the LPE growth of ZnO single crystal, there is a problem that Li diffuses to the LPE growth film side. Furthermore, after growing a thick ZnO single crystal using the LPE growth method, Li diffuses to the growth film side even if the substrate portion is removed by polishing or etching, so that the LPE growth film becomes self-supporting. However, there was a problem of destabilization of device characteristics based on Li. Furthermore, in order to produce a self-supporting ZnO single crystal, when LPE growth of a thick ZnO single crystal is performed, flux precipitation occurs based on the Pt jig tool, and during growth and cooling based on the flux precipitation portion. In addition, there is a problem that cracks are easily generated during grinding / polishing.
Under such circumstances, it is desired to provide a self-supporting ZnO single crystal having a low Li concentration.

上記課題は、以下の本発明によって解決することができる。
本発明の第1の実施形態は、溶質であるZnOと、溶媒とを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする液相エピタキシャル成長法によるZnO単結晶の製造方法である。前記溶媒は、PbOおよびBi23の組み合わせであるか、PbF2およびPbOの組み合わせであることが好ましい。
本発明の第2の実施形態は、上記本発明の第1の実施形態に記載のZnO単結晶の製造方法によって得られた自立ZnO単結晶ウエファーであって、膜厚が100μm以上であることを特徴とする自立ZnO単結晶ウエファーである。
尚、本願明細書において、「自立」なる用語は、成長に用いた種結晶基板を研磨、および/または、エッチングで除去し、成長層のみからなることをいう。また、「連続的」なる用語は、種結晶基板を引上げる工程においてその引上げ速度が一定であることを意味し、「間欠的」なる用語は、種結晶基板を引上げる工程において引上げ速度が変化することを意味する。また、「溶質」なる用語は、溶液を作る際に溶媒に溶かす物質をいい、この「溶媒」なる用語は、溶液を作る際に溶かす物質の媒体となる物質をいう。
The above problems can be solved by the following present invention.
In the first embodiment of the present invention, ZnO as a solute and a solvent are mixed and melted, and then the seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal substrate is continuously formed. And a step of growing the ZnO single crystal on the seed crystal substrate by pulling up periodically or intermittently. A method for producing a ZnO single crystal by a liquid phase epitaxial growth method. The solvent is preferably a combination of PbO and Bi 2 O 3 or a combination of PbF 2 and PbO.
The second embodiment of the present invention is a self-supporting ZnO single crystal wafer obtained by the method for producing a ZnO single crystal described in the first embodiment of the present invention, and has a film thickness of 100 μm or more. It is a free-standing ZnO single crystal wafer characterized.
In the present specification, the term “self-supporting” means that the seed crystal substrate used for growth is removed by polishing and / or etching and consists of only a growth layer. The term “continuous” means that the pulling rate is constant in the step of pulling up the seed crystal substrate, and the term “intermittent” means that the pulling rate changes in the step of pulling up the seed crystal substrate. It means to do. The term “solute” refers to a substance that dissolves in a solvent when a solution is made, and the term “solvent” refers to a substance that becomes a medium of a substance that is dissolved when a solution is made.

本発明の好ましい態様によれば、膜厚の厚いZnO単結晶を得ることができる。ZnO単結晶を成長させた後、種結晶基板を研磨またはエッチングで除去し、前記単結晶の液相エピタキシャル成長した−c面側を研磨またはエッチングすることによりLi濃度が低い自立ZnO単結晶が得られる。得られた自立ZnO単結晶は、そのままウエファーとして、あるいはZnO系混晶単結晶の種結晶基板などとして好適に用いられる。
本発明の好ましい態様である自立ZnO単結晶ウエファーは、結晶性が高く、キャリヤ移動度を高く保持したままキャリヤ濃度を制御することができる。また、基板からのLi拡散を低減でき、デバイス作動時の不安定稼動を抑制することが可能となる。更には、自立化しているため、+c面および−c面の何れもデバイス作製基板表面に使用でき、目的とするデバイスに好適な成長面を選択できる。
According to a preferred aspect of the present invention, a thick ZnO single crystal can be obtained. After growing the ZnO single crystal, the seed crystal substrate is removed by polishing or etching, and the -c plane side of the single crystal subjected to liquid phase epitaxial growth is polished or etched to obtain a freestanding ZnO single crystal having a low Li concentration. . The obtained free-standing ZnO single crystal is suitably used as a wafer as it is or as a seed crystal substrate of a ZnO-based mixed crystal single crystal.
The self-standing ZnO single crystal wafer which is a preferred embodiment of the present invention has high crystallinity and can control the carrier concentration while maintaining high carrier mobility. Moreover, Li diffusion from the substrate can be reduced, and unstable operation during device operation can be suppressed. Furthermore, since it is self-supporting, both the + c plane and the −c plane can be used for the surface of the device fabrication substrate, and a growth plane suitable for the target device can be selected.

以下、本発明について詳細に説明する。
本発明の第1の実施形態は、溶質であるZnOと、溶媒とを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする液相エピタキシャル成長法によるZnO単結晶の製造方法である。
Hereinafter, the present invention will be described in detail.
In the first embodiment of the present invention, ZnO as a solute and a solvent are mixed and melted, and then the seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal substrate is continuously formed. And a step of growing the ZnO single crystal on the seed crystal substrate by pulling up periodically or intermittently. A method for producing a ZnO single crystal by a liquid phase epitaxial growth method.

自立ZnO単結晶を製造するためには、ZnO単結晶の厚膜成長が必要となる。製造した自立ZnO単結晶をその後のデバイス製造に供するためには、取扱い時クラック等が発生しない厚みを有する必要があり、その厚みは最低50μm程度となる。種結晶基板の研磨後に得られた自立ZnO単結晶が50μmの厚みを有するためには、表裏面の研磨しろを考慮して100μm程度以上の成長膜厚が必要となる。本発明者らが先に出願した「液相成長法によるZnO単結晶の製造方法」(国際公開第2007/100146号パンフレット)の方法を用いれば、100μm以上の膜厚を有するZnO単結晶を成長させることができる。この方法では、Pt治工具を用いて水熱合成基板を保持し、基板表面を融液表面に接液することでエピタキシャル成長させる。しかし、Pt治工具は熱伝導性が高いため、Pt冶工具周辺の温度が低下し、その結果、Pt冶工具近傍でフラックス析出がしやすいことが判明した。フラックスが析出するとフラックス成分が成長膜中に取り込まれ、これを基点としたクラックが成長、冷却および研磨/エッチング中に発生し歩留が低下することが分かった。   In order to manufacture a free-standing ZnO single crystal, a thick film growth of the ZnO single crystal is required. In order to use the produced free-standing ZnO single crystal for subsequent device production, it is necessary to have a thickness that does not cause cracks or the like during handling, and the thickness is at least about 50 μm. In order for the free-standing ZnO single crystal obtained after polishing the seed crystal substrate to have a thickness of 50 μm, a growth film thickness of about 100 μm or more is required in consideration of the polishing margin on the front and back surfaces. By using the method of “Preparation method of ZnO single crystal by liquid phase growth method” (International Publication No. 2007/100146 pamphlet) previously filed by the present inventors, a ZnO single crystal having a film thickness of 100 μm or more is grown. Can be made. In this method, a Pt jig is used to hold a hydrothermal synthetic substrate, and the substrate surface is in contact with the melt surface for epitaxial growth. However, since the Pt jig / tool has high thermal conductivity, it has been found that the temperature around the Pt jig / tool decreases, and as a result, flux precipitation is likely to occur near the Pt / tool. It was found that when the flux is deposited, the flux component is taken into the growth film, and cracks based on this are generated during the growth, cooling and polishing / etching, and the yield is lowered.

この問題点を解決するため、本発明者らが鋭意研究したところ、成長中に種結晶基板を保持したPt冶工具を連続的あるいは間欠的に引上げることで融液にPt治工具が接触する時間を減らしたところ、膜中へのフラックス混入を低減でき、その結果、成長中および研磨/エッチング中のクラック発生を抑制できることがわかった。軸の引上げ手法としては、連続的あるいは間欠的何れも採用可能であるが、連続的軸引上げの方が安定成長の面で優れている。   In order to solve this problem, the present inventors have conducted intensive research. As a result, the Pt jig is brought into contact with the melt by continuously or intermittently pulling up the Pt jig holding the seed crystal substrate during growth. When the time was reduced, it was found that flux mixing into the film could be reduced, and as a result, the generation of cracks during growth and during polishing / etching could be suppressed. As the shaft pulling method, either continuous or intermittent can be employed, but continuous shaft pulling is superior in terms of stable growth.

連続的に種結晶基板を引上げる速度Vは、2μm/hr以上50μm/hr以下が好適である。より好ましくは、4μm/hr以上20μm/hr以下、更に好ましくは、6μm/hr以上10μm/hr以下である。2μm/hr未満では、軸引上げによるフラックス巻き込み低減効果が少なく、50μm/hrを超えると基板が融液表面より離れる可能性がある。間欠的に種結晶基板を引上げる際は、その平均速度が上記の範囲となることが好ましい。すなわち、間欠的に種結晶基板を引上げる平均速度vは、2μm/hr以上50μm/hr以下が好適であり、より好ましくは、4μm/hr以上20μm/hr以下、更に好ましくは、6μm/hr以上10μm/hr以下である。   The speed V for continuously pulling up the seed crystal substrate is preferably 2 μm / hr or more and 50 μm / hr or less. More preferably, it is 4 μm / hr or more and 20 μm / hr or less, and further preferably 6 μm / hr or more and 10 μm / hr or less. If it is less than 2 μm / hr, the effect of reducing the entrainment of flux by pulling up the shaft is small, and if it exceeds 50 μm / hr, the substrate may be separated from the melt surface. When the seed crystal substrate is pulled up intermittently, the average speed is preferably within the above range. That is, the average speed v for intermittently pulling up the seed crystal substrate is preferably 2 μm / hr or more and 50 μm / hr or less, more preferably 4 μm / hr or more and 20 μm / hr or less, and further preferably 6 μm / hr or more. 10 μm / hr or less.

使用できる溶媒は、溶質であるZnO融解させることができるものであれば特に制限されないが、PbOおよびBi23の組み合わせであるか、PbF2およびPbOの組み合わせであることが好ましい。上記溶質と、溶媒との混合比は、ZnOのみに換算した溶質:溶媒=5〜30mol%:95〜70mol%が好ましく、より好ましくは、溶質濃度が、5mol%以上10mol%以下である。溶質濃度が、5mol%未満では成長速度が遅く、10mol%を超えると成長温度が高くなり、溶媒蒸発量が多くなることがある。 The solvent that can be used is not particularly limited as long as it can melt ZnO as a solute, but is preferably a combination of PbO and Bi 2 O 3 or a combination of PbF 2 and PbO. The mixing ratio of the solute and the solvent is preferably solute: solvent = 5-30 mol%: 95-70 mol% converted to ZnO alone, and more preferably the solute concentration is 5 mol% or more and 10 mol% or less. If the solute concentration is less than 5 mol%, the growth rate is slow, and if it exceeds 10 mol%, the growth temperature increases and the amount of solvent evaporation may increase.

本発明の好ましい態様では、溶質であるZnOと、溶媒であるPbOおよびBi23とを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする液相エピタキシャル成長法によるZnO単結晶の製造方法である。本発明の好ましい態様では、上記溶質と、溶媒であるPbOおよびBi23との混合比が、溶質:溶媒=5〜30mol%:95〜70mol%であり、溶媒であるPbOとBi23との混合比がPbO:Bi23=0.1〜95mol%:99.9〜5mol%である。溶媒組成としては、より好ましくは、PbO:Bi23=30〜90mol%:70〜10mol%であり、特に好ましくは、PbO:Bi23=60〜80mol%:40〜20mol%である。PbOもしくはBi23単独の溶媒では、液相成長温度が高くなるので、上記のような混合比を有するPbOおよびBi23混合溶媒が好適である。溶質であるZnOと、溶媒であるPbOおよびBi23の混合比は、より好ましくは、溶質濃度が、5mol%以上10mol%以下である。溶質濃度が、5mol%未満では成長速度が遅く、10mol%を超えると成長温度が高くなることがある。 In a preferred embodiment of the present invention, after mixing and melting ZnO as a solute and PbO and Bi 2 O 3 as solvents, a step of bringing a seed crystal substrate into direct contact with the obtained melt, And a step of growing the ZnO single crystal on the seed crystal substrate by pulling the seed crystal substrate continuously or intermittently, and a method for producing a ZnO single crystal by a liquid phase epitaxial growth method. In a preferred embodiment of the present invention, the mixing ratio of the solute and the solvents PbO and Bi 2 O 3 is solute: solvent = 5-30 mol%: 95-70 mol%, and the solvent PbO and Bi 2 O. The mixing ratio with 3 is PbO: Bi 2 O 3 = 0.1 to 95 mol%: 99.9 to 5 mol%. The solvent composition is more preferably PbO: Bi 2 O 3 = 30 to 90 mol%: 70 to 10 mol%, and particularly preferably PbO: Bi 2 O 3 = 60 to 80 mol%: 40 to 20 mol%. . Since the liquid phase growth temperature becomes high in the solvent of PbO or Bi 2 O 3 alone, the PbO and Bi 2 O 3 mixed solvent having the above mixing ratio is preferable. The mixing ratio of ZnO as a solute and PbO and Bi 2 O 3 as solvents is more preferably a solute concentration of 5 mol% or more and 10 mol% or less. If the solute concentration is less than 5 mol%, the growth rate is slow, and if it exceeds 10 mol%, the growth temperature may increase.

本発明の好ましい態様では、溶質であるZnOと、溶媒であるPbF2およびPbOとを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする液相エピタキシャル成長法によるZnO単結晶の製造方法である。本発明の好ましい態様では、溶質であるZnOと溶媒であるPbF2およびPbOとの混合比が、溶質:溶媒=2〜20mol%:98〜80mol%であり、溶媒であるPbF2とPbOとの混合比がPbF2:PbO=80〜20mol%:20〜80mol%である。溶媒の混合比が、PbF2:PbO=80〜20mol%:20〜80mol%であると、溶媒であるPbF2およびPbOの蒸発量を抑制でき、その結果、溶質濃度の変動が少なくなるので、安定的にZnO単結晶を成長させることができる。溶媒であるPbF2とPbOとの混合比は、より好ましくはPbF2:PbO=60〜40mol%:40〜60mol%である。溶質であるZnOと溶媒であるPbF2およびPbOとの混合比は、溶質が5〜10mol%のときより好ましい。溶質濃度が5mol%未満では、成長速度が遅く、10mol%を超えると、溶質成分を溶解させる温度が高くなり、溶媒蒸発量が多くなることがある。本発明では、液相成長法を用いる。同法は、気相成長法と異なり、真空系を必要とせず、そのため、低コストでZnO単結晶を製造することができる上、熱平衡成長であるため、高い結晶性を有するZnO単結晶を成長させることができる。また、過飽和度を制御することにより、成長速度を制御でき、比較的高い成長速度を実現できる。 In a preferred embodiment of the present invention, after mixing and melting ZnO as a solute and PbF 2 and PbO as solvents, a seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal And a step of growing the ZnO single crystal on the seed crystal substrate by pulling the substrate continuously or intermittently. A method for producing a ZnO single crystal by a liquid phase epitaxial growth method. In a preferred embodiment of the present invention, the mixing ratio of the solute ZnO and the solvents PbF 2 and PbO is solute: solvent = 2 to 20 mol%: 98 to 80 mol%, and the solvent PbF 2 and PbO The mixing ratio is PbF 2 : PbO = 80 to 20 mol%: 20 to 80 mol%. When the mixing ratio of the solvent is PbF 2 : PbO = 80 to 20 mol%: 20 to 80 mol%, the amount of evaporation of the solvents PbF 2 and PbO can be suppressed, and as a result, fluctuations in the solute concentration are reduced. A ZnO single crystal can be stably grown. The mixing ratio of the solvent PbF 2 and PbO is more preferably PbF 2 : PbO = 60 to 40 mol%: 40 to 60 mol%. The mixing ratio of ZnO as a solute and PbF 2 and PbO as solvents is more preferable when the solute is 5 to 10 mol%. If the solute concentration is less than 5 mol%, the growth rate is slow, and if it exceeds 10 mol%, the temperature at which the solute component is dissolved increases and the amount of solvent evaporation may increase. In the present invention, a liquid phase growth method is used. Unlike the vapor phase growth method, this method does not require a vacuum system, so that it is possible to produce a ZnO single crystal at low cost and to grow a ZnO single crystal having high crystallinity because of thermal equilibrium growth. Can be made. Further, by controlling the degree of supersaturation, the growth rate can be controlled, and a relatively high growth rate can be realized.

本発明の好ましい態様では、上記ZnO単結晶が、少量の異種元素を含む。ZnOは、異種元素をドーピングすることでその特性を発現・変化させることができる。本発明の好ましい態様では、Li、Na、K、Cs、Rb、Be、Ca、Sr、Ba、Cu、Ag、N、P、As、Sb、Bi、B、Tl、Cl、Br、I、Mn、Fe、Co、Ni、Cd、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Wおよびランタノイド元素等からなる群より選択される1以上を添加する。添加量は、溶質として使用されるZnOに対して20mol%以下、好ましくは10mol%以下、より好ましくは1mol%以下である。異種元素を添加することにより、p型半導体、n型半導体、磁性半導体、導電率の制御、バリスタ応用、圧電体応用、電界発光素子および透明TFTへの応用等がある。   In a preferred embodiment of the present invention, the ZnO single crystal contains a small amount of a different element. ZnO can exhibit and change its characteristics by doping with different elements. In a preferred embodiment of the present invention, Li, Na, K, Cs, Rb, Be, Ca, Sr, Ba, Cu, Ag, N, P, As, Sb, Bi, B, Tl, Cl, Br, I, Mn One or more selected from the group consisting of Fe, Co, Ni, Cd, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and a lanthanoid element are added. The addition amount is 20 mol% or less, preferably 10 mol% or less, more preferably 1 mol% or less, with respect to ZnO used as a solute. By adding different kinds of elements, there are p-type semiconductors, n-type semiconductors, magnetic semiconductors, conductivity control, varistor applications, piezoelectric body applications, electroluminescent elements, and transparent TFTs.

本発明の好ましい態様では、成長用基板である種結晶基板としてZnO単結晶を用いる。ZnO単結晶成長用基板としては、ZnOと同類の結晶構造を持ち、成長薄膜と基板とが反応しないものであれば使用可能である。例えば、サファイヤ、LiGaO2、LiAlO2、LiNbO3、LiTaO3、ScAlMgO4、GaN、ZnOなどが挙げられる。しかしながら、本発明における目的単結晶がZnO単結晶であることを考慮すると、基板と成長結晶の格子整合度が高いZnO基板を用いたホモエピタキシャル成長が結晶性、歪みの低減、成長膜の反りの低減および基板からの不純物拡散量低減の面で好ましい。 In a preferred embodiment of the present invention, a ZnO single crystal is used as a seed crystal substrate that is a growth substrate. As a substrate for ZnO single crystal growth, any substrate can be used as long as it has a crystal structure similar to ZnO and the grown thin film does not react with the substrate. Examples thereof include sapphire, LiGaO 2 , LiAlO 2 , LiNbO 3 , LiTaO 3 , ScAlMgO 4 , GaN, and ZnO. However, considering that the target single crystal in the present invention is a ZnO single crystal, homoepitaxial growth using a ZnO substrate having a high degree of lattice matching between the substrate and the grown crystal reduces crystallinity, distortion, and warpage of the grown film. And it is preferable in terms of reducing the amount of impurity diffusion from the substrate.

本発明の好ましい態様では、ZnO単結晶の成長方位は+c面である。
本発明の好ましい態様では、種結晶基板上にZnO単結晶を成長させた後、成長に用いた種結晶基板を研磨あるいはエッチングで除去することで自立化させることができる。その際、成長基板に近い−c面側を少なくとも10μm、好ましくは20μm以上除去することで基板側からのLi拡散層を除去することが可能となる。基板除去方法としては、研磨あるいはエッチング何れの方法も採用可能であるが、膜厚管理しやすい研削+研磨が好適である。水熱合成基板上にZnO単結晶を成長させる。研磨またはエッチング後で50μm程度の膜厚とするためには、成長段階で100μm程度の膜厚が必要となる。成長後、基板側をセラミックスプレートにWAX固定を行い、研削器にて液相エピタキシャル成長面を平坦化することができる。LPE面側(+c面)をセラミックスプレートに張替え、研削器にて基板厚相当を研削除去することで液相エピタキシャル成長膜だけとし、表裏面をラップおよびポリッシュすることで研磨してもよい。このとき、LPE成長膜の水熱合成基板側は好ましくは10μm、より好ましくは20μm以上研磨することで水熱合成基板からのLi拡散層を除去することが可能となる。
In a preferred embodiment of the present invention, the growth orientation of the ZnO single crystal is the + c plane.
In a preferred embodiment of the present invention, after growing a ZnO single crystal on a seed crystal substrate, the seed crystal substrate used for the growth can be made independent by polishing or etching. At that time, the Li diffusion layer from the substrate side can be removed by removing at least 10 μm, preferably 20 μm or more, on the −c plane side close to the growth substrate. As a substrate removal method, any method of polishing or etching can be adopted, but grinding + polishing which allows easy film thickness control is preferable. A ZnO single crystal is grown on a hydrothermal synthesis substrate. In order to obtain a film thickness of about 50 μm after polishing or etching, a film thickness of about 100 μm is required at the growth stage. After the growth, the substrate side is fixed to the ceramic plate by WAX, and the liquid phase epitaxial growth surface can be flattened by a grinder. The LPE surface side (+ c surface) may be replaced with a ceramic plate, and the substrate thickness may be ground and removed with a grinder to obtain only a liquid phase epitaxial growth film, and polishing may be performed by lapping and polishing the front and back surfaces. At this time, it is possible to remove the Li diffusion layer from the hydrothermal synthesis substrate by polishing the hydrothermal synthesis substrate side of the LPE growth film preferably at 10 μm, more preferably 20 μm or more.

本発明の好ましい態様では、上記ZnO単結晶にAl、Ga、In、HおよびFからなる群より選択される1以上を含有させる。Al、Ga、In、HおよびFからなる群より選択される1以上を含有することにより、電気伝導性を発現することが可能となる。研磨やエッチング等により成長で用いた基板を除去すれば、自立導電性基板となり、電子素子や光学素子の表裏に電極を形成することができる。   In a preferred embodiment of the present invention, the ZnO single crystal contains one or more selected from the group consisting of Al, Ga, In, H and F. By containing one or more selected from the group consisting of Al, Ga, In, H, and F, it becomes possible to develop electrical conductivity. If the substrate used for growth is removed by polishing, etching, or the like, a self-supporting conductive substrate is formed, and electrodes can be formed on the front and back of the electronic element and the optical element.

本発明の第2の実施形態は、上記本発明の第1の実施形態に記載のZnO単結晶の製造方法によって得られた自立ZnO単結晶ウエファーであって、膜厚が100μm以上であることを特徴とする自立ZnO単結晶ウエファーである。厚みが100μm未満では研磨後の厚みとして50μmを確保できず、その後のデバイス工程に供するのが困難となる。厚みの上限は規定されないが、500μmを超えると成長時間が長くなる。   The second embodiment of the present invention is a self-supporting ZnO single crystal wafer obtained by the method for producing a ZnO single crystal described in the first embodiment of the present invention, and has a film thickness of 100 μm or more. It is a free-standing ZnO single crystal wafer characterized. If the thickness is less than 100 μm, 50 μm cannot be ensured as the thickness after polishing, and it is difficult to use in subsequent device processes. The upper limit of the thickness is not specified, but if it exceeds 500 μm, the growth time becomes longer.

本発明の好ましい態様では、第1の実施形態に記載のZnO単結晶の製造方法によって得られた自立ZnO単結晶ウエファーのLi濃度は、ウエファーの面内方向、および、厚み方向に対し均一であり、かつ、好ましくは1×1015個/cm3以下、より好ましくは1×1014 個/cm3以下である。ここで、Li濃度が1×1015個/cm3以下で均一であるとは、デバイス動作を不安定化するLi濃度が自立化膜全体で1×1015個/cm3以下であることを意味する。Li濃度の均一性は、次のようにして求めることができる。自立化処理後の表裏面数点のLi濃度をダイナミックSIMSで測定することで表裏面内Li濃度均一性を、更に、表裏面Li濃度均一性測定済みサンプルをc面に垂直に切断した断面のLi濃度をダイナミックスSIMSで測定することで膜厚方向のLi濃度均一性を判断することができる。 In a preferred aspect of the present invention, the Li concentration of the free-standing ZnO single crystal wafer obtained by the method for producing a ZnO single crystal described in the first embodiment is uniform in the in-plane direction and the thickness direction of the wafer. And preferably 1 × 10 15 pieces / cm 3 or less, more preferably 1 × 10 14 pieces / cm 3 or less. Here, when the Li concentration is uniform at 1 × 10 15 pieces / cm 3 or less, the Li concentration that destabilizes the device operation is 1 × 10 15 pieces / cm 3 or less in the entire self-supporting film. means. The uniformity of the Li concentration can be obtained as follows. By measuring the Li concentration at several points on the front and back surfaces after the self-supporting treatment with dynamic SIMS, the Li concentration uniformity in the front and back surfaces was further measured. The Li concentration uniformity in the film thickness direction can be determined by measuring the Li concentration by dynamics SIMS.

本発明の好ましい態様では、上記自立ZnO単結晶ウエファーの表裏面少なくとも1面の平坦性は、エピタキシャル成長可能な程度であればよい。例えば、ZnO単結晶ウエファーの任意の位置において50μm四方の表面粗さRaが0.5nm以下であることが好ましく、更に好ましくは0.3nm以下である。0.5nmを超えるとLED成長膜が3次元成長したり、ピット不良が増える傾向があるので好ましくない。一方、表裏面の平坦性はできるだけ近い方が好ましい。表面と裏面とで平坦性が異なると、反りの発生要因となる。表面粗さRaは、自立膜中央部50μm四方について原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることにより測定することができる。   In a preferred embodiment of the present invention, the flatness of at least one surface of the free-standing ZnO single crystal wafer may be such that it can be epitaxially grown. For example, the surface roughness Ra of 50 μm square at an arbitrary position of the ZnO single crystal wafer is preferably 0.5 nm or less, more preferably 0.3 nm or less. If it exceeds 0.5 nm, the LED growth film tends to grow three-dimensionally or pit defects tend to increase, such being undesirable. On the other hand, the flatness of the front and back surfaces is preferably as close as possible. If the flatness is different between the front surface and the back surface, it causes warping. The surface roughness Ra can be measured by using an atomic force microscope (AFM) with respect to a 50 μm square of the free-standing film central part.

本発明の好ましい態様では、上記自立ZnO単結晶ウエファーはGaを含有することが好ましく、キャリヤ濃度が2.0×1017個/cm3〜1.0×1019個/cm3であり、かつ、好ましくはLi濃度が1×1015個/cm3以下、更に好ましくは1×1014個/cm3以下であることが好ましい。
また、本発明の他の好ましい態様では、上記自立ZnO単結晶ウエファーはAlを含有し、キャリヤ濃度が2.0×1017個/cm3〜1.0×1019個/cm3であり、かつ、好ましくはLi濃度が1×1015個/cm3以下、更に好ましくは1×1014個/cm3以下であることが好ましい。
更に、本発明の他の好ましい態様では、上記自立ZnO単結晶ウエファーはInを含有し、キャリヤ濃度が2.0×1017個/cm3〜3.5×1017個/cm3であり、かつ、好ましくはLi濃度が1×1015個/cm3以下、更に好ましくは1×1014個/cm3以下であることが好ましい。
本明細書において「キャリヤ濃度」および「キャリヤ移動度」は、東陽テクニカ製ホール効果・比抵抗測定装置を用い、Van Der Pauw法により室温で測定することができる。
In a preferred embodiment of the present invention, the free-standing ZnO single crystal wafer preferably contains Ga, has a carrier concentration of 2.0 × 10 17 pieces / cm 3 to 1.0 × 10 19 pieces / cm 3 , and The Li concentration is preferably 1 × 10 15 pieces / cm 3 or less, more preferably 1 × 10 14 pieces / cm 3 or less.
In another preferred embodiment of the present invention, the self-supporting ZnO single crystal wafer contains Al and has a carrier concentration of 2.0 × 10 17 pieces / cm 3 to 1.0 × 10 19 pieces / cm 3 , In addition, the Li concentration is preferably 1 × 10 15 pieces / cm 3 or less, more preferably 1 × 10 14 pieces / cm 3 or less.
Furthermore, in another preferred embodiment of the present invention, the self-supporting ZnO single crystal wafer contains In and has a carrier concentration of 2.0 × 10 17 pieces / cm 3 to 3.5 × 10 17 pieces / cm 3 , In addition, the Li concentration is preferably 1 × 10 15 pieces / cm 3 or less, more preferably 1 × 10 14 pieces / cm 3 or less.
In the present specification, “carrier concentration” and “carrier mobility” can be measured at room temperature by the Van Der Pauw method using a Hall effect / specific resistance measuring device manufactured by Toyo Technica.

以下、本発明の一実施態様に係わるZnO単結晶の育成法として、ZnO基板上にIII族元素をドープしたZnO単結晶を液相エピタキシャル(LPE)成長法によって成長させる方法について説明する。本発明は、以下の実施例に何ら限定されるものではない。   Hereinafter, as a method for growing a ZnO single crystal according to an embodiment of the present invention, a method for growing a ZnO single crystal doped with a group III element on a ZnO substrate by a liquid phase epitaxial (LPE) growth method will be described. The present invention is not limited to the following examples.

ここで用いた炉の構成図を図3に示す。
単結晶製造炉内には、原料を溶融し融液として収容する白金るつぼ4が、るつぼ台9の上に設けられている。白金るつぼ4の外側にあって側方には、白金るつぼ4内の原料を加熱して溶融する3段の側部ヒーター(上段ヒーター1、中央部ヒーター2、下段ヒーター3)が設けられている。ヒーターは、それらの出力が独立に制御され、融液に対する加熱量が独立して調整される。ヒーターと製造炉の内壁との間には、炉心管11が設けられ、炉心管11の上部には炉内の開閉を行う炉蓋12が設けられている。白金るつぼ4の上方には引上げ機構が設けられている。引上げ機構には引上軸5が固定され、その先端には、基板ホルダー6とホルダーで固定された基板7が設けられている。引上軸5上部には、引上軸5を回転させる機構が設けられている。白金るつぼ4の下方には、るつぼの温度を管理するための熱電対10が設けられている。成長炉を構成する部材については、非Al系が好適である。非Al系炉材としては、ZnO炉材が最適であるが、市販されていないことを考慮すると、ZnO薄膜に混入してもキャリヤとして働かない材料としてMgOが好適である。また、アルミナ+シリカで構成されるムライト製炉材を使用してもLPE膜中のSi不純物濃度が増えないSIMS分析結果を考慮すると、石英炉材も好適である。その他には、カルシヤ、シリカ、ZrO2およびジルコン(ZrO2+SiO2)、SiC、Si34等も利用可能である。
A configuration diagram of the furnace used here is shown in FIG.
In the single crystal manufacturing furnace, a platinum crucible 4 for melting a raw material and storing it as a melt is provided on a crucible base 9. Outside the platinum crucible 4 and on the side thereof, three-stage side heaters (upper heater 1, central heater 2, lower heater 3) for heating and melting the raw material in the platinum crucible 4 are provided. . The outputs of the heaters are controlled independently, and the heating amount for the melt is adjusted independently. A core tube 11 is provided between the heater and the inner wall of the manufacturing furnace, and a furnace lid 12 for opening and closing the inside of the furnace is provided above the core tube 11. A pulling mechanism is provided above the platinum crucible 4. A pulling-up shaft 5 is fixed to the pulling mechanism, and a substrate holder 6 and a substrate 7 fixed by the holder are provided at the tip thereof. A mechanism for rotating the pull-up shaft 5 is provided on the pull-up shaft 5. Below the platinum crucible 4, a thermocouple 10 for managing the temperature of the crucible is provided. The non-Al system is suitable for the members constituting the growth furnace. As a non-Al-based furnace material, a ZnO furnace material is optimal, but considering that it is not commercially available, MgO is suitable as a material that does not function as a carrier even when mixed in a ZnO thin film. In view of SIMS analysis results in which the Si impurity concentration in the LPE film does not increase even when a mullite furnace material composed of alumina + silica is used, a quartz furnace material is also preferable. In addition, calcium, silica, ZrO 2 and zircon (ZrO 2 + SiO 2 ), SiC, Si 3 N 4 and the like can be used.

以上より、非Al系の炉材としてMgOおよび/または石英から構成される成長炉を用いてIII族元素をドープしたZnO単結晶を成長させることが好ましい。更に、成長炉が、るつぼを載置するためのるつぼ台、該るつぼ台の外周を取り囲むように設けられた炉心管、該炉心管の上部に設けられ、炉内の開閉を行う炉蓋、及び種結晶または基板を上下させるための引上軸が、それぞれ独立に、MgOまたは石英によって作製されているものが好ましく使用される。   From the above, it is preferable to grow a ZnO single crystal doped with a group III element using a growth furnace composed of MgO and / or quartz as a non-Al furnace material. And a crucible base for placing the crucible on the crucible, a core tube provided so as to surround the outer periphery of the crucible base, a furnace lid provided on the top of the core tube, for opening and closing the inside of the furnace, and Preferably, the pulling shaft for moving the seed crystal or the substrate up and down is independently made of MgO or quartz.

白金るつぼ内の原料を溶融するため、原料が溶融するまで製造炉を昇温する。好ましくは800〜1100℃まで昇温し、2〜3時間静置して原料融液を安定化させる。Pt製攪拌羽根で攪拌することで、静置時間を短縮してもよい。このとき、3段ヒーターにオフセットを掛け、融液表面よりるつぼ底が数度高くなるよう調節する。好ましくは、−100℃≦H1オフセット≦0℃、0℃≦H3オフセット≦100℃、さらに好ましくは、−50℃≦H1オフセット≦0℃、0℃≦H3オフセット≦50℃である。るつぼ底温度が700〜950℃の種付け温度になるよう調節し、融液の温度が安定化した後、基板を5〜120rpmで回転させながら、引上軸を下降させることで基板を融液表面に接液する。基板を融液になじませた後、温度一定または、0.01〜3.0℃/hrで温度降下を開始し、基板面に目的とするZnO単結晶を成長させる。成長時も基板は引上軸の回転によって5〜300rpmで回転しており、一定時間間隔ごとに逆回転させる。30分から100時間程度結晶成長させた後、基板を融液から切り離し、引上軸を200〜300rpm程度の高速で回転させることで、融液成分を分離させる。その後、室温まで1〜24時間かけて冷却して目的のZnO単結晶を得る。   In order to melt the raw material in the platinum crucible, the temperature of the production furnace is increased until the raw material is melted. Preferably, the temperature is raised to 800 to 1100 ° C. and left for 2 to 3 hours to stabilize the raw material melt. The standing time may be shortened by stirring with a Pt stirring blade. At this time, an offset is applied to the three-stage heater, and the bottom of the crucible is adjusted to be several degrees higher than the melt surface. Preferably, −100 ° C. ≦ H1 offset ≦ 0 ° C., 0 ° C. ≦ H3 offset ≦ 100 ° C., more preferably −50 ° C. ≦ H1 offset ≦ 0 ° C., 0 ° C. ≦ H3 offset ≦ 50 ° C. After adjusting the bottom temperature of the crucible to a seeding temperature of 700 to 950 ° C. and stabilizing the temperature of the melt, the substrate is brought to the melt surface by lowering the pulling shaft while rotating the substrate at 5 to 120 rpm. Wetted in contact with. After the substrate is made to conform to the melt, the temperature starts to drop at a constant temperature or from 0.01 to 3.0 ° C./hr to grow the target ZnO single crystal on the substrate surface. During the growth, the substrate is rotated at 5 to 300 rpm by the rotation of the pulling shaft, and is reversely rotated at regular time intervals. After crystal growth for about 30 minutes to 100 hours, the substrate is separated from the melt, and the melt component is separated by rotating the pulling shaft at a high speed of about 200 to 300 rpm. Then, it cools to room temperature over 1 to 24 hours, and obtains the target ZnO single crystal.

(実施例1)
以下の工程により、ZnO単結晶を液相エピタキシャル成長法で作製した。内径75mmΦ、高さ75mmh、厚さ1mmの白金るつぼに、原料としてZnO、PbO、およびBi23をそれぞれ、33.20g、829.53gおよび794.75g仕込んだ。このときの溶質であるZnOの濃度は7mol%で、溶媒であるPbOおよびBi23の濃度は、PbO:Bi23=68.5mol%:31.5mol%となる。原料を仕込んだるつぼを図3に示す炉に設置し、るつぼ底温度約840℃で1時間保持しPt攪拌冶具で攪拌し溶解させた。その後、るつぼ底温度が約790℃になるまで降温してから、水熱合成法で育成した+c面方位でサイズが10mm×10mm×0.5mmtのZnO単結晶基板を種結晶として接液し、引上軸を30rpmで回転させながら同温度で80時間成長させた。また、H1、H2、H3の設定温度は、オフセット差を維持したまま、−0.1℃/hrの速度で降温させた。また、LPE成長の間、すなわち80時間かけて引上げ軸を連続的に500μm程度引上げた。このときの軸引上げ速度は約6.3μm/hrとなる。また、このとき軸回転方向は2分おきに反転させた。その後、引上軸を上昇させることで、融液から切り離し、100rpmで軸を回転させることで、融液成分を振り切り、その後室温まで徐冷して無色透明のZnO単結晶を得た。室温まで冷却後成長膜をLPE炉から取出しPt治工具周辺を観察したがフラックス析出は見られなかった。LPE成長膜厚は391μmで、このときの成長速度は、約4.9μm/hrであった。続いて、以下に示す自立化処理を施した。裏面(水熱合成基板の−c面側)を、セラミックスプレートにWAXで固定した。横型平面研削盤で+c面のLPE面が平坦になるよう約50μm研削処理した。その後、表裏を張替え、水熱合成基板の厚みに相当する量を研削処理することで自立ZnO単結晶を得た。厚みは約341μm程度であった。自立膜をセラミックスプレートに再度WAX固定し、ダイヤモンドスラリーでラップ処理を、コロイダルシリカでポリッシュ処理を施した。自立膜の表裏の研磨量は、+c面で33μm、−c面で28μmであり、結果厚さ約280μmの自立ZnO単結晶を得た。研削、研磨の過程でクラックの発生はなかった。自立化処理後、±c面をダイナミックSIMSで分析し、Li濃度を求めた。±c面ともLi濃度は検出下限である5×1013個/cm3以下であった。なお、本明細書において、ダイナミックSIMS分析は、Cameca製装置を用いて、一次イオン種;O2+、一次イオン加速電圧;8KeV、測定温度;室温の条件下で行う。また、同膜をc面に垂直の方向で切断し、切断面をSIMS分析したところ、Li濃度は検出下限以下の5×1013個/cm3であった。自立膜の結晶性を示す(002)面のロッキングカーブ半値幅は約33arcsecで結晶性が高いことを示している。伝導性を示すキャリヤ濃度は2.0×1017個/cm3、キャリヤ移動度は165cm2/V・secとなった。キャリヤ移動度の高さからも品質が高いことを示している。自立膜中央部50μm四方について原子間力顕微鏡(Atomic Force Microscopy:AFM)で平坦性を評価したところ、Ra=0.3nmであった。
Example 1
A ZnO single crystal was produced by a liquid phase epitaxial growth method through the following steps. A platinum crucible having an inner diameter of 75 mmΦ, a height of 75 mmh, and a thickness of 1 mm was charged with 33.20 g, 829.53 g, and 794.75 g of ZnO, PbO, and Bi 2 O 3 as raw materials, respectively. At this time, the concentration of ZnO as a solute is 7 mol%, and the concentrations of PbO and Bi 2 O 3 as solvents are PbO: Bi 2 O 3 = 68.5 mol%: 31.5 mol%. The crucible charged with the raw material was placed in the furnace shown in FIG. 3, held at a crucible bottom temperature of about 840 ° C. for 1 hour, and stirred and dissolved by a Pt stirring jig. Thereafter, the temperature is lowered until the bottom temperature of the crucible reaches about 790 ° C., and then contacted with a ZnO single crystal substrate having a size of 10 mm × 10 mm × 0.5 mmt grown in a hydrothermal synthesis method as a seed crystal in a + c plane orientation, Growth was performed at the same temperature for 80 hours while rotating the pulling shaft at 30 rpm. The set temperatures of H1, H2, and H3 were lowered at a rate of -0.1 ° C / hr while maintaining the offset difference. Further, during the LPE growth, that is, over 80 hours, the pulling axis was continuously pulled up by about 500 μm. The shaft pulling speed at this time is about 6.3 μm / hr. At this time, the shaft rotation direction was reversed every two minutes. Thereafter, the pulling-up shaft was raised to separate it from the melt, and the shaft was rotated at 100 rpm to shake off the melt components and then gradually cooled to room temperature to obtain a colorless and transparent ZnO single crystal. After cooling to room temperature, the grown film was taken out from the LPE furnace and observed around the Pt jig, but no flux deposition was observed. The LPE growth film thickness was 391 μm, and the growth rate at this time was about 4.9 μm / hr. Subsequently, the following independence treatment was performed. The back surface (the −c surface side of the hydrothermal synthesis substrate) was fixed to the ceramic plate with WAX. About 50 μm was ground so that the + c plane LPE surface was flattened by a horizontal surface grinder. Then, the self-supporting ZnO single crystal was obtained by reversing the front and back and grinding the amount corresponding to the thickness of the hydrothermal synthetic substrate. The thickness was about 341 μm. The self-supporting film was fixed to the ceramic plate again by WAX, lapped with diamond slurry, and polished with colloidal silica. The polishing amount of the front and back surfaces of the free-standing film was 33 μm on the + c plane and 28 μm on the −c plane, and as a result, a free-standing ZnO single crystal having a thickness of about 280 μm was obtained. There were no cracks in the grinding and polishing process. After the self-supporting treatment, the ± c plane was analyzed by dynamic SIMS to determine the Li concentration. The Li concentration in both the ± c planes was 5 × 10 13 pieces / cm 3 or less, which is the lower limit of detection. In this specification, the dynamic SIMS analysis is performed using a Cameca apparatus under the conditions of primary ion species; O 2+ , primary ion acceleration voltage; 8 KeV, measurement temperature; room temperature. Further, the film was cut in a direction perpendicular to the c-plane, and the cut surface was analyzed by SIMS. As a result, the Li concentration was 5 × 10 13 pieces / cm 3 below the detection lower limit. The rocking curve half-value width of the (002) plane showing the crystallinity of the free-standing film is about 33 arcsec, indicating that the crystallinity is high. The carrier concentration exhibiting conductivity was 2.0 × 10 17 atoms / cm 3 and the carrier mobility was 165 cm 2 / V · sec. It shows that the quality is high also from the high carrier mobility. When flatness was evaluated with an atomic force microscope (AFM) for the 50 μm square of the center of the free-standing film, Ra = 0.3 nm.

(実施例2−10および比較例1)
Ga23をPtるつぼに仕込むこと以外、実施例1と同様の方法で自立ZnO単結晶を得た。実施例10では、連続的な軸引き上げを間欠的な軸引き上げに変更した。すなわち、軸を停止させて16時間経過後に100μm引上げる工程を5回繰り返し、80時間で合計500μm引上げた。仕込み組成を表1に示す。得られた自立膜の物性を表2に示す。
(Example 2-10 and Comparative Example 1)
A self-supporting ZnO single crystal was obtained in the same manner as in Example 1 except that Ga 2 O 3 was charged into a Pt crucible. In Example 10, continuous shaft pulling was changed to intermittent shaft pulling. That is, the process of stopping the shaft and raising 100 μm after 16 hours was repeated 5 times, and the total was raised by 500 μm in 80 hours. The charge composition is shown in Table 1. Table 2 shows the physical properties of the obtained free-standing film.

Ga23の仕込み量が増えるに従い、キャリヤ濃度が増加しZnOに対し2100ppm仕込んだ実施例9の自立化膜ではキャリヤ濃度は1.0×1019個/cm3となった。これらの結果から、Ga23を仕込むことでキャリヤ濃度を2.0×1017個/cm3から1.0×1019個/cm3まで制御できることを示している。一方、キャリヤ移動度はGa23を仕込まない実施例1では154cm2/V・sec、2100ppm仕込んだ実施例9では64cm2/V・secとなった。これは、異物であるGaがドープされた結果と思われる。結晶性を示す(002)面のロッキングカーブ半値幅は、Ga23の仕込0から2100ppmの間で23から71arcsecとなり極めて結晶性が高いことを示している。また、実施例1−10では、水熱合成基板側の成長面である−c面部を12−29μm研磨除去しており、その結果、±c面ともLi濃度はSIMS検出下限である5×1013個/cm3以下となった。 As the amount of Ga 2 O 3 charged increased, the carrier concentration increased and the carrier concentration of the self-supporting film of Example 9 charged with 2100 ppm with respect to ZnO was 1.0 × 10 19 particles / cm 3 . From these results, it is shown that the carrier concentration can be controlled from 2.0 × 10 17 atoms / cm 3 to 1.0 × 10 19 atoms / cm 3 by charging Ga 2 O 3 . On the other hand, the carrier mobility was 154 cm 2 / V · sec in Example 1 in which Ga 2 O 3 was not charged and 64 cm 2 / V · sec in Example 9 in which 2100 ppm was charged. This seems to be a result of doping Ga, which is a foreign material. The rocking curve half-width of the (002) plane showing crystallinity is 23 to 71 arcsec between 0 to 2100 ppm of Ga 2 O 3 , indicating that the crystallinity is extremely high. Further, in Example 1-10, the −c surface portion that is the growth surface on the hydrothermal synthesis substrate side is polished and removed by 12 to 29 μm, and as a result, the Li concentration is 5 × 10 5 that is the SIMS detection lower limit for both the ± c surfaces. It became 13 pieces / cm 3 or less.

また、軸引上げを行わなかった比較例1では、Pt冶工具近傍にフラックスの析出が観察された。成長膜をPt冶工具から外す際、冶工具を基点としたクラックが発生した。割れた断片の内最も大きい5mm角相当を用いて自立化処理を施したところ、物性面では実施例9と比較例1では大差がなかった。軸引上げ機構のみ異なる実施例9と10を比較すると、軸引上げが間欠的である実施例10の方が結晶性は低下し、キャリヤ移動度が減少している。軸引上げが間欠的であったため、安定的なLPE成長となっていないことが要因と思われる。   Further, in Comparative Example 1 in which the shaft was not pulled up, flux precipitation was observed in the vicinity of the Pt jig / tool. When the growth film was removed from the Pt jig / tool, a crack with the jig / tool as a base point occurred. When the self-supporting treatment was performed using the largest 5 mm square of the cracked fragments, there was no significant difference between Example 9 and Comparative Example 1 in terms of physical properties. Comparing the ninth and tenth embodiments, which differ only in the shaft pulling mechanism, the crystallinity is lowered and the carrier mobility is decreased in the tenth embodiment in which the shaft pulling is intermittent. The reason is that stable LPE growth has not been achieved because the shaft pulling was intermittent.

以上の結果から、連続的または間欠的に軸を引上げながらLPE成長を行うと、Pt冶工具を基点としたフラックス析出が抑制され、その結果、成長や自立化の過程でのクラックの発生が低減できることを示している。また、LPE成長後、成長に用いた基板を研磨で除去し、LPE成長膜の水熱合成基板側の−c面を少なくとも10μm以上研磨すれば、LPE膜中のLi濃度を1×1015個/cm3以下にすることが可能となる。一方、Ga23の仕込み量を制御することで、自立ZnO単結晶ウエファーのキャリヤ濃度を2.7×1017個/cm3から1×1019個/cm3程度まで制御できるため、同自立化膜を基板として光学素子や電子素子を構成した場合、自立導電性基板となり、デバイス製造コストや寿命の面で絶縁性基板より有利となる。

Figure 2009234825
Figure 2009234825
From the above results, when LPE growth is performed while pulling the shaft continuously or intermittently, flux precipitation based on the Pt jig tool is suppressed, and as a result, the generation of cracks in the process of growth and independence is reduced. It shows what you can do. Further, after the LPE growth, the substrate used for the growth is removed by polishing, and if the −c surface on the hydrothermal synthesis substrate side of the LPE growth film is polished at least 10 μm or more, the Li concentration in the LPE film is 1 × 10 15 pieces. / Cm 3 or less. On the other hand, since the carrier concentration of the free-standing ZnO single crystal wafer can be controlled from about 2.7 × 10 17 pieces / cm 3 to about 1 × 10 19 pieces / cm 3 by controlling the amount of Ga 2 O 3 charged. When an optical element or an electronic element is configured using a self-supporting film as a substrate, it becomes a self-supporting conductive substrate, which is more advantageous than an insulating substrate in terms of device manufacturing cost and life.
Figure 2009234825
Figure 2009234825

(実施例11−18および比較例2)
Al23をPtるつぼに仕込み、表3に示す仕込み組成とする以外、実施例1と同様の方法で自立ZnO単結晶を得た。実施例18では、連続的な軸引き上げを間欠的な軸引き上げに変更した。すなわち、軸を停止させて16時間経過後に100μm引上げる工程を5回繰り返し、80時間で合計500μm引上げた。得られた自立膜の物性を表4に示す。Al23仕込量が増えるに従い、キャリヤ濃度が増加しZnOに対し2200ppm仕込んだ実施例17の自立化膜ではキャリヤ濃度は1.0×1019個/cm3となった。これらの結果から、Al23を仕込むことでキャリヤ濃度を2.0×1017個/cm3から1.2×1019個/cm3まで制御できることを示している。一方、キャリヤ移動度はAl23を仕込まない実施例11では163cm2/V・sec、Al23を2200ppm仕込んだ実施例15では95cm2/V・secとなった。これは、異物であるAlがドープされた結果と思われる。結晶性を示す(002)面のロッキングカーブ半値幅は、Al23の仕込み0から2179ppmの間で19から52arcsecとなり極めて結晶性が高いことを示している。また、実施例12−17では、水熱合成基板側の成長面である−c面部を13−24μm研磨除去しており、その結果、±c面ともLi濃度はSIMS検出下限である5×1013個/cm3以下となった。
(Examples 11-18 and Comparative Example 2)
A self-supporting ZnO single crystal was obtained in the same manner as in Example 1 except that Al 2 O 3 was charged into a Pt crucible and the charging composition shown in Table 3 was used. In Example 18, continuous shaft pulling was changed to intermittent shaft pulling. That is, the process of stopping the shaft and raising 100 μm after 16 hours was repeated 5 times, and the total was raised by 500 μm in 80 hours. Table 4 shows the physical properties of the obtained self-supporting film. As the Al 2 O 3 charge increased, the carrier concentration increased and the carrier concentration of the self-supporting film of Example 17 charged with 2200 ppm with respect to ZnO was 1.0 × 10 19 particles / cm 3 . From these results, it is shown that the carrier concentration can be controlled from 2.0 × 10 17 pieces / cm 3 to 1.2 × 10 19 pieces / cm 3 by charging Al 2 O 3 . On the other hand, the carrier mobility was the Al 2 O 3 in Example 11 without charged to 163cm 2 / V · sec, the Al 2 O 3 Example 15 was charged 2200ppm of 95cm 2 / V · sec. This is considered to be a result of doping Al as a foreign material. The rocking curve half width of the (002) plane showing crystallinity is 19 to 52 arcsec between 0 to 2179 ppm of Al 2 O 3 , indicating that the crystallinity is extremely high. Further, in Example 12-17, the −c surface portion which is the growth surface on the hydrothermal synthesis substrate side is polished and removed by 13-24 μm, and as a result, the Li concentration is 5 × 10 5 which is the SIMS detection lower limit for both ± c surfaces. It became 13 pieces / cm 3 or less.

軸引上げを行わなかった比較例2では、Pt冶工具近傍にフラックスの析出が観察された。成長膜をPt冶工具から外す際、冶工具を基点としたクラックが発生した。割れた断片の内最も大きい5mm角相当を用いて自立化処理を施したところ、物性面では実施例17と比較例2では大差がなかった。軸引上げ機構のみ異なる実施例17と18を比較すると、軸引上げが間欠的である実施例18の方が結晶性は低下し、キャリヤ移動度が減少している。軸引上げが間欠的であったため、安定的なLPE成長となっていないことが要因と思われる。   In Comparative Example 2 in which the shaft was not pulled up, flux precipitation was observed in the vicinity of the Pt jig / tool. When the growth film was removed from the Pt jig / tool, a crack with the jig / tool as a base point occurred. When the self-supporting treatment was performed using the largest 5 mm square of the cracked fragments, there was no significant difference between Example 17 and Comparative Example 2 in terms of physical properties. Comparing Examples 17 and 18 that differ only in the shaft pulling mechanism, the crystallinity is lowered and carrier mobility is decreased in Example 18 in which the shaft pulling is intermittent. The reason is that stable LPE growth has not been achieved because the shaft pulling was intermittent.

以上の結果から、連続的または間欠的に軸を引上げながらLPE成長を行うと、Pt冶工具を基点としたフラックス析出が抑制され、その結果、成長や自立化の過程でのクラックの発生が低減できることを示している。また、LPE成長後、成長に用いた基板を研磨で除去し、LPE成長膜の水熱合成基板側の−c面を少なくとも10μm以上研磨すれば、LPE膜中のLi濃度を1×1015個/cm3以下にすることが可能となる。一方、Al23の仕込み量を制御することで、自立ZnO単結晶ウエファーのキャリヤ濃度を2.0×1017個/cm3から1×1019個/cm3程度まで制御できるため、同自立化膜を基板として光学素子や電子素子を構成した場合、自立導電性基板となり、デバイス製造コストや寿命の面で絶縁性基板より有利となる。

Figure 2009234825
Figure 2009234825
From the above results, when LPE growth is performed while pulling the shaft continuously or intermittently, flux precipitation based on the Pt jig tool is suppressed, and as a result, the generation of cracks in the process of growth and independence is reduced. It shows what you can do. Further, after the LPE growth, the substrate used for the growth is removed by polishing, and if the −c surface on the hydrothermal synthesis substrate side of the LPE growth film is polished at least 10 μm or more, the Li concentration in the LPE film is 1 × 10 15 pieces. / Cm 3 or less. On the other hand, the carrier concentration of the free-standing ZnO single crystal wafer can be controlled from 2.0 × 10 17 pieces / cm 3 to about 1 × 10 19 pieces / cm 3 by controlling the amount of Al 2 O 3 charged. When an optical element or an electronic element is configured using a self-supporting film as a substrate, it becomes a self-supporting conductive substrate, which is more advantageous than an insulating substrate in terms of device manufacturing cost and life.
Figure 2009234825
Figure 2009234825

(実施例19−22)
In23をPtるつぼに仕込み、表5に示す仕込み組成とした以外、実施例1と同様の方法で自立ZnO単結晶を得た。得られた自立膜の物性を表6に示す。In23仕込み量が増えるに従い、キャリヤ濃度が増加しZnOに対し140ppm仕込んだ実施例22の自立化膜ではキャリヤ濃度は3.5×1017個/cm3となった。これらの結果から、In23を仕込むことでキャリヤ濃度を2.0×1017個/cm3から3.5×1017個/cm3まで制御できることを示している。一方、キャリヤ移動度はIn23を仕込まない実施例19では168cm2/V・sec、140ppm仕込んだ実施例22では134cm2/V・secとなった。これは、異物であるInがドープされた結果と思われる。結晶性を示す(002)面のロッキングカーブ半値幅は、In23の仕込み0から140ppmの間で19から58arcsecとなり極めて結晶性が高いことを示している。また、実施例19−22では、水熱合成基板側の成長面である−c面部を19−24μm研磨除去しており、その結果、±c面ともLi濃度はSIMS検出下限である5×1013個/cm3以下となった。
(Examples 19-22)
A self-supporting ZnO single crystal was obtained in the same manner as in Example 1 except that In 2 O 3 was charged into a Pt crucible and the charging composition shown in Table 5 was used. Table 6 shows the physical properties of the obtained self-supporting film. As the amount of In 2 O 3 charged increased, the carrier concentration increased and the carrier concentration of the self-supporting film of Example 22 charged with 140 ppm with respect to ZnO was 3.5 × 10 17 particles / cm 3 . From these results, it is shown that the carrier concentration can be controlled from 2.0 × 10 17 atoms / cm 3 to 3.5 × 10 17 atoms / cm 3 by charging In 2 O 3 . On the other hand, the carrier mobility was 168 cm 2 / V · sec in Example 19 in which In 2 O 3 was not charged, and 134 cm 2 / V · sec in Example 22 in which 140 ppm was charged. This is considered to be a result of doping In which is a foreign substance. The rocking curve half width of the (002) plane showing crystallinity is 19 to 58 arcsec between 0 to 140 ppm of In 2 O 3 , indicating that the crystallinity is extremely high. Further, in Example 19-22, the −c surface portion which is the growth surface on the hydrothermal synthesis substrate side is polished and removed by 19-24 μm, and as a result, the Li concentration is 5 × 10 5 which is the SIMS detection lower limit for both ± c surfaces. It became 13 pieces / cm 3 or less.

以上の結果から、連続的に軸を引上げながらLPE成長を行うと、Pt冶工具を基点としたフラックス析出が抑制され、その結果、成長や自立化の過程でのクラックの発生が低減できることを示している。また、LPE成長後、成長に用いた基板を研磨で除去し、LPE成長膜の水熱合成基板側の−c面を少なくとも10μm以上研磨すれば、LPE膜中のLi濃度を1×1015以下にすることが可能となる。一方、In23の仕込み量を制御することで、自立ZnO単結晶ウエファーのキャリヤ濃度を2.0×1017個/cm3から3.5×1017個/cm3程度まで制御できるため、同自立化膜を基板として光学素子や電子素子を構成した場合、自立導電性基板となり、デバイス製造コストや寿命の面で絶縁性基板より有利となる。

Figure 2009234825
Figure 2009234825
From the above results, it is shown that when LPE growth is performed while pulling the shaft continuously, flux precipitation based on the Pt jig tool is suppressed, and as a result, generation of cracks in the process of growth and independence can be reduced. ing. Further, after the LPE growth, the substrate used for the growth is removed by polishing, and if the −c surface on the hydrothermal synthesis substrate side of the LPE growth film is polished at least 10 μm or more, the Li concentration in the LPE film is 1 × 10 15 or less. It becomes possible to. On the other hand, since the carrier concentration of the free-standing ZnO single crystal wafer can be controlled from 2.0 × 10 17 pieces / cm 3 to about 3.5 × 10 17 pieces / cm 3 by controlling the amount of In 2 O 3 charged. When an optical element or an electronic element is configured using the self-supporting film as a substrate, it becomes a self-supporting conductive substrate, which is more advantageous than an insulating substrate in terms of device manufacturing cost and life.
Figure 2009234825
Figure 2009234825

(実施例23)
以下の工程により、ZnO単結晶を液相エピタキシャル成長法(Liquid phase epitaxial)で作製した。内径75mmΦ、高さ75mmh、厚さ1mmの白金るつぼに、原料としてZnO、PbF2、およびPbOをそれぞれ、32.24g、922.58gおよび839.88g仕込んだ。このときの溶質であるZnOの濃度は5mol%で、溶媒であるPbF2およびPbOの濃度は、PbF2:PbO=50mol%:50.0mol%となる。原料を仕込んだるつぼを図3に示す炉に設置し、るつぼ底温度を約940℃で1時間保持し、Pt攪拌冶具で攪拌し溶解させた。その後、るつぼ底温度が約835℃になるまで降温してから、水熱合成法で育成した+c面方位でサイズが10mm×10mm×529μmtのZnO単結晶基板を種結晶として接液し、引上軸を30rpmで回転させながら同温度で80時間成長させた。また、H1、H2、H3の設定温度は、オフセット差を維持したまま、−0.1℃/hrの速度で降温させた。また、LPE成長の間、すなわち80時間かけて引上げ軸を連続的に500μm程度引上げた。このときの軸引上げ速度は約6.3μm/hrとなる。また、このとき軸回転方向は2分おきに反転させた。その後、引上軸を上昇させることで、融液から切り離し、100rpmで軸を回転させることで、融液成分を振り切り、その後室温まで徐冷して無色透明のZnO単結晶を得た。室温まで冷却後、成長膜をLPE炉から取出しPt治工具周辺を観察したがフラックス析出は見られなかった。LPE成長厚は343μmで、このときの成長速度は、約4.3μm/hrであった。続いて、以下に示す自立化処理を施した。裏面(水熱合成基板の−c面側)を、セラミックスプレートにWAXで固定した。横型平面研削盤で+c面のLPE面が平坦になるよう約50μm研削処理した。その後、表裏を張替え、水熱合成基板の厚みに相当する量を研削処理することで自立ZnO単結晶を得た。厚みは約251μm程度であった。自立膜をセラミックスプレートに再度WAX固定し、ダイヤモンドスラリーでラップ処理を、コロイダルシリカでポリッシュ処理を施した。自立膜の表裏の研磨量は、+c面で24μm、−c面で18μmであり、結果厚さ約251μmの自立ZnO単結晶を得た。研削、研磨の過程でクラックの発生はなかった。自立化処理後、±c面をSIMSで分析し、Li濃度を求めた。±c面ともLi濃度は検出下限である5×1013個/cm3以下であった。自立膜の結晶性を示す(002)面のロッキングカーブ半値幅は約31arcsecで結晶性が高いことを示している。伝導性を示すキャリヤ濃度は1.0×1019個/cm3、キャリヤ移動度は60cm2/V・secとなった。キャリヤ移動度の高さからも品質が高いことを示している。自立膜中央部50μm四方についてAFMで平坦性を評価したところ、Ra=0.3nmであった。
(Example 23)
A ZnO single crystal was produced by a liquid phase epitaxial method by the following steps. Into a platinum crucible having an inner diameter of 75 mmΦ, a height of 75 mmh, and a thickness of 1 mm, 32.24 g, 922.58 g, and 839.88 g of ZnO, PbF 2 , and PbO were charged as raw materials, respectively. At this time, the concentration of ZnO as a solute is 5 mol%, and the concentrations of PbF 2 and PbO as solvents are PbF 2 : PbO = 50 mol%: 50.0 mol%. The crucible charged with the raw material was placed in the furnace shown in FIG. 3, the bottom temperature of the crucible was maintained at about 940 ° C. for 1 hour, and the mixture was stirred and dissolved with a Pt stirring jig. After that, the temperature is lowered until the bottom temperature of the crucible reaches about 835 ° C., and a ZnO single crystal substrate having a size of 10 mm × 10 mm × 529 μmt grown in a hydrothermal synthesis method and having a size of 10 mm × 10 mm × 529 μmt is contacted as a seed crystal. The shaft was grown at the same temperature for 80 hours while rotating the shaft at 30 rpm. The set temperatures of H1, H2, and H3 were lowered at a rate of -0.1 ° C / hr while maintaining the offset difference. Further, during the LPE growth, that is, over 80 hours, the pulling axis was continuously pulled up by about 500 μm. The shaft pulling speed at this time is about 6.3 μm / hr. At this time, the shaft rotation direction was reversed every two minutes. Thereafter, the pulling-up shaft was raised to separate it from the melt, and the shaft was rotated at 100 rpm to shake off the melt components and then gradually cooled to room temperature to obtain a colorless and transparent ZnO single crystal. After cooling to room temperature, the grown film was taken out of the LPE furnace and observed around the Pt jig, but no flux deposition was observed. The LPE growth thickness was 343 μm, and the growth rate at this time was about 4.3 μm / hr. Subsequently, the following independence treatment was performed. The back surface (the −c surface side of the hydrothermal synthesis substrate) was fixed to the ceramic plate with WAX. About 50 μm was ground so that the + c plane LPE surface was flattened by a horizontal surface grinder. Then, the self-supporting ZnO single crystal was obtained by reversing the front and back and grinding the amount corresponding to the thickness of the hydrothermal synthetic substrate. The thickness was about 251 μm. The self-supporting film was fixed to the ceramic plate again by WAX, lapped with diamond slurry, and polished with colloidal silica. The polishing amount of the front and back surfaces of the free-standing film was 24 μm on the + c plane and 18 μm on the −c plane, and as a result, a free-standing ZnO single crystal having a thickness of about 251 μm was obtained. There were no cracks in the grinding and polishing process. After the self-supporting treatment, the ± c plane was analyzed by SIMS to determine the Li concentration. The Li concentration in both the ± c planes was 5 × 10 13 pieces / cm 3 or less, which is the lower limit of detection. The rocking curve half-value width of the (002) plane showing the crystallinity of the free-standing film is about 31 arcsec, indicating that the crystallinity is high. The carrier concentration exhibiting conductivity was 1.0 × 10 19 atoms / cm 3 and the carrier mobility was 60 cm 2 / V · sec. It shows that the quality is high also from the high carrier mobility. When flatness was evaluated by AFM for the 50 μm square of the free-standing film central portion, Ra = 0.3 nm.

本実施例では、成長したZnOに導電性を付与するドーパントを加えていないが、溶媒に用いたPbF2からのFドープが導電性発現要因になったと思われる。以上の結果から、PbF2およびPbO溶媒を用いても、自立導電性ZnO単結晶を、Li濃度1×1015個/cm3以下で製造することが可能となることを示している。一方、同溶媒ではFが導電性発現元素となっており、ドーパント仕込み量で伝導性を制御することは困難となる。

Figure 2009234825
In this example, a dopant imparting conductivity was not added to the grown ZnO, but F doping from PbF 2 used as a solvent seems to have become a cause of conductivity. From the above results, it is shown that a self-supporting conductive ZnO single crystal can be produced at a Li concentration of 1 × 10 15 pieces / cm 3 or less even when PbF 2 and PbO solvents are used. On the other hand, in the same solvent, F is a conductive expression element, and it becomes difficult to control the conductivity by the amount of dopant charged.
Figure 2009234825

(実施例24−25)

Figure 2009234825
(Examples 24-25)
Figure 2009234825

Figure 2009234825
Figure 2009234825

実施例9において、連続的な軸引上げ速度を2.0μm/hrとした以外、実施例9と同様に実施例24を行った。実施例9において、連続的な軸引上げ速度を50.0μm/hrとした以外、実施例9と同様に実施例25を行った。実施例24−25ではクラック発生なしに自立膜を製造することができた。実施例24および25で得た自立化膜の物性面では、格子定数やバンドギャップは実施例9とほとんど同じであったが、成長速度が低い実施例24では、(002)面のロッキングカーブ半値幅が狭まり、結晶性の良化が見られた。一方、成長速度が速い実施例25では(002)面のロッキングカーブ半値幅が拡がり、結晶性の低下が見られた。   In Example 9, Example 24 was performed in the same manner as in Example 9 except that the continuous shaft pulling rate was 2.0 μm / hr. In Example 9, Example 25 was performed in the same manner as Example 9 except that the continuous shaft pulling rate was 50.0 μm / hr. In Examples 24-25, a self-supporting film could be produced without cracking. In the physical properties of the self-supporting films obtained in Examples 24 and 25, the lattice constant and the band gap were almost the same as those in Example 9, but in Example 24 where the growth rate was low, the rocking curve half of the (002) plane was used. The value range narrowed and the crystallinity improved. On the other hand, in Example 25 where the growth rate was high, the full width at half maximum of the rocking curve on the (002) plane was widened, and a decrease in crystallinity was observed.

図1は、自立Mg含有ZnO系混晶単結晶製造時の問題点を説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining problems in producing a self-supporting Mg-containing ZnO mixed single crystal. 図2は、従来の素子構造および本発明で得られるMg含有ZnO系混晶単結晶を用いた素子構造を表す構成図である。FIG. 2 is a configuration diagram showing a conventional element structure and an element structure using an Mg-containing ZnO mixed crystal single crystal obtained by the present invention. 図3は、本発明の実施例および比較例で使用した炉の構成図である。FIG. 3 is a block diagram of the furnace used in the examples and comparative examples of the present invention.

符号の説明Explanation of symbols

1:上段ヒーター
2:中断ヒーター
3:下段ヒーター
4:Ptるつぼ
5:引上軸
6:基板ホルダー
7:基板
8:融液
9:るつぼ台
10:熱電対
11:炉心管
12:炉蓋
1: Upper heater 2: Interruption heater 3: Lower heater 4: Pt crucible 5: Pulling shaft 6: Substrate holder 7: Substrate 8: Melt 9: Crucible base 10: Thermocouple 11: Core tube 12: Furnace lid

Claims (16)

溶質であるZnOと溶媒とを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする液相エピタキシャル成長法によるZnO単結晶の製造方法。   After the solute ZnO and the solvent are mixed and melted, the seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal substrate is pulled up continuously or intermittently to form a ZnO single crystal. And a step of growing a crystal on the seed crystal substrate. A method for producing a ZnO single crystal by a liquid phase epitaxial growth method. 溶質であるZnOと、溶媒であるPbOおよびBi23とを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする請求項1に記載の液相エピタキシャル成長法によるZnO単結晶の製造方法。 After mixing and melting ZnO as a solute and solvents PbO and Bi 2 O 3 , the seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal substrate is continuously or The method for producing a ZnO single crystal by a liquid phase epitaxial growth method according to claim 1, further comprising a step of growing the ZnO single crystal on the seed crystal substrate by pulling intermittently. 前記溶質と溶媒の混合比が、溶質:溶媒=5〜30mol%:95〜70mol%であり、溶媒であるPbOとBi23の混合比がPbO:Bi23=0.1〜95mol%:99.9〜5mol%である請求項2に記載のZnO単結晶の製造方法。 The mixing ratio of the solute and the solvent is solute: solvent = 5 to 30 mol%: 95 to 70 mol%, and the mixing ratio of the solvent PbO and Bi 2 O 3 is PbO: Bi 2 O 3 = 0.1 to 95 mol. %: 99.9-5 mol% The method for producing a ZnO single crystal according to claim 2. 溶質であるZnOと、溶媒であるPbF2およびPbOとを混合して融解させた後、得られた融液に、種結晶基板を直接接触させる工程と、前記種結晶基板を連続的あるいは間欠的に引上げることによってZnO単結晶を前記種結晶基板上に成長させる工程と、を有することを特徴とする請求項1に記載の液相エピタキシャル成長法によるZnO単結晶の製造方法。 After mixing and melting ZnO as a solute and PbF 2 and PbO as solvents, the seed crystal substrate is brought into direct contact with the obtained melt, and the seed crystal substrate is continuously or intermittently contacted. The method for producing a ZnO single crystal by a liquid phase epitaxial growth method according to claim 1, further comprising a step of growing the ZnO single crystal on the seed crystal substrate by pulling it up. 前記溶質と溶媒の混合比が、溶質:溶媒=2〜20mol%:98〜80mol%であり、溶媒であるPbF2とPbOの混合比がPbF2:PbO=20〜80mol%:80〜20mol%である請求項4に記載のZnO単結晶の製造方法。 The mixing ratio of the solute and the solvent is solute: solvent = 2 to 20 mol%: 98 to 80 mol%, and the mixing ratio of PbF 2 and PbO as the solvent is PbF 2 : PbO = 20 to 80 mol%: 80 to 20 mol%. The method for producing a ZnO single crystal according to claim 4. 連続的に種結晶基板を引上げる速度Vが、2μm/hr≦V≦50μm/hrである請求項1から5のいずれかに記載のZnO系単結晶の製造方法。   The method for producing a ZnO-based single crystal according to any one of claims 1 to 5, wherein a speed V for continuously pulling up the seed crystal substrate is 2 µm / hr ≤ V ≤ 50 µm / hr. 間欠的に種結晶基板を引上げる平均速度vが、2μm/hr≦v≦50μm/hrである請求項1から5のいずれかに記載のZnO系単結晶の製造方法。   6. The method for producing a ZnO-based single crystal according to claim 1, wherein an average speed v for intermittently pulling the seed crystal substrate is 2 μm / hr ≦ v ≦ 50 μm / hr. 前記ZnO単結晶の膜厚が100μm以上である請求項1から7のいずれかに記載のZnO系単結晶の製造方法。   The method for producing a ZnO-based single crystal according to any one of claims 1 to 7, wherein a film thickness of the ZnO single crystal is 100 µm or more. 前記ZnO単結晶が、Al、Ga、In、H、およびFからなる群より選択される1以上を含有する請求項1から8のいずれかに記載のZnO単結晶の製造方法。   The method for producing a ZnO single crystal according to any one of claims 1 to 8, wherein the ZnO single crystal contains one or more selected from the group consisting of Al, Ga, In, H, and F. 前記ZnO単結晶の成長方位が+c面である請求項1から9のいずれかに記載のZnO系単結晶の製造方法。   The method for producing a ZnO-based single crystal according to any one of claims 1 to 9, wherein the growth orientation of the ZnO single crystal is a + c plane. 前記ZnO単結晶を成長させた後、前記種結晶基板を研磨またはエッチングで除去し、前記単結晶の液相エピタキシャル成長した−c面側を少なくとも10μm以上研磨あるいはエッチングする工程を有する、請求項1から10のいずれかに記載のZnO単結晶の製造方法。   The method includes the steps of growing the ZnO single crystal, removing the seed crystal substrate by polishing or etching, and polishing or etching at least 10 μm or more on the −c plane side of the single crystal grown by liquid phase epitaxial growth. 10. A method for producing a ZnO single crystal according to any one of 10 above. 請求項11に記載のZnO単結晶の製造方法によって得られた自立ZnO単結晶ウエファーであって、膜厚が100μm以上であることを特徴とする自立ZnO単結晶ウエファー。   A self-supporting ZnO single crystal wafer obtained by the method for producing a ZnO single crystal according to claim 11, wherein the film thickness is 100 µm or more. Li濃度が、ウエファーの面内方向、および、厚み方向に対し均一であり、かつ、1×1015個/cm3以下である請求項12に記載の自立ZnO単結晶ウエファー。 The self-standing ZnO single crystal wafer according to claim 12, wherein the Li concentration is uniform with respect to the in-plane direction and the thickness direction of the wafer, and is 1 x 10 15 pieces / cm 3 or less. Gaを含有し、キャリヤ濃度が2.0×1017個/cm3〜1.0×1019個/cm3であり、かつ、Li濃度が1e15個/cm3以下である請求項12または13に記載の自立ZnO単結晶ウエファー。 13. Ga is contained, the carrier concentration is 2.0 × 10 17 atoms / cm 3 to 1.0 × 10 19 atoms / cm 3 , and the Li concentration is 1e 15 atoms / cm 3 or less. The self-supporting ZnO single crystal wafer according to 13. Alを含有し、キャリヤ濃度が2.0×1017個/cm3〜1.0×1019個/cm3であり、かつ、Li濃度が1×1015個/cm3以下である請求項12または13に記載の自立ZnO単結晶ウエファー。 Al is contained, the carrier concentration is 2.0 × 10 17 pieces / cm 3 to 1.0 × 10 19 pieces / cm 3 , and the Li concentration is 1 × 10 15 pieces / cm 3 or less. The self-standing ZnO single crystal wafer according to 12 or 13. Inを含有し、キャリヤ濃度が2.0e17個/cm3〜3.5×1017個/cm3であり、かつ、Li濃度が1×1015個/cm3以下である請求項12または13に記載の自立ZnO単結晶ウエファー。 13 or 13 containing In, a carrier concentration of 2.0e 17 atoms / cm 3 to 3.5 × 10 17 atoms / cm 3 , and a Li concentration of 1 × 10 15 atoms / cm 3 or less. The self-supporting ZnO single crystal wafer according to 13.
JP2008080639A 2008-03-26 2008-03-26 METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT Pending JP2009234825A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008080639A JP2009234825A (en) 2008-03-26 2008-03-26 METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT
CN2009801101420A CN101978102A (en) 2008-03-26 2009-03-18 Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
PCT/JP2009/055301 WO2009119411A1 (en) 2008-03-26 2009-03-18 Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
EP09726041.8A EP2267193A4 (en) 2008-03-26 2009-03-18 Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
KR1020107023512A KR20110003346A (en) 2008-03-26 2009-03-18 Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
US12/934,835 US20110024742A1 (en) 2008-03-26 2009-03-18 PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL, SELF-SUPPORTING ZnO SINGLE-CRYSTAL WAFER OBTAINED BY THE SAME, SELF-SUPPORTING WAFER OF Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, AND PROCESS FOR PRODUCING Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL FOR USE IN THE SAME
TW098109335A TW200951252A (en) 2008-03-26 2009-03-23 Method for producing single crystal of ZnO, independent single crystal wafer of ZnO obtained thereby, independent single crystal of ZnO based mix-crystal containing Mg, and method for producing single crystal of ZnO based mix-crystal containing Mg for us

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080639A JP2009234825A (en) 2008-03-26 2008-03-26 METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT

Publications (1)

Publication Number Publication Date
JP2009234825A true JP2009234825A (en) 2009-10-15

Family

ID=41249266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080639A Pending JP2009234825A (en) 2008-03-26 2008-03-26 METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT

Country Status (1)

Country Link
JP (1) JP2009234825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012527A (en) * 2010-07-01 2012-01-19 Daishinku Corp Scintillator material and scintillation detector
JP2017120192A (en) * 2015-12-28 2017-07-06 国立大学法人島根大学 Scintillator and electron detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144191A (en) * 1986-12-02 1988-06-16 Sumitomo Electric Ind Ltd Production of compound semiconductor single crystal and apparatus therefor
JP2000302596A (en) * 1999-04-15 2000-10-31 Fujikura Ltd Oxide superconductor and its production
JP2002009353A (en) * 2000-06-16 2002-01-11 Internatl Superconductivity Technology Center Bicrystal oxide superconducting film and high temperature superconducting josephson junction element and superconducting quantum inteference element using it
JP2007223878A (en) * 2006-02-27 2007-09-06 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal and group iii nitride crystal substrate
WO2007100146A1 (en) * 2006-03-01 2007-09-07 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144191A (en) * 1986-12-02 1988-06-16 Sumitomo Electric Ind Ltd Production of compound semiconductor single crystal and apparatus therefor
JP2000302596A (en) * 1999-04-15 2000-10-31 Fujikura Ltd Oxide superconductor and its production
JP2002009353A (en) * 2000-06-16 2002-01-11 Internatl Superconductivity Technology Center Bicrystal oxide superconducting film and high temperature superconducting josephson junction element and superconducting quantum inteference element using it
JP2007223878A (en) * 2006-02-27 2007-09-06 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal and group iii nitride crystal substrate
WO2007100146A1 (en) * 2006-03-01 2007-09-07 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012527A (en) * 2010-07-01 2012-01-19 Daishinku Corp Scintillator material and scintillation detector
US20130087739A1 (en) * 2010-07-01 2013-04-11 Daishinku Corporation Scintillator material and scintillation detector
EP2589641A1 (en) * 2010-07-01 2013-05-08 Daishinku Corporation Scintillator material and scintillation detector
EP2589641A4 (en) * 2010-07-01 2014-05-21 Daishinku Corp Scintillator material and scintillation detector
US8920677B2 (en) 2010-07-01 2014-12-30 Daishinku Corporation Scintillator material and scintillation detector
JP2017120192A (en) * 2015-12-28 2017-07-06 国立大学法人島根大学 Scintillator and electron detector

Similar Documents

Publication Publication Date Title
JP5146310B2 (en) Method for producing ZnO single crystal by liquid phase growth method
JP4647525B2 (en) Method for producing group III nitride crystal
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
WO2011024931A1 (en) Sic single crystal wafer and process for production thereof
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
JP5260881B2 (en) Mg-containing ZnO mixed crystal single crystal, laminated body thereof, and production method thereof
KR102296061B1 (en) β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
CN104878449B (en) β-Ga2O3Base monocrystal substrate
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
WO2009119411A1 (en) Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
JP2009234824A (en) METHOD FOR MANUFACTURING SELF-SUPPORTING WAFER OF Mg CONTAINING ZnO MIXED SINGLE CRYSTAL AND Mg CONTAINING ZnO MIXED SINGLE CRYSTAL USED FOR IT
JP2009234825A (en) METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2007284306A (en) Silicon carbide single crystal and method for manufacturing the same
JP2013173673A (en) MIXED SINGLE CRYSTAL WAFER OF SELF-STANDING Mg-CONTAINING ZnO SYSTEM AND METHOD FOR MANUFACTURING MIXED SINGLE CRYSTAL OF Mg-CONTAINING ZnO SYSTEM USED FOR THE SAME
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP4160769B2 (en) Silicon carbide single crystal ingot and wafer
JP2005272203A (en) Substrate for forming film and method for forming semiconductor film
JP2008254941A (en) Sapphire single crystal substrate and method for manufacturing the same
JP5218960B2 (en) Zirconium diboride (ZrB2) single crystal growth method and semiconductor forming substrate
JP2023111156A (en) Substrate and method of producing substrate
JP2007031252A (en) Boride single crystal, its manufacturing method and substrate for growing semiconductor using the boride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022