JPS5850512A - Optical isolator - Google Patents
Optical isolatorInfo
- Publication number
- JPS5850512A JPS5850512A JP14926581A JP14926581A JPS5850512A JP S5850512 A JPS5850512 A JP S5850512A JP 14926581 A JP14926581 A JP 14926581A JP 14926581 A JP14926581 A JP 14926581A JP S5850512 A JPS5850512 A JP S5850512A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- crystals
- axis
- crystal
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はレーザ光源の発振が、自分の反射光によって不
安電化することを防止する高性能光アイソレータに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-performance optical isolator that prevents the oscillation of a laser light source from becoming unstable due to its own reflected light.
従来の光アイソレータの構成を第1図に示す。The configuration of a conventional optical isolator is shown in FIG.
、光アイソレータの機能は、以下に述べるように動・炸
する。磁気光学材料l、の磁化方向に伝ばんする直線偏
波光ファラデー回転によって右回りにチS0回転し、ざ
らに4!j0回転旋光板参で右回りにas0回転し、出
射側の偏光子3を通過する。したがって偏光子コと偏光
子3の偏波面は互いに直交になるように配されている。The function of the optical isolator operates and explodes as described below. The linearly polarized light propagating in the magnetization direction of the magneto-optical material L rotates clockwise due to Faraday rotation, roughly 4! It is rotated as0 clockwise by the j0 rotation optical rotation plate and passes through the polarizer 3 on the output side. Therefore, the planes of polarization of polarizer 3 and polarizer 3 are arranged so as to be perpendicular to each other.
逆に偏光子3から入射した光は4IS0回転旋光板ダで
右回りにりS0回転し、磁気光学材料lではas0左回
り回転するので、入射側偏光子コに達する偏波面は回転
していないことと同□′□じ効果があり、入射側偏光子
コからの光は消光状態になる。On the contrary, the light incident from the polarizer 3 is rotated clockwise by the 4IS0 rotating optical rotation plate and rotated by S0, and is rotated counterclockwise by as0 by the magneto-optic material 1, so the plane of polarization that reaches the incident side polarizer is not rotated. There is the same effect as □′□, and the light from the incident side polarizer becomes extinct.
ここで直線偏波光が7アラデ一回転する際、直線偏波性
が保持されていなければならない。ガラスまたは立方晶
系の異方性のない磁気光学材料であれば、直線偏波性が
保持される。Here, when the linearly polarized light rotates once by 7 degrees, the linear polarization property must be maintained. If it is glass or a magneto-optical material without cubic crystal anisotropy, linear polarization is maintained.
しかし磁気光学材料lが複屈折性を持つ結晶、たとえば
オルソフェライトや六方晶フエライシの場合、磁化容易
軸が光軸と一致しないので、ファラデー回転時に複屈折
性が影蕾して、直線偏波性、が保持されなくなり、楕円
偏波になる・これは光・アイソレータの消光比の劣化を
まねき、光アイソレータとしての機能が失われることに
なる。However, if the magneto-optical material l is a crystal with birefringence, such as orthoferrite or hexagonal ferrite, the axis of easy magnetization does not coincide with the optical axis, so the birefringence affects the Faraday rotation, resulting in linear polarization. , is no longer maintained and becomes elliptically polarized. This leads to a deterioration of the extinction ratio of the optical isolator, resulting in the loss of its function as an optical isolator.
したがって性能指数の高い結晶または所要とする波長に
おける光損失が極めて小、ざい結晶が存在しても、複屈
折性を有するファラデー回転の場合には、光アイソレー
タとして適用できない問題があった・
本発明は以上の問題を解決するため、一枚の複屈折性結
晶を直交配置することによって複屈折性の影響を解消す
ることを特徴とするものである。Therefore, even if a crystal with a high figure of merit or a crystal with extremely low optical loss at the required wavelength exists, it cannot be applied as an optical isolator in the case of a Faraday rotation having birefringence. In order to solve the above-mentioned problems, this method is characterized by eliminating the influence of birefringence by orthogonally arranging a single birefringent crystal.
以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.
第2図は本発明の一実施例の構成図であって、コ、Jは
偏光子、qはダj0回転旋光板、j、乙は磁気光学結晶
、7は磁気容易磁化方向を示す矢印で。FIG. 2 is a block diagram of an embodiment of the present invention, in which C and J are polarizers, q is a rotary polarizing plate, j and O are magneto-optical crystals, and 7 is an arrow indicating the direction of easy magnetization. .
ある。複屈折性を有する磁気光学結晶!および乙の光軸
(図ではa軸)は互いに直交している。本発明の構成を
FeF3やFeBO3で1代表される菱面体結晶を例に
とって説明する。be. Magneto-optic crystal with birefringence! The optical axes of and B (in the figure, the a-axis) are orthogonal to each other. The structure of the present invention will be explained by taking a rhombohedral crystal represented by FeF3 or FeBO3 as an example.
この、結晶系では、光軸は3回対称軸であるC′、軸と
一致するが、磁化容易軸がa軸と垂直をなす@い重厚さ
tなる該結晶の0軸と垂直をなすa軸を磁化容易軸とし
工、この軸方向に直線偏波光が入射すると、複屈折李の
ため′に出射光は楕円偏波となる。この楕円偏波面の長
軸方向は、入射した直線偏波面に相当し、その際のファ
ラデー回転による回転角θは次式で与えられる。In this crystal system, the optical axis coincides with the 3-fold symmetry axis C', but the axis of easy magnetization is perpendicular to the a axis. The axis is the axis of easy magnetization, and when linearly polarized light is incident in the direction of this axis, the emitted light becomes elliptically polarized due to birefringence. The long axis direction of this elliptically polarized wave surface corresponds to the incident linearly polarized wave surface, and the rotation angle θ due to Faraday rotation at that time is given by the following equation.
B = −T−(no −no )t
(2) ’ここでFはファラデー回転係数(d
eg/cm ) 、λは光の波長、noは常光線の屈折
率、noは異常光線の屈折率、Bは複屈折による位相遅
れ角である。B = −T−(no −no)t
(2) 'Here, F is the Faraday rotation coefficient (d
eg/cm ), λ is the wavelength of light, no is the refractive index of the ordinary ray, no is the refractive index of the extraordinary ray, and B is the phase delay angle due to birefringence.
(1)式かられかるように、Fが大きくてもBおよび5
iin項のため、θは複屈折がないと仮定した場合゛に
比べて、極めて小ざくなる。As seen from equation (1), even if F is large, B and 5
Because of the iin term, θ becomes extremely small compared to the case where there is no birefringence.
そこで第2図に示すように、2個の複屈折性磁気光学結
晶j、ぶの光軸、すなわち。軸が互いに直交するように
配置すると、Bは
B= −((no−no)tl+(no−no)tg)
(s)λ
となる。ここでtl w tg w tであるからB=
0となる〇
したがって(1)式においてB −+ oすれば、#−
,2Ft (4)を得
る。Therefore, as shown in FIG. 2, the optical axis of two birefringent magneto-optic crystals j, ie. If the axes are arranged so that they are orthogonal to each other, then B becomes B = - ((no-no)tl + (no-no)tg)
(s)λ. Here, since tl w tg w t, B=
0〇 Therefore, in equation (1), if B −+ o, #−
, 2Ft (4) is obtained.
(4)式は通常の複屈折性を示さない立方晶系またはガ
ラスのような等方性磁気光学材料における7アラデ一回
転の式と全く同じになる。Equation (4) is exactly the same as the equation for one revolution of 7 Alade in a cubic crystal system or an isotropic magneto-optical material such as glass that does not exhibit normal birefringence.
゛ 本発明を光アイソレータとして用いる場合には、
0w4I3’と表るように各磁気光学結晶!、乙の板厚
tを研磨によって仕上げたのち、一個の磁気光学結晶j
、乙のa軸が互いに直交するように貼り合わせたのち、
第2図に示すように互いに偏光面が直交する一個の偏光
子コ、Jの間に貼り合わせた磁気光学結晶j+4および
一30回転旋光板参を挿入する。たとえば可視光域で透
明であるFeF、のファラデー回転係数はλ=0.7声
票で、y−100deg/cmであるから、t−コ、、
2S−となる。゛ When using the present invention as an optical isolator,
Each magneto-optical crystal is expressed as 0w4I3'! , after polishing the plate thickness t, one magneto-optical crystal j
, After pasting them together so that the a-axes of B are perpendicular to each other,
As shown in FIG. 2, a magneto-optic crystal j+4 and a 130-rotational polarization plate bonded together are inserted between two polarizers whose polarization planes are perpendicular to each other. For example, the Faraday rotation coefficient of FeF, which is transparent in the visible light range, is λ=0.7 and y-100deg/cm, so t-co...
It becomes 2S-.
以上説明したように、本発明の光アイソレータ゛は複屈
折性の結晶でも光アイソレータが構成できるので、結晶
の選択の制約がなくなること、たとえば可視域で透明で
あるが、複屈折性を示t FeF3のような結晶でも、
光アイソレータへの適用が可能になること、複屈折性に
よる見かけ上の7アラデー効果の低減が解消されるので
、結晶の厚ざを小さくでき、光アイソレータの損失低減
を図ることができる利点がある。As explained above, since the optical isolator of the present invention can be constructed using a birefringent crystal, there are no restrictions on the selection of the crystal. Even crystals like
It has the advantage of being able to be applied to optical isolators, and since the apparent reduction in the 7 Alladay effect due to birefringence is eliminated, the thickness of the crystal can be made smaller and the loss of optical isolators can be reduced. .
Claims (1)
致しない磁気光学結晶において、磁化容易軸に沿う板厚
が同じなる1枚の該磁気光学結晶を、その光学軸が互い
に直交するように配置せしめ、かつ2枚の該磁気光学結
晶の板厚の合計厚さが、所望とする波長の光の偏波面が
磁化容易軸に沿ってllj’回転するよ □うな厚ざに
あり、該磁気光学結晶が互いに偏光面が900をなす2
個の偏光子または偏光板の間に設定され、かつ該磁気光
学結晶の後にls0回転旋光板を設置したことを特徴と
する光アイソレータ。L In a magneto-optic crystal that has a birefringence and whose easy axis of magnetization does not coincide with the optical axis, one magneto-optic crystal having the same thickness along the easy axis of magnetization is placed so that its optical axes are orthogonal to each other. and the total thickness of the two magneto-optic crystals is in such a range that the plane of polarization of light of the desired wavelength rotates llj' along the axis of easy magnetization, The magneto-optic crystals have polarization planes of 900 to each other.
1. An optical isolator, characterized in that the optical isolator is set between two polarizers or polarizing plates, and an ls0 rotation optical rotation plate is installed after the magneto-optic crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14926581A JPS5850512A (en) | 1981-09-21 | 1981-09-21 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14926581A JPS5850512A (en) | 1981-09-21 | 1981-09-21 | Optical isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5850512A true JPS5850512A (en) | 1983-03-25 |
JPS611730B2 JPS611730B2 (en) | 1986-01-20 |
Family
ID=15471454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14926581A Granted JPS5850512A (en) | 1981-09-21 | 1981-09-21 | Optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5850512A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237445A (en) * | 1990-11-30 | 1993-08-17 | Shimadzu Corporation | Optical isolator |
US5267078A (en) * | 1990-12-20 | 1993-11-30 | Kazuo Shiraishi | Optical isolator |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6359235U (en) * | 1986-10-06 | 1988-04-20 | ||
JPH01106648U (en) * | 1988-01-07 | 1989-07-18 |
-
1981
- 1981-09-21 JP JP14926581A patent/JPS5850512A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237445A (en) * | 1990-11-30 | 1993-08-17 | Shimadzu Corporation | Optical isolator |
US5267078A (en) * | 1990-12-20 | 1993-11-30 | Kazuo Shiraishi | Optical isolator |
Also Published As
Publication number | Publication date |
---|---|
JPS611730B2 (en) | 1986-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4988170A (en) | Quasi-achromatic optical isolators and circulators | |
US5204771A (en) | Optical circulator | |
JPH0766121B2 (en) | Electric field control type liquid crystal cell | |
JPS6317426A (en) | Optical isolator | |
EP0391703A2 (en) | Quasi-achromatic optical isolators and circulators using prisms with total internal fresnel reflection | |
JPH03150524A (en) | Polarization non-dependence type isolator | |
JPS5850512A (en) | Optical isolator | |
JP2721879B2 (en) | Self-temperature compensated optical isolator | |
JPS5828716A (en) | Optical isolator | |
JPH0244310A (en) | Optical isolator | |
JPS5828561B2 (en) | optical isolator | |
JPH0477713A (en) | Optical isolator independent of polarization | |
JP2009168894A (en) | Optical isolator | |
JPH07191278A (en) | Optical isolator | |
JP2567697B2 (en) | Faraday rotation device | |
JPH04102821A (en) | Polarization nondependent type optical isolator | |
JPH0743696Y2 (en) | Optical isolator | |
JPH04264515A (en) | Optical isolator | |
JPH05157994A (en) | Optical isolator | |
JP2553358B2 (en) | Optical isolator | |
JPH04263205A (en) | Double refractive diffraction grating type polarizer and optical isolator | |
JPH06317763A (en) | Optical isolator | |
JPH07151999A (en) | Optical isolator | |
JPH04264516A (en) | Optical isolator | |
JPH11311754A (en) | Optical circulator |