JPH0476351B2 - - Google Patents

Info

Publication number
JPH0476351B2
JPH0476351B2 JP19979888A JP19979888A JPH0476351B2 JP H0476351 B2 JPH0476351 B2 JP H0476351B2 JP 19979888 A JP19979888 A JP 19979888A JP 19979888 A JP19979888 A JP 19979888A JP H0476351 B2 JPH0476351 B2 JP H0476351B2
Authority
JP
Japan
Prior art keywords
substrate
optical
absorption
lattice constant
faraday rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19979888A
Other languages
Japanese (ja)
Other versions
JPH0251494A (en
Inventor
Yasutaka Nomi
Kazuhiro Nakajima
Katsumi Machida
Haruo Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19979888A priority Critical patent/JPH0251494A/en
Publication of JPH0251494A publication Critical patent/JPH0251494A/en
Publication of JPH0476351B2 publication Critical patent/JPH0476351B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、アアラデー効果を利用した光アイソ
レータ、光サーキユレータ等に用いられる磁気光
学材料に関するものである。 (従来の技術) 半導体レーザを光源に用いる光通信や光計測に
おいて、光源に反射光が戻るのを防ぐために光ア
イソレータが必要であり、光アイソレータにはフ
アラデー効果を有する磁性ガーネツトが用いられ
ている。フアラデー回転子材料に要求されるもの
には、1)フアラデー回転係数が大きい、2)フ
アラデー回転角の温度変化が小さい、3)使用波
長領域において吸収がない、4)飽和に要する磁
界が小さいなどがあり、これらを総合的に満たす
材料が望まれる。 従来、フアラデー回転子には、イツトリウム・
鉄・ガーネツトY3Fe5O12(YIG)が用いられてき
た。しかし、YIGはフアラデー回転係数が小さい
ため45度のフアラデー回転角を得るのに必要な厚
さが2〜3mmと厚くなつてしまう。近年、YIGに
代わる材料としてBi置換希土類鉄ガーネツトが
提案されている。これは、磁性ガーネツトの希土
類元素をBiで置換すると、Bi置換量に比例して
フアラデー回転係数が著しく増加するものであ
る。さらに、希土類元素を選択することにより、
フアラデー回転角の温度変化が小さく、飽和に要
する磁界の小さい材料YbxTbyBi3-x-yFe5O12が提
案されている(特願昭61−131896)。 (発明が解決しようとする課題) 一般に、波長0.4〜1.0μmにおける磁性ガーネ
ツトの吸収は主に、酸素四面体位置の24dサイト
と酸素八面体位置の16aサイトとを占めるFe3+
オンの結晶場遷移によるものである。この他に、
フラツクスやるつぼ材から混入したPb2+,Pb4+
Pt4+イオンの電価補償によつて生じるRe2+
Fe4+のブロードな吸収が存在するため、上記吸
収のすそのが波長1.3μm,1.55μmにかかり、こら
の波長における挿入損失が大きくなつていた。 前記(YbTbBi)3Fe5O12において、このブロー
ドな吸収が顕著に現れ、波長1.3μm,1.55μmにお
ける挿入損失がそれぞれ0.6dB,0.4dBと大きく
なつている。そのため、この材料では低損失
(1dB以下)の光アイソレータを作製することが
困難であつた。 本発明の目的は、(YbTbBi)3Fe5O12の希土類
の組成比を変えることによつて吸収を減らし、光
アイソレータや光サーキユレータの使用波長領域
である0.8〜1.6μmにおける挿入損失を低減した高
性能なフアラデー回転子材料を提供するにある。 (課題を解決するための手段) (YbTbBi)3Fe5O12において、Tbイオンは
Tb3 +の他にTb4+でも安定に存在しうることか
ら、Tb4+イオンによつて誘起されるFe2+イオン
のブロードな吸収がさらに加わるため、挿入損失
が大きくなつていることを実験的に見いだし、本
発明をなすに至つた。上記問題点を解決するため
に、本発明の磁気光学素子は、
(YbTbBi)3Fe5O12のTbの量を減らして材料自身
の吸収係数を減少させることと、Biを多量に置
換しフアラデー回転係数を増加させて所望の角度
を得るのに必要な厚さを減少させることにより、
挿入損失の低減を図ることに特徴がある。すなわ
ち、本発明の磁気光学素子用材料は、前記高格子
定数GGG基板上に式:YbxTbyBi3-x-yFe5O12
表されるBi置換希土類鉄ガーネツトをエピタキ
シヤル成長させたものであり、上記式においてx
とyは、x+y≦2.2,x>yおよび y=−2.3x+21x(21.62−a) (ただし、aは上記基板の格子定数である。) なる条件をいずれも満足するように選定されてい
る。 YbxTbyBi3-x-yFe5O12において、xとyはフア
ラデー回転係数と吸収係数の目標値および基板材
料との格子定数マツチングにより決まる値であ
る。まず、上記組成系において、フアラデー回転
係数はBi置換量に比例しフアラデー回転係数の
目標値を−1000deg/cm以上(波長1.3μm)とす
るには、1分子当りのBiの含有率を0.8/f.u.以上
とする必要がある。この実験結果に基づき、3−
x−y≧0.8であること、すなわちx+y≦2.2が
導かれる。次に、吸収係数はTbの量に比例し、
吸収による損失を小さくするためには、Yb/Tb
のモル比を1より大きくする必要がある。すなわ
ち、xとyはx>yなる関係を満たす必要があ
る。さらに、基板と上記組成の膜とは格子定数が
マツチングしている必要がある。このマツチング
条件は、Yb3Fe5O12,Tb3Fe5O12,Bi3Fe5O12
格子定数とxとyおよび基板の格子定数から理論
的に求められる。すなわち、Yb3Fe5O12
Tb3Fe5O12の格子定数は12.291Å,12.477Åであ
り、Bi3Fe5O12の理論的格子定数は12.620Åであ
るので、基板の格子定数をaÅとすれば格子定数
のマツチングを表す式は、 12.291x+12.477y+12.620(3−x−y)=3aと
なる。この式から、y=−2.3x+21x(12.62−a)
が導かれる。aは12.47〜12.53Åの範囲である。
したがつて、基板の格子定数が決まればxとyは
一義的に決まる。 上記のように、YbとTbの量すなわちxとy
は、x+y≦2.2,x<yおよびy=−2.3x+21x
(12.62−a)の三式を満たす必要がある。 (実施例) 基板として格子定数12.498Åの(GdCa)3
(GaMgZr)5O12を用い、液相エピタキシヤル法に
よりYb1.0Tb0.7Bi1.3Fe5O12なる化学式を有する磁
性ガーネツト単結晶膜を育成した。この液相エピ
タキシヤル方法は、融液粗成Yb2O32.84g,
Tb2O32.70g,Fe2O346.06g,PbO174.10g,
Bi2O3363.45g,B2O310.86gとし、これらを白金
るつぼ中で920℃で融解したのち、810℃に温度を
下げて過冷却状態とし、この融液に上記基板を
100rpmで回転しながら接触させて行つた。成長
速度は0.35μm/分で、膜厚320μmに成長させた。
このガーネツト膜のフアラデー回転係数と挿入損
失を、波長1.3μm,1.55μmにおいて室温で測定し
たところ第1表に示すような結果が得られた。こ
の組成の磁性ガーネツト膜において、挿入損失
は、波長1.3μm,1.55μmにおいてそれぞれ
0.3dB,0.2dBと従来の半分となり、大きく改善
された。
(Industrial Application Field) The present invention relates to a magneto-optical material used for optical isolators, optical circulators, etc. that utilize the Alladay effect. (Prior art) In optical communications and optical measurements that use semiconductor lasers as light sources, optical isolators are required to prevent reflected light from returning to the light source, and magnetic garnets with a Faraday effect are used for optical isolators. . The requirements for a Faraday rotator material include 1) a large Faraday rotation coefficient, 2) small temperature changes in the Faraday rotation angle, 3) no absorption in the wavelength range used, and 4) a small magnetic field required for saturation. Therefore, a material that comprehensively satisfies these requirements is desired. Conventionally, Faraday rotators are made of yttrium.
Iron/garnet Y 3 Fe 5 O 12 (YIG) has been used. However, since YIG has a small Faraday rotation coefficient, the thickness required to obtain a Faraday rotation angle of 45 degrees is as thick as 2 to 3 mm. Recently, Bi-substituted rare earth iron garnet has been proposed as a material to replace YIG. This is because when the rare earth element in magnetic garnet is replaced with Bi, the Faraday rotation coefficient increases significantly in proportion to the amount of Bi replacement. Furthermore, by selecting rare earth elements,
A material Yb x Tb y Bi 3-xy Fe 5 O 12 has been proposed that has a small temperature change in Faraday rotation angle and requires a small magnetic field for saturation (Japanese Patent Application No. 61-131896). (Problem to be Solved by the Invention) Generally, the absorption of magnetic garnets at a wavelength of 0.4 to 1.0 μm is mainly due to the crystal field of Fe 3+ ions occupying the 24d site at the oxygen tetrahedral position and the 16a site at the oxygen octahedral position. This is due to transition. In addition to this,
Pb 2+ , Pb 4+ mixed in from flux and crucible materials,
Re 2+ generated by charge compensation of Pt 4+ ion,
Due to the presence of broad absorption by Fe 4+ , the tail of the above absorption extends to wavelengths of 1.3 μm and 1.55 μm, resulting in a large insertion loss at these wavelengths. In the above (YbTbBi) 3 Fe 5 O 12 , this broad absorption appears prominently, and the insertion loss at wavelengths of 1.3 μm and 1.55 μm is as large as 0.6 dB and 0.4 dB, respectively. Therefore, it has been difficult to produce an optical isolator with low loss (1 dB or less) using this material. The purpose of the present invention is to reduce absorption by changing the rare earth composition ratio of (YbTbBi) 3 Fe 5 O 12 and reduce insertion loss in the wavelength range of 0.8 to 1.6 μm, which is the wavelength range used for optical isolators and optical circulators. Our goal is to provide high-performance Faraday rotator materials. (Means for solving the problem) (YbTbBi) In 3 Fe 5 O 12 , Tb ion is
Since Tb 4+ can exist stably in addition to Tb 3+ , the insertion loss is increased due to the additional broad absorption of Fe 2+ ions induced by Tb 4+ ions. This discovery was made experimentally, leading to the present invention. In order to solve the above problems, the magneto-optical element of the present invention includes:
(YbTbBi) 3 Fe 5 O Reducing the amount of Tb in 12 to reduce the absorption coefficient of the material itself, and replacing a large amount of Bi to increase the Faraday rotation coefficient and the thickness necessary to obtain the desired angle. By decreasing
The feature is that it aims to reduce insertion loss. That is, the magneto-optical element material of the present invention is obtained by epitaxially growing a Bi-substituted rare earth iron garnet represented by the formula: Yb x Tb y Bi 3-xy Fe 5 O 12 on the high lattice constant GGG substrate. , and in the above formula x
and y are selected so as to satisfy the following conditions: x+y≦2.2, x>y, and y=−2.3x+21x(21.62−a) (where a is the lattice constant of the above substrate). In Yb x Tb y Bi 3-xy Fe 5 O 12 , x and y are values determined by target values of the Faraday rotation coefficient and absorption coefficient and lattice constant matching with the substrate material. First, in the above composition system, the Faraday rotation coefficient is proportional to the amount of Bi substitution, and in order to set the target value of the Faraday rotation coefficient to -1000 deg/cm or more (wavelength 1.3 μm), the Bi content per molecule must be 0.8/ It needs to be greater than or equal to fu. Based on this experimental result, 3-
It is derived that x-y≧0.8, that is, x+y≦2.2. Next, the absorption coefficient is proportional to the amount of Tb,
In order to reduce loss due to absorption, Yb/Tb
It is necessary to make the molar ratio larger than 1. That is, x and y need to satisfy the relationship x>y. Furthermore, the lattice constants of the substrate and the film having the above composition must be matched. This matching condition is theoretically determined from the lattice constants of Yb 3 Fe 5 O 12 , Tb 3 Fe 5 O 12 , Bi 3 Fe 5 O 12 , x, y, and the lattice constant of the substrate. That is, Yb 3 Fe 5 O 12 ,
The lattice constants of Tb 3 Fe 5 O 12 are 12.291 Å and 12.477 Å, and the theoretical lattice constant of Bi 3 Fe 5 O 12 is 12.620 Å, so if the lattice constant of the substrate is a Å, then the matching of the lattice constants can be The expression is: 12.291x+12.477y+12.620(3-x-y)=3a. From this formula, y=-2.3x+21x (12.62-a)
is guided. a ranges from 12.47 to 12.53 Å.
Therefore, once the lattice constant of the substrate is determined, x and y are uniquely determined. As mentioned above, the quantities of Yb and Tb, i.e. x and y
is x+y≦2.2, x<y and y=-2.3x+21x
It is necessary to satisfy the three equations (12.62-a). (Example) (GdCa) with a lattice constant of 12.498 Å as a substrate 3
A magnetic garnet single crystal film having the chemical formula Yb 1.0 Tb 0.7 Bi 1.3 Fe 5 O 12 was grown using (GaMgZr) 5 O 12 by liquid phase epitaxial method. This liquid phase epitaxial method uses 2.84g of melt-produced Yb 2 O 3 ,
Tb 2 O 3 2.70g, Fe 2 O 3 46.06g, PbO174.10g,
363.45 g of Bi 2 O 3 and 10.86 g of B 2 O 3 were melted at 920°C in a platinum crucible, then the temperature was lowered to 810°C to create a supercooled state, and the above substrate was placed in this melt.
The contact was made while rotating at 100 rpm. The growth rate was 0.35 μm/min, and the film was grown to a thickness of 320 μm.
The Faraday rotation coefficient and insertion loss of this garnet film were measured at room temperature at wavelengths of 1.3 μm and 1.55 μm, and the results shown in Table 1 were obtained. In the magnetic garnet film with this composition, the insertion loss is at wavelengths of 1.3 μm and 1.55 μm, respectively.
It is 0.3dB, 0.2dB, which is half of the conventional value, which is a big improvement.

【表】 (発明の効果) 本発明により、波長1.3μm,1.55μmにおいて挿
入損失がそれぞれ0.3dB,0.2dBと従来の半分に
なり特性が大きく向上した。このような材料を用
いることにより、高性能な光アイソレータや光サ
ーキユレータを作製するこそとができる。
[Table] (Effects of the Invention) According to the present invention, the insertion loss at wavelengths of 1.3 μm and 1.55 μm is 0.3 dB and 0.2 dB, respectively, which are half of the conventional values, and the characteristics are greatly improved. By using such materials, it is possible to manufacture high-performance optical isolators and optical circulators.

Claims (1)

【特許請求の範囲】 1 式:(GdCa)3(GaMgZr)5O12 で表される組成を有するガーネツト単結晶基板
と、該基板上にエピタキシヤル成長させた、 式:YbxTbyBi3-x-yFe5O12 で表されかつxとyは、x+y≦2.2,x>yお
よび y=−2.3x+21×(12.62−a) (aは上記基板の格子定数で、12.47〜12.53Åの
範囲の値)なる条件を満足する磁性ガーネツト単
結晶膜とからなる磁気光学素子用材料。
[Claims] 1 A garnet single crystal substrate having a composition represented by the formula: (GdCa) 3 (GaMgZr) 5 O 12 and a garnet single crystal substrate epitaxially grown on the substrate, the formula: Yb x Tb y Bi 3 -xy Fe 5 O 12 and x and y are x+y≦2.2, x>y and y=-2.3x+21×(12.62-a) (a is the lattice constant of the above substrate, ranging from 12.47 to 12.53 Å A material for magneto-optical elements consisting of a magnetic garnet single crystal film that satisfies the following conditions:
JP19979888A 1988-08-12 1988-08-12 Material for magneto-optical element Granted JPH0251494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19979888A JPH0251494A (en) 1988-08-12 1988-08-12 Material for magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19979888A JPH0251494A (en) 1988-08-12 1988-08-12 Material for magneto-optical element

Publications (2)

Publication Number Publication Date
JPH0251494A JPH0251494A (en) 1990-02-21
JPH0476351B2 true JPH0476351B2 (en) 1992-12-03

Family

ID=16413799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19979888A Granted JPH0251494A (en) 1988-08-12 1988-08-12 Material for magneto-optical element

Country Status (1)

Country Link
JP (1) JPH0251494A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727193B2 (en) * 1985-08-01 1995-03-29 富士写真フイルム株式会社 Image forming method
EP0559412B1 (en) * 1992-03-02 1997-01-22 TDK Corporation Process for producing thin film by epitaxial growth
JP2006117492A (en) * 2004-10-25 2006-05-11 Namiki Precision Jewel Co Ltd Bismuth substitution type terbium-iron-garnet single crystal

Also Published As

Publication number Publication date
JPH0251494A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US5640516A (en) Faraday rotator
JPH0476351B2 (en)
JP4220267B2 (en) Faraday rotator and optical component using the same
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JP3490143B2 (en) Oxide garnet single crystal
JPS6129128B2 (en)
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
Bonner LPE growth of iron garnets containing Ge4+ and Si4+ for bubble applications
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JPH0375516B2 (en)
WO2021215047A1 (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
JP3476557B2 (en) Faraday rotator
JP7246341B2 (en) Bismuth-substituted rare earth iron garnet single crystal, Faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPS627631A (en) Magneto-optical element
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPS6369718A (en) Magneto-optical crystal
JPH07118094A (en) Magnetic garnet
JPS59147320A (en) Optical non-reciprocal element
Rossi et al. Optical properties of Ca-substituted amorphous yttrium iron garnet films
JPH0831373B2 (en) Magnetic gate for optical isolator
JPH01246520A (en) Magneto-optical garnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees