JPS5929222A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPS5929222A
JPS5929222A JP13955182A JP13955182A JPS5929222A JP S5929222 A JPS5929222 A JP S5929222A JP 13955182 A JP13955182 A JP 13955182A JP 13955182 A JP13955182 A JP 13955182A JP S5929222 A JPS5929222 A JP S5929222A
Authority
JP
Japan
Prior art keywords
optical
faraday
optical isolator
rotation
bso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13955182A
Other languages
Japanese (ja)
Inventor
Koji Tada
多田 紘二
Miki Kuhara
美樹 工原
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13955182A priority Critical patent/JPS5929222A/en
Publication of JPS5929222A publication Critical patent/JPS5929222A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a practicable optical isolator, by arraying two kinds of Faraday elements which are opposite in rotatory polarization direction, are equal in the absolute value and temp. coefft. of optical rotatory power, have the Verdet's constant equal in both code and absolute value and have an equal length in the optical axis direction in the positions where the optical axes align to each other. CONSTITUTION:A Faraday element 5 is manufactured by pasting bismuth silicon oxide (BSO) or bismuth germanium oxide (BGO) 6 having left-hand optical rotatory power and BSO or BGO having right-hand optical rotary power of the same length in the positions where the optical axes are aligned to each other. A magnetic field H is applied in the optical axis direction of the element 5. The light from a light source 1 passes a polarizer 2 and is made into linearly polarized light which passes the element 5 and is negated of the rotation by the optical rotary power. Only the rotating angle by the Faraday effect is detected. Since the change of the optical rotary power with temp. is negated, the practicable optical isolator having excellent temp. stability is obtd.

Description

【発明の詳細な説明】 本発明は、ファラデー効果モチ用いて成る光アイソレー
タに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical isolator using Faraday effect.

光アイソレータとは、その一方から他方へは光を伝える
が、並方向には伝えない光学装置の一般的名称であり、
ファラデー効果とは、光軸方向に磁界が存在する光学材
料の中を光が伝播する時、磁界の強度に比例して偏光面
が回転する現象をいう。また、このような性質を有する
光学月利からなる素子はファラデー素子と呼ばれる。
Optical isolator is the general name for an optical device that transmits light from one side to the other, but not in the parallel direction.
The Faraday effect is a phenomenon in which when light propagates through an optical material in which a magnetic field exists in the optical axis direction, the plane of polarization rotates in proportion to the strength of the magnetic field. Further, an element made of an optical element having such properties is called a Faraday element.

先ず、第1図について、ファラデー効果を説明する。Z
軸方向に強さHの磁界が存在するとき、Z軸に平行な偏
光が長さtのファラデー素子Aを通過すると、その偏光
方向がθだけ回転するものとする。
First, the Faraday effect will be explained with reference to FIG. Z
When a magnetic field of strength H exists in the axial direction, when polarized light parallel to the Z-axis passes through a Faraday element A of length t, the polarization direction is rotated by θ.

偏光方向の回転角θは、ファラデー素子Aの長さtと、
磁界Hに比例するので、 θ二Ve l )]           (11と書
ける。この比例定数Veはベルデ定数と呼ばれるシ 第2図に於て、光源1かも出た光を、偏光子2を通して
、直線偏光とする。光の進行方向に、磁界](が印加さ
れている長さtのファラデー素子Aを通過したこの光は
、その偏&e方向なθだけ回転させられる。このθが4
5°になるように磁界Hの強さとファラデー素子の長2
1を調整し、かつ検光子乙の偏光面が偏光子′と45°
の角度(回転方向はθと同じとする)をなすように回転
させておくと、光源1からの光は減衰をうけろことなく
光検出子4に達する。一方、ある光学系(たとえば光フ
ァイバ等)の入射面などで反射された光は検光子ろを逆
方向に透過した後、再びファラデー効果を受けてθ=4
5°だけ偏光面が回転するため、もとの偏光子2を出た
光と比較すると90°だけ偏光面が回転しており、偏光
子2で完全に1泪止されろ。
The rotation angle θ of the polarization direction is the length t of the Faraday element A,
Since it is proportional to the magnetic field H, it can be written as θ2Ve l )] (11. This proportionality constant Ve is called the Verdet constant. This light, which has passed through a Faraday element A of length t to which a magnetic field]
The strength of the magnetic field H and the length of the Faraday element 2 so that the angle is 5°
1, and the polarization plane of analyzer B is 45° with polarizer '.
When the light source 1 is rotated at an angle of (the direction of rotation is the same as θ), the light from the light source 1 reaches the photodetector 4 without being attenuated. On the other hand, the light reflected from the entrance surface of a certain optical system (for example, an optical fiber) passes through the analyzer in the opposite direction, and then undergoes the Faraday effect again, resulting in θ=4
Since the plane of polarization is rotated by 5 degrees, the plane of polarization is rotated by 90 degrees when compared to the original light exiting the polarizer 2, so it is completely stopped by the polarizer 2.

すなわち、一方から他方へは光を伝えるが逆方向へは光
を伝えない光学装置、光アイソレータが構成されたこと
に゛なる。
In other words, an optical device, an optical isolator, is constructed that transmits light from one direction to the other but not in the opposite direction.

このような光アイソレータを構成するファラデー素子の
材料としては、鉛ガラス、Tb等Q)金属元素を含むガ
ラス、イツトリウムアイアンガーネット(Y 3Fe 
50.2 、以下YIGと略称する)などが考えられる
が、それぞれ欠点があり、実用化されるには至っていな
い。すなわち鉛ガラスは反磁性を示し、かつ温度安定性
の点で優れてはいろか、ファラデー効果が小さい(6ろ
ろnm光でO,D 93m i n10C−cm )。
Materials for the Faraday element constituting such an optical isolator include lead glass, glass containing a metal element such as Tb, and yttrium iron garnet (Y3Fe).
50.2 (hereinafter abbreviated as YIG), but each has drawbacks and has not been put into practical use. That is, although lead glass exhibits diamagnetic properties and is excellent in temperature stability, it has a small Faraday effect (O, D 93 min in 10 C-cm at 6 nm light).

これに対しTb等の金属元素を含むガラスは鉛ガラスの
約2倍のファラデー効果(<533 nm光で約0.2
4m1n/1Je−on)を示すが、常磁性を示しかつ
温度安定性が悪いという欠点を有している。
On the other hand, glass containing metallic elements such as Tb has a Faraday effect that is approximately twice that of lead glass (approximately 0.2
4m1n/1Je-on), but it has the drawbacks of exhibiting paramagnetism and poor temperature stability.

これに対して、最近開発されたビスマスシリコンオキザ
イト″″(B I 128 + 020 、以下BS○
と略称する)、ビスマスゲルマニウムオキサイド(Bi
□2GeO□ol以下BGOと略称する)は、鉛ガラス
の2倍のファラデー効果(63ろnln光で約0.2 
rni n/○e ” 、、77+)を持つとともに反
磁性を示し、その上ファラデー効果自体の温度安定性も
良好であるが、旋光能(磁場が無くても偏光面を回転さ
せる性質)を有し、かつその旋光能が温度によって変化
するため(635nm光で22 deg/1nrn )
、コノ旋光能の温度依存性を打ち消す手段を構じなけれ
ば、光アイソレータとしては利用できないっ また波長1.1μrn以上ではY ’L Gが高いファ
ラデー効果(波長1.15 pmで15 mi n10
e−1,m )を示すが、この材料も強い旋光能(約1
[’30’/口]m )を有し、その旋光能が温度依存
性を示すため、旋光能の温度依存性対策が解明されない
限り、光アイ゛ンレータとして利用することはできない
In contrast, recently developed bismuth silicon oxite (BI 128 + 020, hereinafter referred to as BS○
), bismuth germanium oxide (Bi
□2GeO□ol (hereinafter abbreviated as BGO) has a Faraday effect twice that of lead glass (approximately 0.2 in 63 nm light).
rni n/○e ”, 77+) and exhibit diamagnetic properties, and the Faraday effect itself has good temperature stability, but it also has optical rotation power (the property of rotating the plane of polarized light even in the absence of a magnetic field). and its optical rotation power changes depending on the temperature (22 deg/1nrn for 635 nm light)
, it cannot be used as an optical isolator unless a means is provided to cancel the temperature dependence of the optical rotation power.Furthermore, the Faraday effect (15 min10 at a wavelength of 1.15 pm) has a high
e-1,m), but this material also has a strong optical rotation power (approximately 1
['30'/mouth] m ), and its optical rotation power shows temperature dependence, so it cannot be used as an optical inolator unless a countermeasure for the temperature dependence of the optical rotation power is elucidated.

以上のようにファラデー効果の太きさからいえば、光ア
イソレータに適した材料としてBSO、BGOlYIG
が考えられるが、これらの材料には何れも温度の関数と
して変化する旋光能を有するという共通の欠点がある。
As mentioned above, in terms of the thickness of the Faraday effect, BSO and BGOlYIG are suitable materials for optical isolators.
However, these materials all have the common drawback of having optical rotation power that varies as a function of temperature.

本発明の目的はこれらの材料の長所を利用し、欠点を除
いて、実用的な光アイソレータを提供することである。
The object of the present invention is to utilize the advantages of these materials and eliminate their disadvantages to provide a practical optical isolator.

本発明者等は、BSO,BGOの単結晶を数多(育成す
るうちに、これらの単結晶には右旋光性のBSO,BG
Oと、左旋光性のBSO,BGOとが存在するという事
実を発見した。ここでは、光の進行方向に向って、時計
廻りに偏光面が回転するものを右旋光、反時計廻りに偏
光面が回転するものを左旋光の結晶ということにする。
The present inventors have grown a large number of BSO and BGO single crystals (while growing these single crystals, dextrorotating BSO and BG
It was discovered that O, and BSO and BGO, which have levorotatory properties, exist. Here, a crystal whose plane of polarization rotates clockwise in the direction of propagation of light is called a dextrorotating crystal, and a crystal whose plane of polarization rotates counterclockwise is called a left-rotating crystal.

本発明者等は、左右旋光性のBSO又はBGOを実際に
育成し、それらのベルデ定数と、旋光能、及びこれらの
温度依存性等の特性を測定した。
The present inventors actually grew bilaterally optically rotating BSO or BGO and measured their properties such as their Verdet constant, optically rotating power, and their temperature dependence.

その結果は、以下の通りである。The results are as follows.

(1)  ベルデ定数は、左右旋光性のB501BGO
について全(同一であり、しかもベルデ定数の温度依存
性は皆無であった。
(1) The Verdet constant is B501BGO with bilateral optical rotation.
were the same, and there was no temperature dependence of the Verdet constant.

つまり、磁界が同一であれば、旋光性の向き如何に拘わ
らず、偏光面の回転方向は同一である。
In other words, if the magnetic field is the same, the direction of rotation of the plane of polarization is the same regardless of the direction of optical rotation.

(2)左右旋光性のBSO,BGOのそれぞれについて
、右旋光の旋光能を正、左旋光の旋光能を負で表わすこ
とにすると、旋光能の絶対値は等しく、符号は逆である
。また、旋光能ホ温度依存性を有するが、上記の関係は
、任意の温度で成立することがわかった。
(2) For BSO and BGO with left-handed optical rotation, if the optical power of right-handed rotation is expressed as positive and the optical power of left-handed rotation is expressed as negative, the absolute values of the optical powers are equal and the signs are opposite. Furthermore, although the optical rotation power has a temperature dependence, it was found that the above relationship holds true at any temperature.

したがって、結晶の長さがeで、単位長さあたりの旋光
能をρ0(基準温度で)、旋光能の温度係数をkとする
と、結晶の中を伝幡する光の偏光方向の回転角ψは、 (1)右旋光性のBSO,BGOに対しψB−p0e(
’l+にΔT)+VeHe  (2)(11)左旋光性
のBSO,BGOに対しψL−−ρ0e(1+に△T)
+■eHe (3)という式で表わされる。本発明者は
、このような式(2)、(3)で示される関係がB S
’、0. B GOについて成立することを発見したの
である。なお、△Tは基準温度からの温度の変化分であ
る。また、旋光能の温度係数にの値は、測定により、−
3X10=/℃であることを知った。
Therefore, if the length of the crystal is e, the optical power per unit length is ρ0 (at the reference temperature), and the temperature coefficient of the optical power is k, then the rotation angle ψ of the polarization direction of the light propagating through the crystal is (1) ψB−p0e(
'l+ ΔT) + VeHe (2) (11) ψL−−ρ0e (1+ ΔT) for left-rotating BSO, BGO
+■eHe It is expressed by the formula (3). The present inventor believes that the relationships represented by equations (2) and (3) are B S
', 0. They discovered that this holds true for BGO. Note that ΔT is the amount of change in temperature from the reference temperature. In addition, the value of the temperature coefficient of optical rotation power is determined by measurement as -
I learned that 3X10=/℃.

左右旋光性のBSO又はBGOは式(2)、(3)でそ
れぞれ示されるような偏光方向の回転をもたらすので、
旋光能とその温度係数の影響を下記の構成によって消去
する事ができる。
Bilateral optical rotation BSO or BGO causes the rotation of the polarization direction as shown in equations (2) and (3), respectively, so
The influence of optical rotation power and its temperature coefficient can be eliminated by the following configuration.

同じ長さの右旋光性BSO,BGOの何れかの素子と、
左−旋光性のB80.BGOの何れ力\の素子とをそれ
ぞれ組合せると、全体としての偏光面(偏光方向)の回
転角ψtが、 ψを一ψR+ψL −2VeHe        (4) となることは明らかである。
A dextrorotating BSO or BGO element of the same length,
Left-optical rotation B80. It is clear that when the BGO elements of either force \ are combined, the rotation angle ψt of the polarization plane (polarization direction) as a whole becomes ψ - ψR + ψL −2VeHe (4).

つまり、長さeが同じで旋光性の向きが反対であるJ3
 S O又はBGOを組合わせることによって、旋光能
と、その温度依存性を完全に打消すことができる。
In other words, J3 with the same length e but opposite direction of optical rotation
By combining SO or BGO, the optical rotation power and its temperature dependence can be completely canceled.

本発明はこのような発見と着想に基づいてなされた。The present invention was made based on such discoveries and ideas.

第6図は本発明の実施例に係る光アイソレータの光学系
略図である。
FIG. 6 is a schematic diagram of an optical system of an optical isolator according to an embodiment of the present invention.

ファラデー素子5は、同じ長さの左旋光性BSO又はB
GO6と、右旋光性BSO又はB Go 7とを、光軸
が一致するように貼合わせて一体としたものである。な
お、磁界I−Lは、ファラデー素子5の光軸方向に存在
するものとする。
The Faraday element 5 is a left-handed rotatory BSO or BSO of the same length.
GO6 and dextrorotating BSO or B Go 7 are bonded together so that their optical axes coincide. It is assumed that the magnetic field IL exists in the optical axis direction of the Faraday element 5.

光源1を出た光は、偏光子2を通って、直線偏光になる
。直線偏光となった光は、ファラデー素子5に入射する
。光はファラデー素子の中で、偏光面を回転させながら
伝幡してゆ(。
The light emitted from the light source 1 passes through a polarizer 2 and becomes linearly polarized light. The linearly polarized light enters the Faraday element 5. Light propagates inside the Faraday element while rotating its plane of polarization.

この回転角の一部は、旋光能によるものである。Part of this rotation angle is due to optical rotation power.

したがって、左旋光性BSO又はBGO6に於て、反時
計廻りに、右旋光性BSO又はBGO7に於て、時計廻
りに偏光面が回転する。旋光能による回転は、絶対値が
等しく、符号が逆であるので、その値は太きいが、左右
旋光性拐料を通過する内に、完全に打消され、結局、フ
ァラデー効果による回転角のみが検出されるため、1種
類のJ、3 S O又はBGOで構成した光アイソレー
タに生じるような旋光能の温度依存性によるアイソレー
ションの劣化は生じない。
Therefore, the plane of polarization rotates counterclockwise in the left-handed optically rotating BSO or BGO6, and clockwise in the right-handed rotating BSO or BGO7. The rotation due to optical rotation has the same absolute value and opposite sign, so its value is large, but it is completely canceled out as it passes through the left and right optical rotatory particles, and in the end, only the rotation angle due to the Faraday effect is Therefore, there is no deterioration in isolation due to the temperature dependence of optical rotation power, which occurs in optical isolators made of one type of J, 3 SO or BGO.

このように、BSO,BGOにみられる旋光能の大きい
温度変化を打消すことにより、温度安定性に優れた光ア
イソレータを提供することができる。
In this way, by canceling out the large temperature change in the optical rotation power observed in BSO and BGO, it is possible to provide an optical isolator with excellent temperature stability.

この例では、一方が左旋光性、他方が右旋光性で長さが
同一のB S O又はBGOを用いた。しかし、すでに
述べたように、BSOと13Goとの旋光能の絶対値、
およびベルデ定数は等しいので、一方をBSOに、他方
を13 G Oにしても良し・。
In this example, B SO or BGO of the same length was used, one having left-handed rotation and the other having right-handed rotation. However, as already mentioned, the absolute value of the optical rotation power of BSO and 13Go,
Since the and Verdet constants are equal, one can be set to BSO and the other to 13 GO.

また、左、右旋光性のB501又は13 G O−に多
数枚積層してもよ(、この場合、左旋光性の1380又
はBGOの長さの和と、右旋光性の13 S O又はB
GOの長さの和とが等しければ良・いことは容易に理解
されよう。
Alternatively, a large number of B501 or 13 GO- with left or right rotation may be laminated (in this case, the sum of the lengths of 1380 or BGO with left rotation and 13 SO with right rotation) Or B
It is easily understood that it is good if the sum of the lengths of GO is equal.

また、各々の素子は必ずしも密着している必要はな(此
光の進行方向に、光軸を整列させて互に離隔して並べて
も差支えない。
In addition, the elements do not necessarily have to be in close contact with each other (they may be arranged spaced apart from each other with their optical axes aligned in the direction in which the light travels).

ファラデー効果による偏光面の回転角θはファラデー素
子5の長さおよび磁界Hに比例するが素子の長さを増加
させるのが難しいか又はより低磁界でθ=45°とした
いときには、ファラデー素子の両側にミラー8を設け、
これによって光を反射させて、ファラデー素子の中を所
定の回数だけ繰返し往復させれば良い。
The rotation angle θ of the plane of polarization due to the Faraday effect is proportional to the length of the Faraday element 5 and the magnetic field H, but if it is difficult to increase the length of the element or it is desired to set θ = 45° with a lower magnetic field, the Faraday element Mirrors 8 are provided on both sides,
This allows the light to be reflected and travel back and forth through the Faraday element a predetermined number of times.

長さL (=2 e )のファラデー材料の中を、N回
往復させると、偏光面の回転角96Nは、ON = 2
V e HNL         (5)となるので、
磁界の強さは第6図のものと比較して1/Nでよいこと
になる。
When the Faraday material of length L (=2 e ) is reciprocated N times, the rotation angle of the plane of polarization 96N is ON = 2
V e HNL (5), so
The strength of the magnetic field can be 1/N compared to that shown in FIG.

以下に実施例を示す。Examples are shown below.

63371J++光用の光アイソレータとして長さ33
、75間の左旋光能B80もしくはBGOと、右旋光能
のBSO又はBGOを組合わせたものを用い、2.00
00もの磁界を印加した。
63371J++ Length 33 as an optical isolator for light
, using a combination of left-handed optical power B80 or BGO between 75 and right-handed optical power BSO or BGO, 2.00
A magnetic field of 0.00 was applied.

温度を一10℃〜60℃まで変化させ、光アイソレーシ
ョンを測定したところ温度変化による変動は、中心値3
0 dBに対して±2 dBの範囲内であった。つまり
、本発明の光アイソレータは、はとんど温度依存性がな
く極めて高性能である、という事が確められた。
When the temperature was varied from -10℃ to 60℃ and the optical isolation was measured, the fluctuation due to temperature change was at the center value of 3.
It was within the range of ±2 dB with respect to 0 dB. In other words, it was confirmed that the optical isolator of the present invention has almost no temperature dependence and has extremely high performance.

これと比較するため、右旋光能のみ、又は左旋光能のみ
の’B 80又はBGOで、同じ長さの光アイソレータ
を作って同様の試験をしたが、温度が一10℃〜60℃
の範囲で変動すると、アイソレーションは30 dB 
±10(IB の変動を示し温度変化の激しい場所では
実用的でないことが判った。
For comparison, we made optical isolators of the same length using 'B80 or BGO with only dextrorotation power or only left-handed rotation power and conducted similar tests, but at temperatures between 110°C and 60°C.
When varying over the range, the isolation is 30 dB
±10 (IB) fluctuation, making it impractical in places with severe temperature changes.

以上の結果は、旋光方向は逆であるが旋光能の絶対値と
その温度係数は等しく、ベルデ定数も等しい1対の材料
が存在する場合には例外なくあてはまるものであシ、特
に大きいファラデー効果と旋光能を有するYIGに適用
した場合、本発明の効果は犬である。
The above results apply without exception when there is a pair of materials with opposite directions of optical rotation but the same absolute value of optical power, the same temperature coefficient, and the same Verdet constant, especially the large Faraday effect. When applied to YIG, which has optical rotation ability, the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はファラデー効果の説明図であり、第2図は従来
例に係る光アイソレータの光学系構成図であり、第6図
は本発明の実施例に係る光アイソレータの光学系略図で
あり、第4図は他の実施例に係る光アイソレータの光学
系断面図である。 1・・・・・・光 源     2・・・・・・偏光子
6・・・・・・検光子    4  光検出器5・・・
・・・ファラデー素子 6・・・・・・左旋光性BSO又はBGO7・・・・・
・右旋光性BSO又はBGO8・・・・・・反射ミラー
  A・・・・・・光学材料H・・・・・−磁 界  
   θ・・・・・・偏光方向の回転角特許出願人 住
友電気工業株式会社
FIG. 1 is an explanatory diagram of the Faraday effect, FIG. 2 is a diagram showing a configuration of an optical system of an optical isolator according to a conventional example, and FIG. 6 is a schematic diagram of an optical system of an optical isolator according to an embodiment of the present invention. FIG. 4 is a sectional view of the optical system of an optical isolator according to another embodiment. 1...Light source 2...Polarizer 6...Analyzer 4 Photodetector 5...
...Faraday element 6...Levorotatory BSO or BGO7...
- Right-handed optical rotation BSO or BGO8...Reflecting mirror A...Optical material H...-Magnetic field
θ・・・Rotation angle of polarization direction Patent applicant Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】 (1)旋光方向は逆であるが、旋光能の絶対値とその温
度係数は等しく、ベルデ定数は符号、絶対値ともに等し
く、かつ光軸方向の長さの等しい2種類のファラデー材
料かC)なるファラデー素子をその光軸が一致するよう
に整列させてなる光アイソレータ。 (2)  前記2種類のファラデー材料が、右旋光能を
有するビスマスシリコンオキサイド(B112Sio2
D)マタはビスマスゲルマニウムオキサイド(Bi、2
Ge○2o)の何れかと、左旋光能な有するビスマスシ
リコンオキサイドまたはビスマスゲルマニウムオキサイ
ドの伺れか゛とである特許請求の範囲第1項記載の光ア
イソレータ。 t31  前記2 fi類のファラデー材料が、右旋光
能な有するイツトリウムアイアンガーネット(Y3Fe
5O12)と、左旋光性を有するイツトリウムアイアン
ガーネットである特許請求の範囲第1項記載の光アイソ
レータ。 (4)光軸方向に整列配置された前記2種類のファラデ
ー材料からなるファラデー素子の前後に配設された1対
の反射手段を具備し、光が1回以上前記2種類のファラ
デー材料からなるファラデー素子中を往復することを特
徴とする特許請求の範囲第1項記載の光アイソレータう (5)旋光能の旋光方向を異にする前記2種類のファラ
デー材料の一方もしくは両方がそれぞれ複数枚のファラ
デー素子からなり、それぞれの種類のファラデー素子の
光軸方向の厚みの合計が等しいことを特徴とする特許請
求の範囲第1項記載の光アイソレータ。
[Claims] (1) Although the directions of optical rotation are opposite, the absolute value of the optical rotation power and its temperature coefficient are the same, and the Verdet constants have the same sign and absolute value, and there are two types with the same length in the optical axis direction. An optical isolator formed by arranging Faraday elements made of a Faraday material or C) so that their optical axes coincide. (2) The two types of Faraday materials are bismuth silicon oxide (B112Sio2
D) Mata is bismuth germanium oxide (Bi, 2
2. The optical isolator according to claim 1, wherein the optical isolator is made of either bismuth silicon oxide or bismuth germanium oxide having left-handed optical rotation ability. t31 The Faraday material of the above 2 fi class is yttrium iron garnet (Y3Fe) which has dextrorotating ability.
5O12) and yttrium iron garnet having left-handed optical rotation. (4) A pair of reflecting means is provided before and after a Faraday element made of the two types of Faraday materials arranged in alignment in the optical axis direction, and the light is made of the two types of Faraday materials at least once. (5) The optical isolator according to claim 1 is characterized in that the optical isolator moves back and forth within a Faraday element. 2. The optical isolator according to claim 1, wherein the optical isolator comprises a Faraday element, and the total thickness of each type of Faraday element in the optical axis direction is equal.
JP13955182A 1982-08-11 1982-08-11 Optical isolator Pending JPS5929222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13955182A JPS5929222A (en) 1982-08-11 1982-08-11 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13955182A JPS5929222A (en) 1982-08-11 1982-08-11 Optical isolator

Publications (1)

Publication Number Publication Date
JPS5929222A true JPS5929222A (en) 1984-02-16

Family

ID=15247891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13955182A Pending JPS5929222A (en) 1982-08-11 1982-08-11 Optical isolator

Country Status (1)

Country Link
JP (1) JPS5929222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292613A (en) * 1985-06-21 1986-12-23 Tohoku Metal Ind Ltd Faraday rotor and its production
CN101975882A (en) * 2010-09-16 2011-02-16 哈尔滨工业大学 Difference-stream detecting method based on BSO (Bi12SiO20) crystal and device for realizing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292613A (en) * 1985-06-21 1986-12-23 Tohoku Metal Ind Ltd Faraday rotor and its production
CN101975882A (en) * 2010-09-16 2011-02-16 哈尔滨工业大学 Difference-stream detecting method based on BSO (Bi12SiO20) crystal and device for realizing same

Similar Documents

Publication Publication Date Title
US4222668A (en) Ferrimagnetic Faraday elements for ring lasers
US4560932A (en) Magneto-optical converter utilizing Faraday effect
EP0391703A2 (en) Quasi-achromatic optical isolators and circulators using prisms with total internal fresnel reflection
JPH07218866A (en) Optical isolator
JP3193945B2 (en) Magneto-optical element and optical magnetic field sensor
Bahlmann et al. Improved design of magnetooptic rib waveguides for optical isolators
Kirsch et al. Semileaky thin‐film optical isolator
US6288827B1 (en) Faraday rotator
JPS589B2 (en) optical isolator
JP3112212B2 (en) Optical isolator
JP2000249997A (en) Faraday rotational angle varying device
JPS60184225A (en) Optical fiber type isolator
JPS5929222A (en) Optical isolator
JPS6349728A (en) Cascade connection type isolator
JPS5828561B2 (en) optical isolator
JPH0244310A (en) Optical isolator
JPH0477713A (en) Optical isolator independent of polarization
JP2721879B2 (en) Self-temperature compensated optical isolator
Umegaki et al. Optical bistability using a magneto‐optic modulator
JPS58140716A (en) Magnetic field-light transducer
Wolfe Thin films for non-reciprocal magneto-optic devices
EP0647869A1 (en) Non-reciprocal optical device
JP2000206218A (en) Multilayer film magnetic field sensitive element and optical type magnetic field detector using the same
JP2002107671A (en) Waveguide type optical isolator
JP3044084B2 (en) Magneto-optical element for magnetic field sensor