JPH08290998A - Bismuth-substituted rare earth metal iron garnet single crystal - Google Patents

Bismuth-substituted rare earth metal iron garnet single crystal

Info

Publication number
JPH08290998A
JPH08290998A JP9241195A JP9241195A JPH08290998A JP H08290998 A JPH08290998 A JP H08290998A JP 9241195 A JP9241195 A JP 9241195A JP 9241195 A JP9241195 A JP 9241195A JP H08290998 A JPH08290998 A JP H08290998A
Authority
JP
Japan
Prior art keywords
single crystal
bismuth
garnet single
rare earth
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9241195A
Other languages
Japanese (ja)
Inventor
Kazushi Shirai
一志 白井
Norio Takeda
憲夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9241195A priority Critical patent/JPH08290998A/en
Publication of JPH08290998A publication Critical patent/JPH08290998A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/28Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Abstract

PURPOSE: To obtain a bismuth-substituted magnetic garnet single crystal having low loss as a Faraday rotation element for optical isolator for 0.95-1.1μm wavelength. CONSTITUTION: A bismuth-substituted rare earth metal iron garnet single crystal expressed by the general formula, Pr3-x Bix Fe5-y My O12 (M is at least one kind of metal selected from In, Sc, Ga and Al; 0.8<=x<=1.8; 0<=y<=1.0) is grown on a non-magnetic garnet single crystal substrate having a lattice constant of 12.60Å to 12.70Å by a liquid epitaxy method. This process gives a bismuth- substituted magnetic garnet single crystal having low loss as a Faraday rotation element for an optical isolator for 0.95-1.1μm wavelength compared with conventional element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光アイソレータ用ファ
ラデー回転子に関する。さらに詳しくいえば、本願発明
は、波長1μm帯用のファラデー回転子として好適なビ
スマス置換希土類鉄ガーネット単結晶に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Faraday rotator for an optical isolator. More specifically, the present invention relates to a bismuth-substituted rare earth iron garnet single crystal suitable as a Faraday rotator for a wavelength band of 1 μm.

【0002】[0002]

【従来の技術】レーザは、光応用機器あるいは光通信な
どのコヒーレントな光源として広く利用されているが、
レーザから放出された光が光学系などによって反射され
て再びこのレーザに戻ると、レーザ発振が不安定になる
という欠点がある。特に半導体レーザと固体レーザでは
大きな問題となっている。
2. Description of the Related Art Lasers are widely used as coherent light sources for optical application equipment or optical communication.
When the light emitted from the laser is reflected by an optical system or the like and returns to the laser again, there is a drawback that the laser oscillation becomes unstable. In particular, this is a big problem in semiconductor lasers and solid-state lasers.

【0003】この問題に対処するために、レーザの光出
力側に光アイソレータを設け、レーザから放出された光
が戻らないように光路を設定することが行われている。
この目的に用いる光アイソレータは偏光素子とファラデ
ー回転子、およびファラデー回転子を磁気的に飽和させ
るための永久磁石からなる。光アイソレータ用ファラデ
ー回転子としては、液相エピタキシャル(以下「LP
E」と略称する)法で育成される厚さが、数十μm以上
のビスマス置換希土類鉄ガーネット単結晶(一般式 R
3-xBixFe5O12で示され、R は希土類を表す)が用いられ
ている。
In order to deal with this problem, an optical isolator is provided on the light output side of the laser and an optical path is set so that the light emitted from the laser does not return.
The optical isolator used for this purpose comprises a polarization element, a Faraday rotator, and a permanent magnet for magnetically saturating the Faraday rotator. As a Faraday rotator for optical isolators, liquid phase epitaxial (hereinafter "LP
E)) bismuth-substituted rare earth iron garnet single crystal with a thickness of several tens of μm or more (general formula R
3-x Bi x Fe 5 O 12 and R represents a rare earth) is used.

【0004】[0004]

【発明が解決しようとする課題】ビスマス置換希土類鉄
ガーネット単結晶は 1.2μm以上の近赤外領域で優れた
透明性と大きなファラデー効果を示す優れた材料であり
実際、長距離の光ファイバ通信で実用化されている波長
1.31μmや1.55μmにおける損失は、0.1dB 以下が達成
されている。しかしながら 1.3μm帯よりもさらに短い
1μm前後の波長では光吸収損失が大きくなるという問
題があった。現在実用化されているビスマス置換希土類
鉄ガーネット単結晶、例えば (HoTbBi)3Fe5O12の波長
1.064μmにおける損失は、おおよそ 1dBである。1μ
m帯で光吸収が大きくなるのは 0.9μm付近にある鉄の
吸収ピークに起因する。
Bismuth-substituted rare earth iron garnet single crystal is an excellent material that exhibits excellent transparency and a large Faraday effect in the near infrared region of 1.2 μm or more, and is actually used for long-distance optical fiber communication. Practical wavelength
The loss at 1.31 μm and 1.55 μm is less than 0.1 dB. However, it is shorter than 1.3 μm band
There is a problem that the light absorption loss increases at wavelengths around 1 μm. Wavelength of bismuth-substituted rare earth iron garnet single crystals currently in practical use, for example (HoTbBi) 3 Fe 5 O 12
The loss at 1.064 μm is approximately 1 dB. 1μ
The large light absorption in the m band is due to the absorption peak of iron in the vicinity of 0.9 μm.

【0005】1μm帯が重要視されるのは、固体レーザ
の発振波長がこの領域に属するためである。具体的に
は、イットリウム・アルミニウム・ガーネット(YAG) レ
ーザの1.064μm、ガドリニウム・スカンジウム・ガリ
ウム・ガーネット(GSGG)レーザの 1.061μmなどであ
る。これら固体レーザの出力パワーは非常に大きく、そ
のためファラデー回転子での吸収損失が大きいと、ファ
ラデー回転子が吸収熱で損傷を受けるという重大な課題
があった。
The 1 μm band is considered important because the oscillation wavelength of the solid-state laser belongs to this region. Specifically, the yttrium aluminum garnet (YAG) laser is 1.064 μm, and the gadolinium scandium gallium garnet (GSGG) laser is 1.061 μm. The output power of these solid-state lasers is very large, and therefore, if the absorption loss in the Faraday rotator is large, there is a serious problem that the Faraday rotator is damaged by the absorbed heat.

【0006】[0006]

【課題を解決するための手段】本発明者らは、波長1μ
m帯、具体的には0.95μm〜1.1 μm用の低損失なビス
マス置換希土類鉄ガーネット単結晶を提供すべく鋭意検
討を重ね、本発明を完成した。すなわち、本発明は、格
子定数が 12.60Å〜 12.70Åの非磁性ガーネット単結晶
基板上に液相エピタキシャル法により育成されたビスマ
ス置換希土類鉄ガーネット単結晶であって、その一般式
が Pr3-xBixFe5-yMyO12 (MはIn, Sc, Ga,Al からなる
群から選択された少なくとも1種の元素であり、 0.8≦
x≦1.8 、0≦y≦1.0)であることを特長とするファラ
デー回転子用のビスマス置換希土類鉄ガーネット単結晶
である。
The present inventors have found that the wavelength of 1 μm
The present invention has been completed through intensive studies to provide a low-loss bismuth-substituted rare earth iron garnet single crystal for the m band, specifically 0.95 μm to 1.1 μm. That is, the present invention is a bismuth-substituted rare earth iron garnet single crystal grown by a liquid phase epitaxial method on a nonmagnetic garnet single crystal substrate having a lattice constant of 12.60Å to 12.70Å, the general formula of which is Pr 3-x. Bi x Fe 5-y M y O 12 (M is at least one element selected in, Sc, Ga, from the group consisting of Al, 0.8 ≦
A bismuth-substituted rare earth iron garnet single crystal for a Faraday rotator, characterized in that x ≦ 1.8 and 0 ≦ y ≦ 1.0).

【0007】本発明を実施するとき、基板の格子定数は
12.60Å〜12.70 Åが好ましい。基板上に育成されるビ
スマス置換希土類鉄ガーネット単結晶の格子定数は、本
質的に基板の格子定数と整合させる必要があり、その意
味では、格子定数が 12.60Å〜12.70 Åの Pr3-xBixFe
5-yMyO12 (MはIn, Sc, Ga, Al からなる群から選択さ
れた少なくとも1種の元素であり、 0.8≦x≦1.8 、 0
≦y≦1.0)が好ましい、とも言い換えることができる。
基板の格子定数が 12.60以下になると、1μm帯の吸収
損失が、従来のビスマス置換希土類鉄ガーネット単結晶
の損失レベルと大差無い値になるので好ましくない。
When practicing the present invention, the lattice constant of the substrate is
12.60Å to 12.70Å are preferred. The lattice constant of the bismuth-substituted rare earth iron garnet single crystal grown on the substrate must essentially match the lattice constant of the substrate, and in that sense, Pr 3-x Bi with a lattice constant of 12.60Å to 12.70 Å. x Fe
5-y M y O 12 ( M is at least one element selected In, Sc, Ga, from the group consisting of Al, 0.8 ≦ x ≦ 1.8, 0
In other words, ≦ y ≦ 1.0) is preferable.
When the lattice constant of the substrate is 12.60 or less, the absorption loss in the 1 μm band is not so large as the loss level of the conventional bismuth-substituted rare earth iron garnet single crystal, which is not preferable.

【0008】本発明を実施するとき、ビスマス置換量x
は 0.8以上1.8 以下が好ましい。xが 0.8未満になると
ファラデー効果が低下するので好ましくなく、また、1.
8 を越えると、結晶成長中に微結晶が析出し所定の厚さ
のビスマス置換希土類鉄ガーネット単結晶が得られなく
なるという不都合を生じる。本発明を実施するとき、y
は1以下が好ましい。1を越えるとファラデー回転角の
温度依存性が大きくなったり、キュリー温度が低下する
などの不都合が生じるので好ましくない。
When carrying out the present invention, the bismuth substitution amount x
Is preferably 0.8 or more and 1.8 or less. If x is less than 0.8, the Faraday effect decreases, which is not preferable.
If it exceeds 8, fine crystals are precipitated during crystal growth, and there is a disadvantage that a bismuth-substituted rare earth iron garnet single crystal having a predetermined thickness cannot be obtained. When practicing the invention, y
Is preferably 1 or less. If it exceeds 1, the temperature dependence of the Faraday rotation angle becomes large, and the Curie temperature is lowered, which is disadvantageous.

【0009】本発明の液相エピタキシャル成長用のフラ
ックス成分は、酸化鉛(PbO) 、酸化ビスマス(Bi2O3) 、
酸化ほう素(B2O3)で構成するのが好適である。本発明の
液相エピタキシャル成長温度に特に制限はないが、通常
一般に行われているビスマス置換ガーネット単結晶育成
温度である 650〜800 ℃の範囲で、適宜選択するのが好
ましい。以下、本発明を実施例によって、その実施態様
と効果を具体的に、かつ詳細に説明するが、以下の例
は、具体的に説明するためのものであって、本発明の実
施態様や発明の範囲を限定するものとしては意図されて
いない。
The flux components for liquid phase epitaxial growth of the present invention include lead oxide (PbO), bismuth oxide (Bi 2 O 3 ),
It is preferably composed of boron oxide (B 2 O 3 ). The liquid phase epitaxial growth temperature of the present invention is not particularly limited, but it is preferably selected appropriately within the range of 650 to 800 ° C. which is a generally-used bismuth-substituted garnet single crystal growth temperature. EXAMPLES Hereinafter, the present invention will be described specifically and in detail by way of Examples with respect to its embodiments and effects. The following examples are for specifically explaining the embodiments and the invention of the present invention. Is not intended to limit the scope of.

【0010】[0010]

【実施例】【Example】

実施例1 容量 1,000ml(ミリリットル)の白金製ルツボに、酸化鉛(PbO)
2,000g、酸化ビスマス(Bi2O3) 2,300g、酸化第二鉄(Fe2
O3) 300g、酸化ほう素(B2O3) 90g、酸化プラセオジウム
(Pr2O3) 31g 、酸化スカンジウム(Sc2O3) 9gを仕込ん
だ。これを精密縦型管状電気炉の所定の位置に設置し、
1000℃に加熱して溶融し、十分に攪拌して均一に混合さ
せたのち、融液温度 751℃にまで冷却してビスマス置換
磁性ガーネット単結晶育成用融液とした。
EXAMPLE 1 Lead oxide (PbO) was added to a platinum crucible having a capacity of 1,000 ml (milliliter).
2,000g, bismuth oxide (Bi 2 O 3 ) 2,300g, ferric oxide (Fe 2
O 3 ) 300 g, boron oxide (B 2 O 3 ) 90 g, praseodymium oxide
(Pr 2 O 3 ) 31 g and scandium oxide (Sc 2 O 3 ) 9 g were charged. This is installed in the predetermined position of the precision vertical tubular electric furnace,
The mixture was heated to 1000 ° C. to be melted, sufficiently stirred and uniformly mixed, and then cooled to a melt temperature of 751 ° C. to obtain a bismuth-substituted magnetic garnet single crystal growing melt.

【0011】次いで、常法に従って、ここに得られた融
液の表面に、格子定数:12.641Åの(111)ガーネット単
結晶[Sm3(ScGa)5O12]基板の片面を接触させ融液温度を
751℃に維持しながら 4時間のエピタキシャル成長を行
い、厚さが 130μmで、Pr1.6Bi1.4Fe4.8Sc0.2O12 の組
成を有するビスマス置換鉄ガーネット単結晶膜を得た。
この厚膜の波長 1.064μmにおけるファラデー回転係数
は 3364deg/cm 、光吸収係数は 34dB/cmであった。従っ
て、性能指数(=ファラデー回転係数/光吸収係数)は
99deg/dB で、ファラデー回転子(ファラデー回転角が
45度とする)における光吸収損失は 0.45dB となる。な
お、組成分析は、プラズマ発光分析 (セイコー電子工業
製、高周波誘導プラズマ発光分析計 SPS 1200VR型) に
依った。
Then, according to a conventional method, one surface of a (111) garnet single crystal [Sm 3 (ScGa) 5 O 12 ] substrate having a lattice constant of 12.641 Å was brought into contact with the surface of the melt obtained here, and the melt Temperature
Epitaxial growth was performed for 4 hours while maintaining the temperature at 751 ° C. to obtain a bismuth-substituted iron garnet single crystal film having a thickness of 130 μm and a composition of Pr 1.6 Bi 1.4 Fe 4.8 Sc 0.2 O 12 .
The thick film had a Faraday rotation coefficient of 3364 deg / cm 2 and a light absorption coefficient of 34 dB / cm 2 at a wavelength of 1.064 μm. Therefore, the figure of merit (= Faraday rotation coefficient / light absorption coefficient) is
The Faraday rotator (with the Faraday rotation angle
The optical absorption loss at 45 degrees is 0.45 dB. The composition analysis was based on plasma emission analysis (manufactured by Seiko Denshi Kogyo Co., Ltd., high frequency induction plasma emission emission spectrometer SPS 1200VR type).

【0012】実施例2 容量 1,000mlの白金製ルツボに、酸化鉛(PbO) 2,000g、
酸化ビスマス(Bi2O3)2,300g、酸化第二鉄(Fe2O3) 300
g、酸化ほう素(B2O3) 83g、酸化プラセオジウム(Pr2O3)
31g、酸化インジウム(In2O3) 20gを仕込んだ。これ
を精密縦型管状電気炉の所定の位置に設置し、1000℃に
加熱して溶融し、十分に攪拌して均一に混合させたの
ち、融液温度 766℃にまで冷却してビスマス置換磁性ガ
ーネット単結晶育成用融液とした。
Example 2 A platinum crucible having a capacity of 1,000 ml was charged with 2,000 g of lead oxide (PbO),
Bismuth oxide (Bi 2 O 3 ) 2,300 g, ferric oxide (Fe 2 O 3 ) 300
g, boron oxide (B 2 O 3 ) 83 g, praseodymium oxide (Pr 2 O 3 ).
31 g and indium oxide (In 2 O 3 ) 20 g were charged. This was placed in a predetermined position in a precision vertical tubular electric furnace, heated to 1000 ° C to melt it, stirred well and mixed uniformly, then cooled to a melt temperature of 766 ° C and bismuth-substituted magnetic. The melt was used for growing a garnet single crystal.

【0013】次いで、常法に従って、ここに得られた融
液の表面に、格子定数:12.662Åの(111)ガーネット単
結晶[La3(ScGa)5O12]基板の片面を接触させ融液温度を
766℃に維持しながら 7時間のエピタキシャル成長を行
い、厚さが 218μmで、Pr2.0Bi1.0Fe4.7In0.3O12の組
成を有するビスマス置換磁性ガーネット単結晶膜を得
た。この厚膜の 1.064μmにおけるファラデー回転係数
は 2350deg/cm 、光吸収係数は 28dB/cmであった。従っ
て、性能指数は 84deg/dB で、ファラデー回転子におけ
る光吸収損失は 0.54dB となる。
Then, according to a conventional method, one surface of a (111) garnet single crystal [La 3 (ScGa) 5 O 12 ] substrate having a lattice constant of 12.662Å was brought into contact with the surface of the melt obtained here, and the melt Temperature
Epitaxial growth was performed for 7 hours while maintaining the temperature at 766 ° C. to obtain a bismuth-substituted magnetic garnet single crystal film having a thickness of 218 μm and a composition of Pr 2.0 Bi 1.0 Fe 4.7 In 0.3 O 12 . The Faraday rotation coefficient at 1.064 μm of this thick film was 2350 deg / cm 2, and the light absorption coefficient was 28 dB / cm. Therefore, the figure of merit is 84deg / dB, and the optical absorption loss in the Faraday rotator is 0.54dB.

【0014】実施例3 容量 1,000mlの白金製ルツボに、酸化鉛(PbO) 2,000g、
酸化ビスマス(Bi2O3)2,300g、酸化第二鉄(Fe2O3) 300
g、酸化ほう素(B2O3) 90g、酸化プラセオジウム(Pr2O3)
31g、酸化インジウム(In2O3) 42gを仕込んだ。これ
を精密縦型管状電気炉の所定の位置に設置し、1000℃に
加熱して溶融し、十分に攪拌して均一に混合させたの
ち、融液温度 758℃にまで冷却してビスマス置換磁性ガ
ーネット単結晶育成用融液とした。
Example 3 In a platinum crucible having a capacity of 1,000 ml, 2,000 g of lead oxide (PbO),
Bismuth oxide (Bi 2 O 3 ) 2,300 g, ferric oxide (Fe 2 O 3 ) 300
g, boron oxide (B 2 O 3 ) 90 g, praseodymium oxide (Pr 2 O 3 ).
31 g and indium oxide (In 2 O 3 ) 42 g were charged. This was placed in a predetermined position in a precision vertical tubular electric furnace, heated to 1000 ° C to melt it, stirred well and mixed uniformly, then cooled to a melt temperature of 758 ° C and bismuth-substituted magnetic. The melt was used for growing a garnet single crystal.

【0015】次いで、常法に従って、ここに得られた融
液の表面に、格子定数:12.725Åの(111)ガーネット単
結晶[La3(ScGa)5O12] 基板の片面を接触させ融液温度を
758℃に維持しながら 4時間のエピタキシャル成長を行
い、厚さが 154μmで、Pr1.3Bi1.7Fe4.3In0.5Ga0.2O
12 の組成を有するビスマス置換磁性ガーネット単結晶
膜を得た。この厚膜の 1.064μmにおけるファラデー回
転係数は 3660deg/cm 、光吸収係数は 25dB/cmであっ
た。従って、性能指数は 146deg/dBで、ファラデー回転
子における光吸収損失は 0.31dB となる。
Then, according to a conventional method, one surface of a (111) garnet single crystal [La 3 (ScGa) 5 O 12 ] substrate having a lattice constant of 12.725Å was brought into contact with the surface of the melt obtained here, and the melt Temperature
Epitaxial growth was carried out for 4 hours while maintaining the temperature at 758 ° C, the thickness was 154 μm, and Pr 1.3 Bi 1.7 Fe 4.3 In 0.5 Ga 0.2 O
A bismuth-substituted magnetic garnet single crystal film having a composition of 12 was obtained. The Faraday rotation coefficient at 1.064 μm of this thick film was 3660 deg / cm, and the light absorption coefficient was 25 dB / cm. Therefore, the figure of merit is 146 deg / dB, and the optical absorption loss in the Faraday rotator is 0.31 dB.

【0016】[0016]

【発明の効果】本発明によれば、波長0.95μm〜1.1 μ
mの光アイソレータ用ファラデー回転素子として低損失
なビスマス置換磁性ガーネット単結晶を提供できる。
According to the present invention, the wavelength is 0.95 μm to 1.1 μm.
It is possible to provide a low-loss bismuth-substituted magnetic garnet single crystal as a Faraday rotation element for an optical isolator of m.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 格子定数が 12.60Å〜 12.70Åの非磁性
ガーネット単結晶基板上に液相エピタキシャル法により
育成されたビスマス置換希土類鉄ガーネット単結晶であ
って、その一般式が Pr3-xBixFe5-yMyO12 (MはIn, Sc,
Ga, Alからなる群から選択された少なくとも1種の元素
であり、 0.8≦x≦1.8 、 0≦y≦1.0)であることを特
長とするファラデー回転子用のビスマス置換希土類鉄ガ
ーネット単結晶。
1. A bismuth-substituted rare earth iron garnet single crystal grown by a liquid phase epitaxial method on a non-magnetic garnet single crystal substrate having a lattice constant of 12.60Å to 12.70Å, the general formula of which is Pr 3-x Bi. x Fe 5-y M y O 12 (M is an in, Sc,
A bismuth-substituted rare earth iron garnet single crystal for a Faraday rotator, which is at least one element selected from the group consisting of Ga and Al and has 0.8 ≦ x ≦ 1.8 and 0 ≦ y ≦ 1.0).
JP9241195A 1995-04-18 1995-04-18 Bismuth-substituted rare earth metal iron garnet single crystal Pending JPH08290998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9241195A JPH08290998A (en) 1995-04-18 1995-04-18 Bismuth-substituted rare earth metal iron garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9241195A JPH08290998A (en) 1995-04-18 1995-04-18 Bismuth-substituted rare earth metal iron garnet single crystal

Publications (1)

Publication Number Publication Date
JPH08290998A true JPH08290998A (en) 1996-11-05

Family

ID=14053679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9241195A Pending JPH08290998A (en) 1995-04-18 1995-04-18 Bismuth-substituted rare earth metal iron garnet single crystal

Country Status (1)

Country Link
JP (1) JPH08290998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073670A1 (en) 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2012073671A1 (en) 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012131690A (en) * 2010-11-29 2012-07-12 Sumitomo Metal Mining Co Ltd Bismuth substituted-type rare earth iron garnet crystal film, and optical isolator
JP2012188302A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012188303A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2021021830A (en) * 2019-07-26 2021-02-18 京セラ株式会社 Isolator and optical transmitter
WO2022250102A1 (en) * 2021-05-28 2022-12-01 信越化学工業株式会社 Q-switch structure and q-switch structure manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073670A1 (en) 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2012073671A1 (en) 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012131690A (en) * 2010-11-29 2012-07-12 Sumitomo Metal Mining Co Ltd Bismuth substituted-type rare earth iron garnet crystal film, and optical isolator
US9303333B2 (en) 2010-11-29 2016-04-05 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator
US9322111B2 (en) 2010-11-29 2016-04-26 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator
JP2012188302A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012188303A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2021021830A (en) * 2019-07-26 2021-02-18 京セラ株式会社 Isolator and optical transmitter
WO2022250102A1 (en) * 2021-05-28 2022-12-01 信越化学工業株式会社 Q-switch structure and q-switch structure manufacturing method

Similar Documents

Publication Publication Date Title
EP0409691B1 (en) Oxide garnet single crystal
JP2004083390A (en) Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH09328398A (en) Faraday rotator exhibiting angular hysteresis
US4932760A (en) Magneto-optic garnet
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
Machida et al. Magneto‐optical properties of Bi‐substituted epitaxial rare‐earth iron garnet thick films
JPH07206593A (en) Faraday rotator for light isolator
JP2000066160A (en) Faraday rotator for high energy laser
JP3490143B2 (en) Oxide garnet single crystal
Huang et al. A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JP2874320B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JP4286024B2 (en) Magnetic garnet material, Faraday rotator, optical device, method for producing bismuth-substituted rare earth iron garnet single crystal film, and crucible
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JPH0588126A (en) Magneto-optical material, its production, and optical element using same
Huahui et al. Epitaxial growth of highly Bi-substituted garnet films with narrow FMR linewidth and low optical absorption loss
JPH07118094A (en) Magnetic garnet
JPH0476351B2 (en)
JP2004010395A (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator using it, and optical element using it
JP2543997B2 (en) Bismuth-substituted oxide garnet single crystal and method for producing the same
JP2001174769A (en) Faraday rotator for 1,600 nm band
Huang et al. New wideband and temperature-stabilized optical isolator for wavelength division multiplexing fiber transmission system