JP2841260B2 - Magneto-optical element - Google Patents

Magneto-optical element

Info

Publication number
JP2841260B2
JP2841260B2 JP5009984A JP998493A JP2841260B2 JP 2841260 B2 JP2841260 B2 JP 2841260B2 JP 5009984 A JP5009984 A JP 5009984A JP 998493 A JP998493 A JP 998493A JP 2841260 B2 JP2841260 B2 JP 2841260B2
Authority
JP
Japan
Prior art keywords
magneto
optical
single crystal
optical element
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5009984A
Other languages
Japanese (ja)
Other versions
JPH06222309A (en
Inventor
晃一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP5009984A priority Critical patent/JP2841260B2/en
Priority to EP94904764A priority patent/EP0634684B1/en
Priority to US08/307,658 priority patent/US5596447A/en
Priority to PCT/JP1994/000095 priority patent/WO1994017437A1/en
Priority to DE69428559T priority patent/DE69428559T2/en
Priority to CA002132616A priority patent/CA2132616C/en
Publication of JPH06222309A publication Critical patent/JPH06222309A/en
Application granted granted Critical
Publication of JP2841260B2 publication Critical patent/JP2841260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光増幅器等の光アイソレ
ータとして用いられる磁気光学素子に係り、特に、実質
的に0.98μmの波長領域での使用に好適な磁気光学
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical device used as an optical isolator such as an optical amplifier, and more particularly to a magneto-optical device suitable for use in a wavelength region of substantially 0.98 .mu.m.

【0002】[0002]

【従来の技術】従来、Er添加光ファイバを用いた1.
5μm帯進行波型光増幅器は高効率で偏波依存性がな
く、伝送系との整合性に優れた特徴を示し、その実用的
観点より0.98μmおよび1.48μm帯を用いたレ
ーザーダイオード(以下LD)励起が盛んに研究されて
いる。信号光利得・雑音特性が実験的に検討された結
果、0.98μm帯励起は1.48μm帯励起に比べよ
り高効率・低雑音特性であることが分かっている。しか
し、現状では1.48μm帯に適した光デバイス(光ア
イソレータなど)を備えた光増幅器に関する開発が進ん
でいる。
2. Description of the Related Art Heretofore, 1.
The 5 μm band traveling wave type optical amplifier has characteristics of high efficiency, no polarization dependency, and excellent matching with the transmission system. From a practical viewpoint, a laser diode using a 0.98 μm and 1.48 μm band ( Hereafter, LD) excitation is actively studied. As a result of experimentally examining the signal light gain and noise characteristics, it has been found that 0.98 μm band pumping has higher efficiency and lower noise characteristics than 1.48 μm band pumping. However, at present, the development of an optical amplifier having an optical device (such as an optical isolator) suitable for the 1.48 μm band is progressing.

【0003】[0003]

【発明が解決しようとする課題】現在、0.98μm光
アイソレータは、テルビウム・ガリウム・ガーネット
(TGG)単結晶を採用した光アイソレータが実用化さ
れている。しかし、LDに比べて寸法があまりに大きい
ために将来的視野から検討されていない。また、バルク
のイットリウム・鉄・ガーネット(YIG)およびBi
置換ガーネットは、0.98μm帯において吸収が大き
いため、透過損失約5dBと実用的でない。ZnS型結
晶構造をもつCdTeのCdの一部をMnに置換したC
1-x MnxTeは大きなベルデ定数をもつ材料で、可
視光波長0.85〜0.63μmに対する光アイソレー
タ材料として実用性能が確認された{小野寺、及川:第
15回日本応用磁気学会学術講演概要集30aB−7、
p179(1991)}。
At present, an optical isolator using a terbium gallium garnet (TGG) single crystal has been put into practical use as a 0.98 μm optical isolator. However, since the dimensions are too large compared to LDs, they have not been studied from a future perspective. In addition, bulk yttrium / iron / garnet (YIG) and Bi
The substituted garnet has a large absorption in the 0.98 μm band, and thus has a transmission loss of about 5 dB, which is not practical. C in which a part of Cd of CdTe having a ZnS type crystal structure is substituted with Mn
d 1-x Mn x Te is a material having a large Verdet constant, practical performance is confirmed as an optical isolator material for visible light wavelength 0.85~0.63Myuemu {Onodera, Oikawa: 15th Magnetics Society of Japan Academic Lecture summary 30aB-7,
p179 (1991)}.

【0004】しかしながら、0.98μmにおいてはベ
ルデ定数があまりに小さすぎて実用化は困難であった。
すなわち、0.98μm帯励起光増幅器に用いられるL
Dモジュール化が可能な光アイソレータが実在しないこ
とが、本質的に高効率・低雑音特性において1.48μ
m帯励起より優れているのに実用化開発が遅れている要
因のひとつであった。
However, at 0.98 μm, the Verdet constant is too small, and practical use has been difficult.
That is, L used for the 0.98 μm band pumping optical amplifier
The fact that there is no real optical isolator that can be made into a D module is essentially 1.48μ in high efficiency and low noise characteristics.
This was one of the factors behind the delay in practical application development despite being superior to m-band excitation.

【0005】そこで本発明の技術的課題は、上記欠点に
鑑み、実質的に0.98μmの波長領域での使用に好適
な磁気光学素子を提供することを目的とする。
Accordingly, it is an object of the present invention to provide a magneto-optical element suitable for use in a wavelength region of substantially 0.98 μm in view of the above-mentioned drawbacks.

【0006】[0006]

【課題を解決するための手段】本発明によれば、Mnお
よびHgを配合させたCd1-x -yMnx Hgy Te単結
晶を有し、実質的に0.98μmの波長領域で使用可能
な特性を持つ磁気光学素子であって、前記単結晶は、M
nTe−HgTe−CdTe擬3元系相図において、 Mn0.01Hg0.04Cd0.95Te、Mn0.01Hg0.1 Cd0.89Te、 Mn0.12Hg0.17Cd0.71Te、Mn0.25Hg0.04Cd0.71Te、 の4点に囲まれる範囲に含まれる組成を有することを特
徴とする磁気光学素子が得られる。
According to the present invention SUMMARY OF], have Cd 1-x -y Mn x Hg y Te single crystal obtained by mixing Mn and Hg, substantially used in the wavelength region of 0.98μm A magneto-optical element having possible characteristics, wherein the single crystal is M
In nTe-HgTe-CdTe quasi ternary phase diagram, surrounded Mn 0.01 Hg 0.04 Cd 0.95 Te, Mn 0.01 Hg 0.1 Cd 0.89 Te, Mn 0.12 Hg 0.17 Cd 0.71 Te, Mn 0.25 Hg 0.04 Cd 0.71 Te, the four points Thus, a magneto-optical element characterized by having a composition falling within the range described above is obtained.

【0007】更に本発明によれば、前記磁気光学素子を
ファラデー回転子として備えてなることを特徴とする光
アイソレータが得られる。
Further, according to the present invention, there is provided an optical isolator including the magneto-optical element as a Faraday rotator.

【0008】[0008]

【作用】ZnS型結晶構造をもつCdTeのCdの一部
をMnに置換したCd1-x Mnx Teは大きなベルデ定
数をもつ材料で、可視光波長0.85〜0.63μmに
対する光アイソレータ材料として実用性能が確認されて
いることは前述のとおりであるが、0.98μm帯にお
いてはベルデ定数が小さいため実用性能が得られなかっ
た。これは、ベルデ定数が光の吸収端近傍で大きくなる
特徴があるためである。そこで、この材料を用いて実用
性能を得るためには、材料のバンドギャップエネルギー
を調整することとベルデ定数の絶対値が大きくなるよう
にMn組成を選択する方向で検討すればよい。バンドギ
ャップエネルギーを0.9μm帯にシフトさせるために
は、Cdの一部をHgで置換すればよい。最終的には、
バルクの結晶性が大きく影響を与える。そこで、結晶性
との兼ね合いで最適な結晶組成が決定される。
Cd 1-x Mn x Te where a part is substituted with Mn of CdTe and Cd with [action] ZnS-type crystal structure of a material having a large Verdet constant, optical isolator materials for visible light wavelength 0.85~0.63μm As described above, practical performance was not confirmed in the 0.98 μm band because the Verdet constant was small. This is because there is a feature that the Verdet constant increases near the light absorption edge. Therefore, in order to obtain practical performance using this material, it is only necessary to consider adjusting the band gap energy of the material and selecting the Mn composition so as to increase the absolute value of the Verdet constant. In order to shift the band gap energy to the 0.9 μm band, Cd may be partially replaced with Hg. Eventually,
The bulk crystallinity has a significant effect. Therefore, an optimum crystal composition is determined in consideration of crystallinity.

【0009】本発明に係る磁気光学素子によれば、アイ
ソレーション:30dB以上、挿入損失:1dB以下の
実用特性を有するLDモジュール化が可能な0.98μ
m帯光アイソレ−タを得ることが可能となる。
According to the magneto-optical device of the present invention, an LD module having practical characteristics of an isolation of 30 dB or more and an insertion loss of 1 dB or less is 0.98 μm.
An m-band optical isolator can be obtained.

【0010】[0010]

【実施例】以下、本発明の実施例に係る磁気光学素子に
ついて添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magneto-optical device according to an embodiment of the present invention will be described below with reference to the accompanying drawings.

【0011】最初に、最適組成の選択について述べる。First, the selection of the optimum composition will be described.

【0012】MnTe−HgTe−CdTe擬3元系の
相図における種々の組成の結晶をブリッジマン法で作製
した。Cd、Mn、Te、Hgをそれぞれの組成比で石
英アンプル中に配合し、真空封入した。加熱時に完全に
溶融していない場合には、蒸気圧が高くなるために石英
アンプルが割れる可能性があるので、石英アンプルは十
分な肉厚を確保するとともにTe過剰組成にして約80
0℃程度の融点にし、育成工程での内圧を和らげる工夫
をする。
Crystals of various compositions in the phase diagram of the MnTe-HgTe-CdTe pseudo-ternary system were prepared by the Bridgman method. Cd, Mn, Te, and Hg were compounded in a quartz ampoule at respective composition ratios and sealed in a vacuum. If not completely melted at the time of heating, the quartz ampule may be cracked due to an increase in vapor pressure. Therefore, the quartz ampule is required to have a sufficient thickness and to have a Te excess composition of about 80%.
A melting point of about 0 ° C. is used to reduce the internal pressure in the growing process.

【0013】この石英アンプルを縦型ブリッジマン炉に
入れ、溶融温度800℃で10時間保持したのち、石英
るつぼを徐々に降下させ、石英アンプルの低温部の一端
から結晶化させた。
The quartz ampoule was placed in a vertical Bridgman furnace and maintained at a melting temperature of 800 ° C. for 10 hours. Then, the quartz crucible was gradually lowered, and crystallized from one end of a low-temperature portion of the quartz ampule.

【0014】図1に、LDモジュール化が可能な光アイ
ソレータ(9.5φ×10Lmm)を実現可能な印加磁
場3000Oeを加えた場合に、アイソレーション:30
dB以上、挿入損失:1dB以下を実現できる組成を示
す。図1に示すように、本発明による磁気光学素子を構
成するCd1-x -yMnx Hgy Te単結晶は、MnTe
−HgTe−CdTe擬3元系相図において、Mn0.01
Hg0.04Cd0.95Te、Mn0.01Hg0.1 Cd0.89
e、Mn0.12Hg0.17Cd0.71Te、Mn0.25Hg0.04
Cd0.71Te、の4点に囲まれる範囲に含まれる組成を
有している。
FIG. 1 shows that when an applied magnetic field of 3000 Oe capable of realizing an optical isolator (9.5 φ × 10 Lmm) that can be made into an LD module is applied, the isolation becomes 30
This shows a composition that can realize an insertion loss of 1 dB or less and a loss of 1 dB or more. As shown in FIG. 1, Cd 1-x -y Mn x Hg y Te single crystal constituting the magneto-optical device according to the present invention, MnTe
-HgTe-CdTe pseudo ternary phase diagram, Mn 0.01
Hg 0.04 Cd 0.95 Te, Mn 0.01 Hg 0.1 Cd 0.89 T
e, Mn 0.12 Hg 0.17 Cd 0.71 Te, Mn 0.25 Hg 0.04
It has a composition included in a range surrounded by four points of Cd 0.71 Te.

【0015】以下、本発明の実施例を示す。An embodiment of the present invention will be described below.

【0016】実施例1 Mn0.1 Hg0.1 Cd0.8 Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融温度(800℃)で
ブリッジマン法によって育成した。育成法は、前述の通
りである。育成した単結晶より{111}面が端面にな
るように2mm×2mm×1.7tmmの角板状の試料
を作製した。磁場を3000Oe印加したところ、波長
0.98μmのレーザー光に対して、45°のファラデ
ー回転が得られ、アイソレーション:30dB、挿入損
失:0.7dB、アイソレータのサイズ:φ8×5Lm
mで光アイソレータとして十分に使えることが明らかに
なった。
Example 1 A single crystal having a composition of Mn 0.1 Hg 0.1 Cd 0.8 Te was
e The material was grown by the Bridgman method at a low melting temperature (800 ° C.) by making the melt excessive. The breeding method is as described above. From the grown single crystal, a square plate-shaped sample of 2 mm × 2 mm × 1.7 tmm was prepared such that the {111} plane was an end face. When a magnetic field of 3000 Oe was applied, 45 ° Faraday rotation was obtained with respect to a laser beam having a wavelength of 0.98 μm, isolation: 30 dB, insertion loss: 0.7 dB, size of the isolator: φ8 × 5 Lm
It has been clarified that m can be used sufficiently as an optical isolator.

【0017】実施例2 Mn0.05Hg0.05Cd0.9 Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融温度(850℃)で
ブリッジマン法によって育成した。育成法は、前述の通
りである。育成した単結晶より{111}面が端面にな
るように2mm×2mm×2.5mmの角板状の試料を
作製した。磁場を5000Oe印加したところ、波長0.
98μmのレーザー光に対して、45°のファラデー回
転が得られ、アイソレーション:30dB、挿入損失:
0.7dB、アイソレータのサイズ:φ13×10Lm
mで光アイソレータとして十分に使えることが明らかに
なった。ただし、目的とする用途からみると、半導体レ
ーザーに較べて多少大きい。
Example 2 A single crystal having a composition of Mn 0.05 Hg 0.05 Cd 0.9 Te
e By growing the melt in excess, it was grown by the Bridgman method at a low melting temperature (850 ° C.). The breeding method is as described above. From the grown single crystal, a square plate-shaped sample of 2 mm × 2 mm × 2.5 mm was prepared such that the {111} plane was an end face. When a magnetic field of 5000 Oe was applied, a wavelength of 0.
A 45 ° Faraday rotation is obtained for 98 μm laser light, isolation: 30 dB, insertion loss:
0.7dB, isolator size: φ13 × 10Lm
It has been clarified that m can be used sufficiently as an optical isolator. However, it is slightly larger than a semiconductor laser when viewed from the intended use.

【0018】比較例 Mn0.03Hg0.00Cd0.97Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融(1000℃)でブ
リッジマン法によって育成した。育成法は、前述の通り
である。育成した単結晶より{111}面が端面になる
ように2mm×2mm×7.0mmの角板状の試料を作
製した。磁場を5000Oe印加したところ、波長0.9
8μmのレーザー光に対して、45°のファラデー回転
が得られ、アイソレーション:25dB、挿入損失:
1.0dB、アイソレータのサイズ:φ13×15Lm
mであった。目的とする用途としては不十分の性能であ
り、また、実用的面からみても半導体レーザーに較べて
大きい。
Comparative Example A single crystal having a composition of Mn 0.03 Hg 0.00 Cd 0.97 Te
e Grew by the Bridgman method at low melting (1000 ° C.) by making the melt excessive. The breeding method is as described above. A square plate sample of 2 mm × 2 mm × 7.0 mm was prepared from the grown single crystal such that the {111} plane was an end face. When a magnetic field of 5000 Oe is applied, the wavelength becomes 0.9.
A 45 ° Faraday rotation is obtained for 8 μm laser light, isolation: 25 dB, insertion loss:
1.0dB, isolator size: φ13 × 15Lm
m. The performance is insufficient for the intended use, and is larger than a semiconductor laser from a practical point of view.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
実質的に0.98μmの波長領域での光アイソレータと
しての使用に好適な磁気光学素子を提供することが可能
となる。
As described above, according to the present invention,
It is possible to provide a magneto-optical element suitable for use as an optical isolator substantially in a wavelength range of 0.98 μm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明においてLDモジュ−ル化が可能な光ア
イソレータを実現可能な結晶組成をMnTe−HgTe
−CdTe擬3元系相図で表した図である。
FIG. 1 shows a crystal composition that can realize an optical isolator capable of forming an LD module in the present invention is MnTe-HgTe.
FIG. 3 is a diagram represented by a CdTe pseudo-ternary phase diagram.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 MnおよびHgを配合させたCd1-x -y
Mnx Hgy Te単結晶を有し、実質的に0.98μm
の波長領域で使用可能な特性を持つ磁気光学素子であっ
て、前記単結晶は、MnTe−HgTe−CdTe擬3
元系相図において、 Mn0.01Hg0.04Cd0.95Te、Mn0.01Hg0.1 Cd0.89Te、 Mn0.12Hg0.17Cd0.71Te、Mn0.25Hg0.04Cd0.71Te、 の4点に囲まれる範囲に含まれる組成を有することを特
徴とする磁気光学素子。
1. Cd 1-x -y containing Mn and Hg
Mn x Hg y Te single crystal, substantially 0.98 μm
Wherein the single crystal is MnTe-HgTe-CdTe pseudo-3.
In the original system diagram, the composition included in the range surrounded by the four points of Mn 0.01 Hg 0.04 Cd 0.95 Te, Mn 0.01 Hg 0.1 Cd 0.89 Te, Mn 0.12 Hg 0.17 Cd 0.71 Te, Mn 0.25 Hg 0.04 Cd 0.71 Te, A magneto-optical element comprising:
【請求項2】 請求項1の磁気光学素子をファラデー回
転子として備えてなることを特徴とする光アイソレー
タ。
2. An optical isolator comprising the magneto-optical element according to claim 1 as a Faraday rotator.
JP5009984A 1993-01-25 1993-01-25 Magneto-optical element Expired - Fee Related JP2841260B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5009984A JP2841260B2 (en) 1993-01-25 1993-01-25 Magneto-optical element
EP94904764A EP0634684B1 (en) 1993-01-25 1994-01-25 Magneto-optical element
US08/307,658 US5596447A (en) 1993-01-25 1994-01-25 Magnetooptical element
PCT/JP1994/000095 WO1994017437A1 (en) 1993-01-25 1994-01-25 Magneto-optical element
DE69428559T DE69428559T2 (en) 1993-01-25 1994-01-25 MAGNETOOPTIC ELEMENT
CA002132616A CA2132616C (en) 1993-01-25 1994-01-25 Magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5009984A JP2841260B2 (en) 1993-01-25 1993-01-25 Magneto-optical element

Publications (2)

Publication Number Publication Date
JPH06222309A JPH06222309A (en) 1994-08-12
JP2841260B2 true JP2841260B2 (en) 1998-12-24

Family

ID=11735156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5009984A Expired - Fee Related JP2841260B2 (en) 1993-01-25 1993-01-25 Magneto-optical element

Country Status (1)

Country Link
JP (1) JP2841260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100247443B1 (en) * 1993-12-22 2000-03-15 도낀 가부시끼가이샤 Magneto-optical device and method for production thereof
DE69611113T3 (en) * 1995-03-06 2007-03-15 Matsushita Electric Industrial Co., Ltd., Kadoma Device for video noise reduction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123814A (en) * 1984-11-21 1986-06-11 Hitachi Ltd Magnetic semiconductor material and optical isolator

Also Published As

Publication number Publication date
JPH06222309A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
US4691983A (en) Optical waveguide and method for making the same
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
JP2841260B2 (en) Magneto-optical element
WO2012073671A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2012073670A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
US4932760A (en) Magneto-optic garnet
JPH0576611B2 (en)
WO1994017437A1 (en) Magneto-optical element
JPH11326854A (en) Production of single crystal of cd1-x-ymnxhgyte for magnetooptical element
JP2681869B2 (en) Magneto-optical element
JPH06222310A (en) Magneto-optical element
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
KR20010049925A (en) Magnetic garnet single crystal and faraday rotator using the same
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
EP0690153B1 (en) Oxide garnet single crystal
JP2874320B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH0774118B2 (en) Method for manufacturing magneto-optical element
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPH0476351B2 (en)
JPH0533769B2 (en)
JP2831279B2 (en) Magneto-optical element material
JPH06256096A (en) Production of cdmnhgte single crystal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

LAPS Cancellation because of no payment of annual fees