JPS589B2 - optical isolator - Google Patents

optical isolator

Info

Publication number
JPS589B2
JPS589B2 JP14518177A JP14518177A JPS589B2 JP S589 B2 JPS589 B2 JP S589B2 JP 14518177 A JP14518177 A JP 14518177A JP 14518177 A JP14518177 A JP 14518177A JP S589 B2 JPS589 B2 JP S589B2
Authority
JP
Japan
Prior art keywords
optical
yig
optical isolator
magneto
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14518177A
Other languages
Japanese (ja)
Other versions
JPS5478153A (en
Inventor
英俊 岩村
真太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14518177A priority Critical patent/JPS589B2/en
Publication of JPS5478153A publication Critical patent/JPS5478153A/en
Publication of JPS589B2 publication Critical patent/JPS589B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は一般に光アイソレータに関し、特にファラデー
効果を利用した光アイソレータの波長特性および温度特
性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to optical isolators, and more particularly to improving the wavelength characteristics and temperature characteristics of optical isolators using the Faraday effect.

アイソレータは一般に通信機において反射波を吸収して
伝送方向を単一化する為に用いられており、光フアイバ
ー伝送方式においても光アイソレータは、光源の安定化
、ファイバーの接続点及び入出力端などから反射された
後進波の除去など、伝送品質の保持に必要なものである
Isolators are generally used in communications equipment to absorb reflected waves and unify the transmission direction.In optical fiber transmission systems, optical isolators are also used to stabilize the light source, connect points of fibers, input/output ends, etc. This is necessary to maintain transmission quality, such as by removing backward waves reflected from

従来提案されてきた光アイソレータは、第1図に示す如
く、ファラデー効果を有す磁気光学材料1と1対の偏光
子2,3と、磁気光学材料1に磁界を印加するための磁
石4から構成されている。
As shown in FIG. 1, the conventionally proposed optical isolator consists of a magneto-optic material 1 having a Faraday effect, a pair of polarizers 2 and 3, and a magnet 4 for applying a magnetic field to the magneto-optic material 1. It is configured.

たとえば波長1.15μ用の光アイソレータを構成する
場合に、磁気光学材料1として強磁性体であるイツトリ
ウム鉄ガーネット(Y3Fe5O12−YIGと略記)
、偏光子としてグラン・トムソンプリズムを用いる。
For example, when constructing an optical isolator for a wavelength of 1.15μ, the magneto-optical material 1 is yttrium iron garnet (abbreviated as Y3Fe5O12-YIG), which is a ferromagnetic material.
, a Glan-Thompson prism is used as a polarizer.

アイソレーション特性が最良になるのは、YIGのファ
ラデー効果による偏光面の回転角(旋光能)が45°で
、偏光子2と偏光子3のなす角度が45°の場合である
The best isolation property is obtained when the rotation angle (optical power) of the plane of polarization due to the Faraday effect of YIG is 45° and the angle between polarizer 2 and polarizer 3 is 45°.

ところが一般にファラデー効果(常磁性体のベルデ定数
、強磁性体のファラデー旋光能)は波長依存性、温度依
存性が有り、波長又は温度の変化により旋光能が45°
からずれ、アイソレーション特性の劣化を招く。
However, in general, the Faraday effect (the Verdet constant of paramagnetic materials, the Faraday optical rotation power of ferromagnetic materials) has wavelength dependence and temperature dependence, and the optical rotation power changes by 45 degrees due to changes in wavelength or temperature.
deviation, leading to deterioration of isolation characteristics.

たとえば第2図はYIGを用いて従来提案されてきた構
成法により作製した光アイソレータの波長特性を示した
もので曲線aは逆方向損失、曲線すは順方向損失を示す
For example, FIG. 2 shows the wavelength characteristics of an optical isolator fabricated using YIG according to a construction method that has been proposed in the past, where curve a shows the reverse loss and curve a shows the forward loss.

図から明らかなごとく逆損失の波長依存性が大きく、広
帯域でアイソレーションを達成するためにはアイソレー
タを直列に多段挿入しなければならず、順損失が増大す
る。
As is clear from the figure, the wavelength dependence of the reverse loss is large, and in order to achieve isolation over a wide band, it is necessary to insert multiple stages of isolators in series, which increases the forward loss.

さらに従来の光アイソレータは温度変化にも特性が大き
く変化するといった欠点があった。
Furthermore, conventional optical isolators have the disadvantage that their characteristics change significantly when the temperature changes.

従って本発明は従来の光アイソレータの上記欠点を改善
するもので、その目的は波長特性及び温度特性を改善し
た光アイソレータを提供することにある。
Therefore, the present invention aims to improve the above-mentioned drawbacks of conventional optical isolators, and its object is to provide an optical isolator with improved wavelength characteristics and temperature characteristics.

本発明による光アイソレータの特徴は、磁気光学材料と
光学活性材料の両端に直交する1対の偏光子を組合せた
構造にあり、以下図面により詳細に説明する。
The optical isolator according to the present invention is characterized by a structure in which a pair of polarizers orthogonal to both ends of a magneto-optical material and an optically active material are combined, and will be explained in detail below with reference to the drawings.

第3図は本発明による光アイソレータの構造例で、参照
番号1はファラデー効果を有する磁気光学材料、2と3
は互いに直交位に置かれた偏光子、4は磁気光学材料1
に外部磁界を印加するための磁石、5は自然旋光性を有
する光学活性材料である。
FIG. 3 shows an example of the structure of an optical isolator according to the present invention, in which reference number 1 is a magneto-optical material having a Faraday effect, 2 and 3
are polarizers placed at right angles to each other, and 4 is a magneto-optical material 1.
A magnet 5 for applying an external magnetic field to is an optically active material having natural optical rotation.

磁気光学材料としては、外部磁界によってファラデー効
果が誘起される常磁性体、又は自発磁化によってファラ
デー効果が誘起される強磁性体及びフェリ磁性体が可能
であるが、後者は可視領Z域での吸収が大きいので再校
領域では使用出来ない。
Possible magneto-optical materials include paramagnetic materials in which the Faraday effect is induced by an external magnetic field, or ferromagnetic and ferrimagnetic materials in which the Faraday effect is induced by spontaneous magnetization; Since the absorption is large, it cannot be used in the recalibration area.

一方光学活性材料としては無機又は有機物の結晶(例え
ば水晶、酸化テルル、ブドウ糖など)、又は液体及び有
機物の水溶液などが可能である。
On the other hand, the optically active material may be an inorganic or organic crystal (for example, quartz, tellurium oxide, glucose, etc.), or a liquid or an aqueous solution of an organic material.

ファラデー効果も自然旋光性も光の偏光面を回転する(
旋光能−optical rotary power)
という効果では同じであるが、ファラデー効果は光の伝
播方向によって旋光能の符号が反転するのに対し、自然
旋光能では旋光能の符号は光の伝播方向によらず不変で
ある。
Both the Faraday effect and natural optical rotation rotate the plane of polarization of light (
optical rotary power)
However, in the Faraday effect, the sign of the optical rotation power is reversed depending on the propagation direction of the light, whereas in the natural optical rotation power, the sign of the optical rotation power is unchanged regardless of the propagation direction of the light.

第3図において、磁気光学材料1及び光学活性材料5の
光軸にそった厚さは偏光面が45°だけ回転する厚さと
する。
In FIG. 3, the thickness of the magneto-optic material 1 and the optically active material 5 along the optical axis is such that the plane of polarization is rotated by 45 degrees.

従って矢印aの方向に伝播する光は、磁気光学材料1で
45°、光学活性材料5で45°の回転をし、結局偏光
面は90°回転するのに対し、反対に矢印すの方向に伝
播する光は光学活性材料5で45°、磁気光学材料1で
一45°の回転をするので、結局偏光面の回転は0であ
る。
Therefore, the light propagating in the direction of arrow a is rotated by 45 degrees in the magneto-optic material 1 and by 45 degrees in the optically active material 5, and the plane of polarization is rotated by 90 degrees. Since the propagating light is rotated by 45° in the optically active material 5 and by 145° in the magneto-optic material 1, the rotation of the plane of polarization is 0 after all.

ここで偏光子3と4は直交しているので、光はaの方向
には伝播するが、bの方向へは伝播しないこととなる。
Here, since the polarizers 3 and 4 are perpendicular to each other, the light propagates in the direction a, but not in the direction b.

次に第4図と第5図により第3図の光アイソレータの特
性を説明する。
Next, the characteristics of the optical isolator shown in FIG. 3 will be explained with reference to FIGS. 4 and 5.

ここで磁気光学材料としてはYIGの(111)板、光
学活性材料として水晶(S 102 )のC板を用いる
Here, a (111) YIG plate is used as the magneto-optical material, and a C plate of quartz (S 102 ) is used as the optically active material.

これらの材料は共に例えば1.15μmの光に対して偏
光面が45゜回転するように厚さを調整しておく。
The thickness of both of these materials is adjusted so that the plane of polarization rotates by 45 degrees for light of 1.15 μm, for example.

第4図は旋光能の波長依存性を示すグラフで、横軸は波
長(μm)、たて軸は旋光能(度)を示す。
FIG. 4 is a graph showing the wavelength dependence of optical rotation power, where the horizontal axis shows wavelength (μm) and the vertical axis shows optical rotation power (degrees).

曲線aのYIG、及び曲線すの水晶も、波長の増加と共
に旋光能が低下することがわかる。
It can be seen that the optical rotation power of YIG (curve a) and quartz crystal (curve 2) also decreases as the wavelength increases.

従来の光アイソレータでは、YIGの波長による旋光量
の変化が直接、逆損失の劣化に影響するのに対し、本発
明による光アイソレータでは光学活性材料の導入により
、逆損失の劣化に影響するのはYIGと水晶の旋光能の
変化量の差にすぎない。
In conventional optical isolators, the change in the amount of optical rotation due to the wavelength of YIG directly affects the deterioration of the reverse loss, whereas in the optical isolator of the present invention, the introduction of an optically active material has a direct effect on the deterioration of the reverse loss. This is simply the difference in the amount of change in optical rotation power between YIG and quartz.

第5図は本発明による光アイソレータの波長依存性を示
すグラフで、横軸は波長、たて軸は損失、曲線aは逆方
向損失、曲線すは順方向損失を示す。
FIG. 5 is a graph showing the wavelength dependence of the optical isolator according to the present invention, where the horizontal axis is the wavelength, the vertical axis is the loss, the curve a is the reverse loss, and the curve A is the forward loss.

第5図を第2図と比較することにより本発明による光ア
イソレータの動作領域が広がっていることは明らかであ
る。
By comparing FIG. 5 with FIG. 2, it is clear that the operating range of the optical isolator according to the invention is expanded.

温度特性に関しても同様で、例えば1.153μmの波
長に対し、YIGと酸化テルル(TeO2)の組合せに
よる光アイソレータにより温度特性が改善されることが
確認された。
The same holds true for temperature characteristics, and it has been confirmed that, for example, for a wavelength of 1.153 μm, an optical isolator made of a combination of YIG and tellurium oxide (TeO2) improves temperature characteristics.

以下温度特性について詳説する。The temperature characteristics will be explained in detail below.

自然旋光能の温度係数は物質により大きく異なり、例え
ば水晶が+0.6m1n/cm・℃であるのに対し酸化
テルルでは−2,4m1n/cm・℃である。
The temperature coefficient of natural optical rotation power varies greatly depending on the substance; for example, while it is +0.6 m1n/cm·°C for quartz, it is -2.4 m1n/cm·°C for tellurium oxide.

一方、YIGによるファラデー旋光能の温度係数は−7
,8m1n/cm・℃である。
On the other hand, the temperature coefficient of Faraday optical rotation power by YIG is -7
, 8m1n/cm・℃.

これから、45°の旋光子にした場合のこれら各物質の
45°からの変化量Δθの温度係数は次のとおりである
From this, when the optical rotation angle is set to 45°, the temperature coefficient of the amount of change Δθ from 45° for each of these substances is as follows.

YIG;−1,44m1n/℃ 水晶 ;0,54m1n/℃ 酸化テルル; −0,65m1n/℃ 酸化テルルはYIGと温度係数が近いので逆方向損失の
劣化が大幅に改善されるのに対し、水晶とYIGの組合
せでは両者の温度係数が逆符号であるので逆方向損失が
劣化する。
YIG; -1,44m1n/℃ Quartz; 0,54m1n/℃ Tellurium oxide; -0,65m1n/℃ Tellurium oxide has a temperature coefficient close to that of YIG, so reverse loss deterioration is greatly improved, whereas crystal In the combination of and YIG, the temperature coefficients of both have opposite signs, so the reverse direction loss deteriorates.

各物質における逆方向損失と順方向損失の温度係数を第
6図に示す。
FIG. 6 shows the temperature coefficients of reverse loss and forward loss for each material.

ここで曲線aとdはYIG(45°)とTe02(45
°)の組合せ、曲線すとeはYIG(45°)のみ、曲
線cとfはYIG(45°)と水晶(45°)の場合を
示す。
Here, curves a and d are YIG (45°) and Te02 (45°).
(°), the curve e shows only YIG (45°), and the curves c and f show the case of YIG (45°) and crystal (45°).

第6図からYIGとTeO2の組合せにおいて特に逆方
向損失特性(曲線a)が優れていることがわかる。
It can be seen from FIG. 6 that the combination of YIG and TeO2 has particularly excellent reverse loss characteristics (curve a).

なお偏光面の回転を45°とすることの理由として(a
)一般に偏光子2,3は長方形であるので偏光子の位置
関係が0°又は90°にある方が組立の容易さ及び安定
性に優れていること、及び(b)通常のレーザ出射光の
偏光面は水平方向又は鉛直方向であるので、アイソレー
タ通過後の偏光面も水平又は鉛直であるのが望ましい、
の2点を挙げることができる。
The reason for setting the rotation of the plane of polarization to 45° is (a
) Since the polarizers 2 and 3 are generally rectangular, it is easier and more stable to assemble if the polarizers are positioned at 0° or 90°, and (b) the normal laser output light Since the plane of polarization is horizontal or vertical, it is desirable that the plane of polarization after passing through the isolator is also horizontal or vertical.
Two points can be mentioned.

以上説明したように、本発明による、直交位の位置にお
かれた1対の偏光子の間に磁気光学材料と、光学活性材
料を組合せ、光アイソレータを構成することによって、
波長特性、温度特性の向上が計ることができる。
As explained above, according to the present invention, by combining a magneto-optic material and an optically active material between a pair of polarizers placed at orthogonal positions, and constructing an optical isolator,
Improvements in wavelength characteristics and temperature characteristics can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光アイソレータの構造例、第2図は従来
の光アイソレータの特性を表わすグラフ、第3図は本発
明による光アイソレータの構造例、第4図と第5図は本
発明による光アイソレータの特性をあられすグラフであ
る。 第6図は各物質によるアイソレータの温度特性を示すグ
ラフである。 1;磁気光学材料、2,3;偏光子、4;磁石、5;光
学活性材料。
Figure 1 is a structural example of a conventional optical isolator, Figure 2 is a graph showing the characteristics of a conventional optical isolator, Figure 3 is a structural example of an optical isolator according to the present invention, and Figures 4 and 5 are according to the present invention. This is a graph showing the characteristics of an optical isolator. FIG. 6 is a graph showing the temperature characteristics of isolators based on various materials. 1; magneto-optical material; 2, 3; polarizer; 4; magnet; 5; optically active material.

Claims (1)

【特許請求の範囲】[Claims] 1 光軸にそって配置される1対の直交する偏光子と、
該偏光子の間に配置されるファラデー効果により偏光面
を45°回転させる磁気光学材および自然旋光性により
偏光面を45°回転させる光学活性材とを有し、前記磁
気光学材がYIGで前記光学活性材が酸化テルルである
ことを特徴とする光アイソレータ。
1 a pair of orthogonal polarizers arranged along the optical axis;
The magneto-optical material is arranged between the polarizers and rotates the plane of polarization by 45 degrees due to the Faraday effect, and the optically active material rotates the plane of polarization by 45 degrees due to natural optical rotation. An optical isolator characterized in that the optically active material is tellurium oxide.
JP14518177A 1977-12-05 1977-12-05 optical isolator Expired JPS589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14518177A JPS589B2 (en) 1977-12-05 1977-12-05 optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14518177A JPS589B2 (en) 1977-12-05 1977-12-05 optical isolator

Publications (2)

Publication Number Publication Date
JPS5478153A JPS5478153A (en) 1979-06-22
JPS589B2 true JPS589B2 (en) 1983-01-05

Family

ID=15379290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14518177A Expired JPS589B2 (en) 1977-12-05 1977-12-05 optical isolator

Country Status (1)

Country Link
JP (1) JPS589B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621113A (en) * 1979-07-27 1981-02-27 Nec Corp Light isolator coupler
JPS5683701A (en) * 1979-12-13 1981-07-08 Nippon Telegr & Teleph Corp <Ntt> Photocoupler
JPS5749217U (en) * 1980-09-03 1982-03-19
JPS5871714U (en) * 1981-11-09 1983-05-16 三菱電機株式会社 optical coupler
JPS592010A (en) * 1982-06-28 1984-01-07 Fujitsu Ltd Optical rotator
JPS592016A (en) * 1982-06-28 1984-01-07 Fujitsu Ltd Optical isolator
JPS592004A (en) * 1982-06-28 1984-01-07 Fujitsu Ltd Optical rotator
JPS60181727A (en) * 1984-02-28 1985-09-17 Kokusai Denshin Denwa Co Ltd <Kdd> Optical isolator
JPS6356624A (en) * 1986-08-27 1988-03-11 Hoya Corp Faraday rotator and optical isolator
JP2752615B2 (en) * 1987-01-23 1998-05-18 日本電気 株式会社 Semiconductor module
JPS6338122U (en) * 1987-07-23 1988-03-11
US5052786A (en) * 1990-03-05 1991-10-01 Massachusetts Institute Of Technology Broadband faraday isolator
WO2022195894A1 (en) * 2021-03-19 2022-09-22 ギガフォトン株式会社 Optical isolator, ultraviolet laser device, and manufacturing method of electronic device

Also Published As

Publication number Publication date
JPS5478153A (en) 1979-06-22

Similar Documents

Publication Publication Date Title
US4222668A (en) Ferrimagnetic Faraday elements for ring lasers
JPS6317426A (en) Optical isolator
JPS589B2 (en) optical isolator
CA1259835A (en) Optical systems with antireciprocal polarization rotators
US3830555A (en) Nonreciprocal waveguide mode converter
US4671621A (en) Optical systems with antireciprocal polarization rotators
GB1518119A (en) Magneto-optical propagation mode converter
Wolfe et al. Magneto-optic waveguide isolators based on laser annealed (Bi, Ga) YIG films
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JPH0244310A (en) Optical isolator
JP3090292B2 (en) Non-reciprocal light circuit
JP2721879B2 (en) Self-temperature compensated optical isolator
Wolfe Thin films for non-reciprocal magneto-optic devices
JPH0311303A (en) Optical circulator
JPS5850512A (en) Optical isolator
Lohmeyer et al. Unidirectional magnetooptic polarization converters
JPS5977408A (en) Optical isolator
JP2567697B2 (en) Faraday rotation device
JPS5828716A (en) Optical isolator
JPS6230607B2 (en)
JPS5929222A (en) Optical isolator
JPS60107615A (en) Faraday rotating element
JPS6257971B2 (en)
JPH05157994A (en) Optical isolator
JPH04264515A (en) Optical isolator