JPH04263205A - Double refractive diffraction grating type polarizer and optical isolator - Google Patents

Double refractive diffraction grating type polarizer and optical isolator

Info

Publication number
JPH04263205A
JPH04263205A JP2424391A JP2424391A JPH04263205A JP H04263205 A JPH04263205 A JP H04263205A JP 2424391 A JP2424391 A JP 2424391A JP 2424391 A JP2424391 A JP 2424391A JP H04263205 A JPH04263205 A JP H04263205A
Authority
JP
Japan
Prior art keywords
axis
optical
polarizer
crystal
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2424391A
Other languages
Japanese (ja)
Other versions
JP3038942B2 (en
Inventor
Yutaka Urino
豊 賣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3024243A priority Critical patent/JP3038942B2/en
Publication of JPH04263205A publication Critical patent/JPH04263205A/en
Application granted granted Critical
Publication of JP3038942B2 publication Critical patent/JP3038942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the double refractive diffraction type polarizer which prevents the return of reflected light on the surface of the polarizer in the same route as the route of incident light and with which a high extinction ratio is obtainable. CONSTITUTION:The normal 4 of the crystal on the main plane of the crystal plate of the double refractive diffraction type polarizer is inclined with the x-axis or y-axis of the crystal in the range larger than 0 deg. and smaller than the 1st order diffraction angle when the grating vector is perpendicular to the optical axis. The optical axis of the crystal and the optical axis of the incident light can, therefore, be intersected orthogonally with each other and the deterioration in the extinction ratio is prevented even if the polarizer is inclined in order to escape the return light.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体レーザを利用し
た各種光装置に使用する複屈折偏光板、特に偏光方向に
よって回折効率の異なる格子型偏光板および光アイソレ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to birefringent polarizing plates used in various optical devices using semiconductor lasers, and particularly to grating-type polarizing plates and optical isolators whose diffraction efficiency varies depending on the polarization direction.

【0002】0002

【従来の技術】偏光素子特に偏光ビームスプリッタは、
直交する偏光間で光の伝搬方向を異ならしめることによ
って特定の偏光を得る素子である。このような素子は、
光ファイバ通信用光源モジュールや光ディスク用光ヘッ
ドなどに、光アイソレータや光サーキュレータを構成す
る部品として使われている。
[Prior Art] Polarizing elements, especially polarizing beam splitters,
This is an element that obtains specific polarized light by changing the propagation direction of light between orthogonal polarized lights. Such an element is
It is used as a component of optical isolators and optical circulators in light source modules for optical fiber communications and optical heads for optical disks.

【0003】従来、偏光ビームスプリッタとしては、グ
ラントムソンプリズムやロッションプリズムなど、複屈
折の大きな結晶の光反射面における偏光による透過ない
しは全反射の違いを利用し光路を分離するもの、または
ガラスなどの等方性光学媒質でできた全反射プリズム反
射面に誘電体多層膜を設け、この誘電体多層膜の偏光に
よる屈折率の違いを利用して、光を全反射ないしは透過
させるものが多く使用されている。しかしながら、これ
らの素子は大型であること、生産性が低いこと、値段が
高いことなどの欠点がある。
[0003] Conventionally, polarizing beam splitters include those that separate optical paths by utilizing the difference in transmission or total reflection due to polarization on the light reflecting surface of a crystal with large birefringence, such as a Glan-Thompson prism or Rochon prism, or glass, etc. A total reflection prism made of an isotropic optical medium with a dielectric multilayer film on the reflective surface, and by utilizing the difference in refractive index due to polarization of this dielectric multilayer film, is often used to completely reflect or transmit light. has been done. However, these devices have drawbacks such as large size, low productivity, and high cost.

【0004】一方、近年小型で生産性が高いことを特徴
とする偏光素子として、特開昭63−314502号公
報に記載されている複屈折回折格子型偏光板が知られて
いる。図4は前記記載の複屈折回折格子型偏光板の構成
を示す斜視図であり、図5から図7は断面図である。複
屈折回折格子型偏光板は、ニオブ酸リチウム基板1の主
面に周期的なイオン交換領域2の光学的回折格子を設け
、かつイオン交換を施した領域と施していない領域の間
で常光線が受ける位相変化を相殺する手段を設けたもの
であり、偏光による回折効率の違いを利用して光路を分
離するものである。前記の常光線が受ける位相変化を相
殺する手段としては、図5の断面図に示すようにイオン
交換を施していない領域の表面を所望の深さだけ削った
もの、図6の断面図に示すようにイオン交換を施した領
域2上に誘電体膜3を形成したもの、または図7の断面
図に示すようにイオン交換を施した領域2上では厚くイ
オン交換を施していない領域上では薄く誘電体膜2を形
成したもの等がある。例えば、ニオブ酸リチウムの主面
に周期的にプロトンイオン交換を施すと、プロトンイオ
ン交換を施した領域では波長1.3μmの異常光線に対
する屈折率が約0.1増加し、常光線に対する屈折率が
約0.04減少する。従って、プロトンイオン交換を施
した領域の誘電体膜厚を、プロトンイオン交換を施して
いない領域の誘電体膜厚に比べて厚くし、プロトンイオ
ン交換を施した領域の常光線に対する屈折率の減少を相
殺することによって、常光線の1次以上の回折効率及び
異常光線の0次の回折効率を共に零にすることができ、
偏光子になる。
On the other hand, in recent years, a birefringent diffraction grating type polarizing plate described in JP-A-63-314502 has been known as a polarizing element characterized by its small size and high productivity. FIG. 4 is a perspective view showing the structure of the birefringence grating type polarizing plate described above, and FIGS. 5 to 7 are cross-sectional views. A birefringent diffraction grating type polarizing plate has an optical diffraction grating of periodic ion exchange regions 2 provided on the main surface of a lithium niobate substrate 1, and an ordinary light beam is formed between the regions subjected to ion exchange and the regions not subjected to ion exchange. It is equipped with a means for canceling out the phase change experienced by the polarized light, and separates the optical path by utilizing the difference in diffraction efficiency due to polarization. As a means for canceling the phase change experienced by the ordinary rays, as shown in the cross-sectional view of FIG. 5, the surface of the area where ion exchange has not been performed is shaved to a desired depth, or as shown in the cross-sectional view of FIG. 6. As shown in FIG. 7, the dielectric film 3 is formed on the ion-exchanged region 2, or as shown in the cross-sectional view of FIG. There are those in which a dielectric film 2 is formed. For example, when proton ion exchange is performed periodically on the main surface of lithium niobate, the refractive index for extraordinary rays with a wavelength of 1.3 μm increases by approximately 0.1 in the proton ion exchanged region, and the refractive index for ordinary rays increases by approximately 0.1. decreases by about 0.04. Therefore, the dielectric film thickness in the region subjected to proton ion exchange is made thicker than the dielectric film thickness in the region not subjected to proton ion exchange, and the refractive index for ordinary rays in the region subjected to proton ion exchange is decreased. By canceling out, the diffraction efficiency of the first or higher order of the ordinary ray and the zero-order diffraction efficiency of the extraordinary ray can both be made zero,
Become a polarizer.

【0005】[0005]

【発明が解決しようとする課題】通常、光アイソレータ
等の素子自身からの反射戻り光を十分小さくする必要が
ある素子においては、入射光の光軸と素子表面のなす角
度を90度から若干ずらし、反射戻り光が入射光と同じ
経路を通らないようにする。しかしながら、上に述べた
構造の複屈折回折格子型偏光板においては、結晶の光学
軸と入射光の光軸のなす角度が90度からずれると消光
比の劣化が生じる。互いに光学軸が45度傾いた2つの
偏光板でファラデー回転子を挟んで張り合わされた光ア
イソレータの場合、両方の偏光板の光学軸がどちらも入
射光の光軸に対して90度のまま、偏光板の表面と入射
光の光軸のなす角度を90度からずらすことはできない
。従って、光アイソレータを入射光の光軸から傾けた場
合、少なくともどちらかの偏光板の消光比が劣化し、光
アイソレータのアイソレーション比が劣化するという問
題点がある。また、偏光子単体で用いるときも、偏光子
を光学軸を回転中心としてしか傾けることができないた
め、戻り光を光学軸と垂直な平面内だけにしか逃すこと
が出来ず、光学系の自由度が小さいという問題点もある
[Problem to be Solved by the Invention] Normally, in an element such as an optical isolator where it is necessary to sufficiently reduce the reflected return light from the element itself, the angle between the optical axis of the incident light and the element surface is slightly shifted from 90 degrees. , so that the reflected return light does not follow the same path as the incident light. However, in the birefringent grating type polarizing plate having the structure described above, if the angle between the optical axis of the crystal and the optical axis of the incident light deviates from 90 degrees, the extinction ratio deteriorates. In the case of an optical isolator in which two polarizing plates whose optical axes are tilted at 45 degrees to each other are pasted together across a Faraday rotator, the optical axes of both polarizing plates remain at 90 degrees with respect to the optical axis of the incident light. The angle between the surface of the polarizing plate and the optical axis of the incident light cannot be shifted from 90 degrees. Therefore, when the optical isolator is tilted from the optical axis of the incident light, there is a problem that the extinction ratio of at least one of the polarizing plates deteriorates, and the isolation ratio of the optical isolator deteriorates. In addition, even when using a polarizer alone, since the polarizer can only be tilted around the optical axis, the returned light can only escape within the plane perpendicular to the optical axis, which increases the flexibility of the optical system. There is also the problem that it is small.

【0006】本発明の目的は、高消光比低挿入損失で反
射戻り光の影響の小さい偏光素子、および高いアイソレ
ーション比を持ち反射戻り光の影響の小さい光アイソレ
ータを得ることである。
An object of the present invention is to obtain a polarizing element with a high extinction ratio, low insertion loss, and little influence of reflected return light, and an optical isolator with a high isolation ratio and little influence of reflected return light.

【0007】[0007]

【課題を解決するための手段】本発明は、光学的異方性
を持つ結晶板の主面に、周期を有するイオン交換領域の
光学的回折格子とこのイオン交換を施した領域を通過す
る特定の偏光成分の光に対して位相のずれを補償する手
段とを形成した複屈折回折格子型偏光子において、結晶
板の主面の法線が結晶のx軸またはy軸に対して0度よ
り大きく格子ベクトルが光軸と垂直なときの1次の回折
角よりも小さい範囲で傾いていることを特徴とする複屈
折回折格子型偏光子である。  本発明は、互いに光学
軸が45度傾いた2枚の複屈折回折格子型偏光子でファ
ラデー回転子を挟んで張り合わせた構造の光アイソレー
タにおいて、1枚の偏光子は主面の法線と結晶のx軸ま
たはy軸が平行であり、もう1枚の偏光子は主面の法線
が結晶のxz平面内でz軸から45度回転した軸を回転
軸としてy軸から0度より大きく格子ベクトルが光軸と
垂直なときの1次の回折角よりも小さい範囲で傾いてい
ることを特徴とする光アイソレータ、または1枚の偏光
子は主面の法線と結晶のx軸またはy軸が平行であり、
もう1枚の偏光子は主面の法線が結晶のyz平面内でz
軸から45度回転した軸を回転軸としてx軸から0度よ
り大きく格子ベクトルが光軸と垂直なときの1次の回折
角よりも小さい範囲で傾いていることを特徴とする光ア
イソレータである。
[Means for Solving the Problems] The present invention provides an optical diffraction grating having an ion exchange region having a period on the main surface of a crystal plate having optical anisotropy, and an optical diffraction grating that passes through the ion exchange region. In a birefringent grating polarizer, the normal to the main surface of the crystal plate is more than 0 degrees with respect to the x-axis or y-axis of the crystal. This is a birefringent diffraction grating polarizer characterized by a grating vector tilted within a range smaller than the first-order diffraction angle when perpendicular to the optical axis. The present invention provides an optical isolator having a structure in which two birefringent diffraction grating type polarizers whose optical axes are inclined at 45 degrees to each other are pasted together with a Faraday rotator in between, in which one polarizer is connected to the normal to the main surface of the crystal. The x-axis or y-axis of the other polarizer is parallel, and the other polarizer has a grating whose rotation axis is an axis rotated 45 degrees from the z-axis within the An optical isolator, or one polarizer, is characterized by being tilted within a range smaller than the first-order diffraction angle when the vector is perpendicular to the optical axis. are parallel,
The other polarizer has its main surface normal to z within the yz plane of the crystal.
The optical isolator is characterized in that the rotation axis is rotated by 45 degrees from the axis and is tilted within a range greater than 0 degrees from the x-axis and smaller than the first-order diffraction angle when the grating vector is perpendicular to the optical axis. .

【0008】[0008]

【作用】前記のように、従来の複屈折回折格子型偏光板
における問題点は、偏光子の主面が結晶の光学軸と平行
なため、戻り光を逃がすために偏光子を傾けると、結晶
の光学軸まで傾いてしまい、偏光子の消光比が劣化する
点にある。そこで本発明の偏光子では、偏光子を傾けて
配置したときに結晶の光学軸と入射光の光軸が直交する
様に予め偏光子の主面と結晶の光学軸の間に角度を設け
てある。こうすることにより、偏光子を傾けても結晶の
光学軸と入射光の光軸を直交させることができ、偏光子
表面での反射戻り光を任意の方向に逃がし、かつ偏光子
の消光比の劣化を防ぐことができる。
[Operation] As mentioned above, the problem with conventional birefringent grating type polarizing plates is that the main plane of the polarizer is parallel to the optical axis of the crystal. The optical axis of the polarizer is tilted to the point where the extinction ratio of the polarizer deteriorates. Therefore, in the polarizer of the present invention, an angle is set in advance between the main surface of the polarizer and the optical axis of the crystal so that the optical axis of the crystal and the optical axis of the incident light are perpendicular to each other when the polarizer is arranged at an angle. be. By doing this, even if the polarizer is tilted, the optical axis of the crystal and the optical axis of the incident light can be made perpendicular to each other, allowing the reflected light on the polarizer surface to escape in any direction, and increasing the extinction ratio of the polarizer. Deterioration can be prevented.

【0009】回折格子の格子ベクトルが光軸と垂直な面
からθだけ傾いているとき、回折格子表面での入射光と
反射光の成す角度は2θであり、1次の回折角の小さい
方の角度φは、φ〜1/(1/φ0 +θ)となる。但
し、φ0 は格子ベクトルが光軸と垂直なときの1次の
回折角である。従って、θを大きくし過ぎるとφが小さ
くなり0次回折光と1次回折光の分離度即ち偏光分離度
が劣化する。通常、θとφは同じように大きくすること
が要求されるので、θ=φとおくと、θ〜φ0 /2と
なる。従って、偏光子の主面と結晶の光学軸の間の角度
は、回折格子に垂直入射した光の1次の回折角の半分が
最適であり、その上限は1次の回折角と同程度である。
When the grating vector of the diffraction grating is tilted by θ from the plane perpendicular to the optical axis, the angle formed by the incident light and the reflected light on the diffraction grating surface is 2θ, and the angle of the smaller first-order diffraction angle is 2θ. The angle φ is φ˜1/(1/φ0 +θ). However, φ0 is the first-order diffraction angle when the grating vector is perpendicular to the optical axis. Therefore, if θ is made too large, φ becomes small and the degree of separation between the 0th-order diffracted light and the 1st-order diffracted light, that is, the degree of polarization separation, deteriorates. Normally, θ and φ are required to be equally large, so if θ=φ, then θ˜φ0/2. Therefore, the optimal angle between the principal plane of the polarizer and the optical axis of the crystal is half the first-order diffraction angle of light that is perpendicularly incident on the diffraction grating, and its upper limit is about the same as the first-order diffraction angle. be.

【0010】また、ファラデー回転子を互いに光学軸が
45度傾いた2枚の複屈折回折格子型偏光子で挟んで張
り合わせた構造の光アイソレータにおいて、1枚の偏光
子は主面の法線と結晶のx軸またはy軸が平行であり、
もう1枚の偏光子は主面の法線が結晶のxz平面内また
はyz平面内でz軸から45度回転した軸を回転軸とし
てそれぞれy軸またはx軸からある角度だけ傾いている
ものを用いて、主面の法線が結晶のx軸またはy軸と平
行な偏光子の光学軸を回転軸とする方向に、もう一方の
偏光子の結晶の光学軸が入射光の光軸と直交する角度ま
で光アイソレータ全体を傾けて配置すると、両方の偏光
子の結晶の光学軸を入射光の光軸と直交させることが出
来る。従って、光アイソレータ表面での反射戻り光を入
射光の光軸から逃がし、かつ高いアイソレーション比を
得ることができる。
Furthermore, in an optical isolator having a structure in which a Faraday rotator is sandwiched between two birefringent diffraction grating type polarizers whose optical axes are tilted at 45 degrees, one polarizer is attached to the normal to the main surface. The x-axis or y-axis of the crystal is parallel,
The other polarizer is one in which the normal to the main surface is tilted by a certain angle from the y-axis or x-axis, with the rotation axis being an axis rotated 45 degrees from the z-axis in the xz plane or yz plane of the crystal. The optical axis of the other polarizer is orthogonal to the optical axis of the incident light. By tilting the entire optical isolator to this angle, the optical axes of the crystals of both polarizers can be made perpendicular to the optical axis of the incident light. Therefore, it is possible to cause the reflected return light on the surface of the optical isolator to escape from the optical axis of the incident light, and to obtain a high isolation ratio.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明の複屈折回折格子型偏光子の
実施例の斜視図である。1は光学的異方性を持つ結晶基
板であり、この結晶のx軸またはy軸は基板1の表面の
法線4からθだけ傾いている。図1の実施例では結晶基
板1にはニオブ酸リチウムを用いており、結晶のy軸が
基板1の表面の法線ベクトル4からθだけ傾いている。 2はプロトンイオン交換領域であり、この交換領域を周
期的に形成してある。さらに、このプロトンイオン交換
領域2上には所望の厚さの誘電体膜3が設けてある。ま
た、図2の実施例では結晶のx軸が基板1の表面の法線
ベクトル4からθだけ傾いており、その他は図1の実施
例と同じである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an embodiment of the birefringent grating type polarizer of the present invention. 1 is a crystal substrate having optical anisotropy, and the x-axis or y-axis of this crystal is inclined by θ from the normal 4 to the surface of the substrate 1. In the embodiment shown in FIG. 1, lithium niobate is used for the crystal substrate 1, and the y-axis of the crystal is inclined by θ from the normal vector 4 to the surface of the substrate 1. 2 is a proton ion exchange region, and this exchange region is formed periodically. Further, on this proton ion exchange region 2, a dielectric film 3 having a desired thickness is provided. Further, in the embodiment shown in FIG. 2, the x-axis of the crystal is inclined by θ from the normal vector 4 to the surface of the substrate 1, and other aspects are the same as the embodiment shown in FIG.

【0012】図1および図2に示された回折格子の0次
の回折光強度は、COS2 {π[ΔnTp +(nd
 −1)Td ]/λ}で与えられる。但し、λは光の
波長、Δnはプロトンイオン交換領域2と結晶基板1の
屈折率差、Tp はプロトンイオン交換領域2の深さ、
nd は誘電体膜3の屈折率、Td は誘電体膜3の厚
さである。光の波長を1.3μmとすると、プロトンイ
オン交換による屈折率の変化は、異常光線に対しては約
+0.09であり、常光線に対しては約−0.04であ
るから、誘電体膜3として屈折率が1.45の石英(S
iO2 )膜を用いるとすれば、プロトンイオン交換領
域2の深さを約5μm、石英膜の厚さを約440nmに
すれば異常光線の0次の回折光強度を0、常光線の0次
の回折光強度を1にすることができる。
The zero-order diffracted light intensity of the diffraction grating shown in FIGS. 1 and 2 is COS2 {π[ΔnTp + (nd
−1) Td ]/λ}. However, λ is the wavelength of light, Δn is the refractive index difference between the proton ion exchange region 2 and the crystal substrate 1, Tp is the depth of the proton ion exchange region 2,
nd is the refractive index of the dielectric film 3, and Td is the thickness of the dielectric film 3. If the wavelength of light is 1.3 μm, the change in refractive index due to proton ion exchange is approximately +0.09 for extraordinary rays and approximately -0.04 for ordinary rays, so dielectric The film 3 is made of quartz (S) with a refractive index of 1.45.
If a (iO2) film is used, the depth of the proton ion exchange region 2 is about 5 μm, and the thickness of the quartz film is about 440 nm. The intensity of the diffracted light can be set to 1.

【0013】光の波長をλ、回折格子のピッチをΛとす
ると、回折格子の1次の回折角はλ/Λで与えられる。 従って、波長1.3μm,ピッチ50μmとすると、1
次の回折角は約1.5度となる。前に述べたように、偏
光子の主面と結晶の光学軸の間の角度θは、回折格子の
1次の回折角の半分が最適であるから、上記の場合0.
75度程度が最適である。
When the wavelength of light is λ and the pitch of the diffraction grating is Λ, the first-order diffraction angle of the diffraction grating is given by λ/Λ. Therefore, if the wavelength is 1.3 μm and the pitch is 50 μm, 1
The next diffraction angle will be approximately 1.5 degrees. As mentioned earlier, the angle θ between the principal plane of the polarizer and the optical axis of the crystal is optimally half the first-order diffraction angle of the diffraction grating, so in the above case it is 0.
Approximately 75 degrees is optimal.

【0014】図1の回折格子のy軸が入射光5の光軸と
平行になるように配置すると、特定の直線偏光に対して
は常光成分を零にすることができるから、その偏光の入
射光はすべて回折される。逆に前記の偏光と直交する直
線偏光は異常光成分が零であるから、全く回折されない
ので偏光分離ができる。しかも偏光子の表面の法線4は
入射光の光軸5からθだけ傾いているので、偏光子の表
面で反射した戻り光6が入射光5と同じ経路を通って戻
ることを防ぐことができる。図2の回折格子の場合には
、x軸が入射光5の光軸と平行になるように配置すると
全く同じ効果が得られる。
If the y-axis of the diffraction grating shown in FIG. 1 is arranged parallel to the optical axis of the incident light 5, the ordinary light component can be made zero for a specific linearly polarized light, so that the incident polarized light All light is diffracted. On the contrary, linearly polarized light orthogonal to the above polarized light has zero extraordinary light component and is not diffracted at all, allowing polarization separation. Moreover, since the normal 4 to the surface of the polarizer is inclined by θ from the optical axis 5 of the incident light, it is possible to prevent the return light 6 reflected from the surface of the polarizer from returning through the same path as the incident light 5. can. In the case of the diffraction grating shown in FIG. 2, exactly the same effect can be obtained if it is arranged so that the x-axis is parallel to the optical axis of the incident light 5.

【0015】本偏光子は薄いニオブ酸リチウム結晶板に
バッチプロセスによって大量に形成できるため、薄型で
安価な偏光子を得ることができる。
Since the present polarizer can be formed in large quantities on thin lithium niobate crystal plates by a batch process, it is possible to obtain a thin and inexpensive polarizer.

【0016】図3は本発明の光アイソレータの実施例の
斜視図である。ファラデー回転子9を互いに光学軸(Z
軸)が45度傾いた2枚の複屈折回折格子型偏光子7,
8で挟んで張り合わせ、これらを筒状の永久磁石10の
中に入れた構造になっている。1枚の複屈折回折格子型
偏光子8は主面の法線と結晶のy軸が平行であり、もう
1枚の偏光子7は主面の法線が結晶のxz平面内でz軸
から45度回転した軸を回転軸としてy軸からθだけ傾
いている。さらに、主面の法線が結晶のy軸と平行な複
屈折回折格子型偏光子8の光学軸(z軸)を回転軸とす
る方向に、もう一方の複屈折回折格子型偏光子7の結晶
のy軸が入射光5の光軸と平行になるように光アイソレ
ータ全体をθだけ傾けて配置すると、両方の複屈折回折
格子型偏光子7,8の結晶の光学軸を入射光5の光軸と
直交させることができる。従って、光アイソレータ表面
での反射戻り光6を入射光5の光軸から逃がし、かつ高
いアイソレーション比を得ることができる。
FIG. 3 is a perspective view of an embodiment of the optical isolator of the present invention. The Faraday rotator 9 is aligned with the optical axis (Z
two birefringent diffraction grating type polarizers 7 whose axes) are tilted at 45 degrees;
8 are sandwiched and pasted together, and these are placed inside a cylindrical permanent magnet 10. One birefringent grating polarizer 8 has a main surface normal line parallel to the y-axis of the crystal, and the other polarizer 7 has a main surface normal line parallel to the crystal xz-plane from the z-z axis. It is tilted by θ from the y-axis using the axis rotated by 45 degrees as the rotation axis. Furthermore, the other birefringent grating polarizer 7 is rotated in a direction whose rotation axis is the optical axis (z axis) of the birefringent grating polarizer 8 whose main surface normal is parallel to the y axis of the crystal. If the entire optical isolator is tilted by θ so that the y-axis of the crystal is parallel to the optical axis of the incident light 5, the optical axes of the crystals of both birefringent grating polarizers 7 and 8 are aligned with the optical axis of the incident light 5. It can be made perpendicular to the optical axis. Therefore, the reflected return light 6 on the surface of the optical isolator can escape from the optical axis of the incident light 5, and a high isolation ratio can be obtained.

【0017】[0017]

【発明の効果】以上に述べたように、本発明によれば薄
型で高消比低挿入損失で反射戻り光の影響の小さい偏光
素子、および薄型で高いアイソレーション比を持ち反射
戻り光の影響の小さい光アイソレータを得ることができ
る。
As described above, the present invention provides a polarizing element that is thin, has a high extinction ratio, low insertion loss, and is less affected by reflected return light, and a thin polarizer that has a high isolation ratio and is less affected by reflected return light. A small optical isolator can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の複屈折回折格子型偏光子の実施例の斜
視図である。
FIG. 1 is a perspective view of an embodiment of a birefringent grating type polarizer of the present invention.

【図2】本発明の複屈折回折格子型偏光子の別の実施例
の斜視図である。
FIG. 2 is a perspective view of another embodiment of the birefringent grating type polarizer of the present invention.

【図3】本発明の光アイソレータの実施例の斜視図であ
る。
FIG. 3 is a perspective view of an embodiment of the optical isolator of the present invention.

【図4】従来例による複屈折回折格子型偏光子の実施例
の斜視図である。
FIG. 4 is a perspective view of an example of a conventional birefringent grating polarizer.

【図5】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 5 is a cross-sectional view of an example of a conventional birefringent grating polarizer.

【図6】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 6 is a cross-sectional view of an example of a birefringent grating type polarizer according to a conventional example.

【図7】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 7 is a cross-sectional view of an example of a conventional birefringent grating type polarizer.

【符号の説明】 1  ニオブ酸リチウム結晶基板 2  プロトンイオン交換領域 3  誘電体膜 4  基板1表面の法線 5  入射光 6  反射戻り光 7  複屈折回折格子型偏光子 8  複屈折回折格子型偏光子 9  ファラデー回転子 10  磁石 11  0次回折光 12  ±1次回折光[Explanation of symbols] 1 Lithium niobate crystal substrate 2. Proton ion exchange region 3 Dielectric film 4 Normal to the surface of substrate 1 5 Incident light 6 Reflected return light 7 Birefringence grating type polarizer 8 Birefringence grating type polarizer 9 Faraday rotator 10 Magnet 11 0th order diffracted light 12 ±1st order diffracted light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学的異方性を持つ結晶板の主面に、
周期を有するイオン交換領域の光学的回折格子とこのイ
オン交換を施した領域を通過する特定の偏光成分の光に
対して位相のずれを補償する手段とを形成した複屈折回
折格子型偏光子において、結晶板の主面の法線が結晶の
x軸またはy軸に対して0度より大きく格子ベクトルが
光軸と垂直なときの1次の回折角よりも小さい範囲で傾
いていることを特徴とする複屈折回折格子型偏光子。
[Claim 1] On the main surface of a crystal plate having optical anisotropy,
In a birefringent diffraction grating type polarizer, which includes an optical diffraction grating of an ion-exchanged region having a period and means for compensating for a phase shift for light of a specific polarization component passing through the ion-exchanged region. , characterized in that the normal to the main surface of the crystal plate is tilted with respect to the x-axis or y-axis of the crystal within a range greater than 0 degrees and smaller than the first-order diffraction angle when the lattice vector is perpendicular to the optical axis. A birefringent diffraction grating type polarizer.
【請求項2】  互いに光学軸が45度傾いた2枚の複
屈折回折格子型偏光子でファラデー回転子を挟んで張り
合わせた構造の光アイソレータにおいて、1枚の偏光子
は主面の法線と結晶のx軸またはy軸が平行であり、も
う1枚の偏光子は主面の法線が結晶のxz平面内でz軸
から45度回転した軸を回転軸としてy軸から0度より
大きく格子ベクトルが光軸と垂直なときの1次の回折角
よりも小さい範囲で傾いていることを特徴とする光アイ
ソレータ、または1枚の偏光子は主面の法線と結晶のx
軸またはy軸が平行であり、もう1枚の偏光子は主面の
法線が結晶のyz平面内でz軸から45度回転した軸を
回転軸としてx軸から0度より大きく格子ベクトルが光
軸と垂直なときの1次の回折角よりも小さい範囲で傾い
ていることを特徴とする光アイソレータ。
[Claim 2] In an optical isolator having a structure in which two birefringent grating type polarizers whose optical axes are inclined at 45 degrees are laminated together with a Faraday rotator in between, one of the polarizers is aligned with the normal to the main surface. The x-axis or y-axis of the crystal is parallel, and the other polarizer has a rotation axis whose normal to the main surface is rotated by 45 degrees from the z-axis within the xz plane of the crystal, and whose rotation axis is greater than 0 degrees from the y-axis. An optical isolator characterized by a lattice vector tilted within a range smaller than the first-order diffraction angle when perpendicular to the optical axis, or a single polarizer is
The axes or y-axes are parallel, and the other polarizer has a lattice vector whose rotation axis is an axis rotated 45 degrees from the z-axis within the yz plane of the crystal, and whose lattice vector is larger than 0 degrees from the x-axis. An optical isolator characterized by being tilted within a range smaller than the first-order diffraction angle when perpendicular to the optical axis.
JP3024243A 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator Expired - Fee Related JP3038942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024243A JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024243A JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Publications (2)

Publication Number Publication Date
JPH04263205A true JPH04263205A (en) 1992-09-18
JP3038942B2 JP3038942B2 (en) 2000-05-08

Family

ID=12132810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024243A Expired - Fee Related JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Country Status (1)

Country Link
JP (1) JP3038942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425358A1 (en) * 1993-08-04 1995-02-09 Fraunhofer Ges Forschung Method for the optical isolation of a laser-beam source and optical isolator, in particular for carrying out the method
CN113589434A (en) * 2021-08-04 2021-11-02 南京科天光电工程研究院有限公司 Novel polarization-independent optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425358A1 (en) * 1993-08-04 1995-02-09 Fraunhofer Ges Forschung Method for the optical isolation of a laser-beam source and optical isolator, in particular for carrying out the method
DE4425358C2 (en) * 1993-08-04 2002-04-25 Fraunhofer Ges Forschung Optical isolator device for arrangement in the beam path between a laser beam source and an object
CN113589434A (en) * 2021-08-04 2021-11-02 南京科天光电工程研究院有限公司 Novel polarization-independent optical isolator

Also Published As

Publication number Publication date
JP3038942B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US5029988A (en) Birefringence diffraction grating type polarizer
JP2703930B2 (en) Birefringent diffraction grating polarizer
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
JP2003121807A (en) Variable polarization plane rotator and optical device using it
US5377040A (en) Polarization independent optical device
JPS63314502A (en) Double refractive diffraction grating type polarizing plate
JP3038942B2 (en) Birefringent diffraction grating polarizer and optical isolator
US20040021940A1 (en) Optical polarization rotating device
US6407861B1 (en) Adjustable optical circulator
US20030053209A1 (en) Dual stage optical isolator with reduced polarization mode dispersion and beam offset
JP2541548B2 (en) Diffraction grating type optical polarizer
JP2721879B2 (en) Self-temperature compensated optical isolator
JPH0534714A (en) Optical switch
JPH0477713A (en) Optical isolator independent of polarization
JPS6355501A (en) Diffraction grating type polarizing plate
JPH05181088A (en) Optical isolator
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JPH0391715A (en) Optical isolator
JPH085977A (en) Variable wavelength liquid crystal optical filter
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP2594856B2 (en) Non-reciprocal light element
RU2321031C1 (en) Reflecting prism for bringing plane of polarization in rotation
JP2869677B2 (en) Optical isolator
JP2786016B2 (en) Optical isolator
JPH02188715A (en) Optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

LAPS Cancellation because of no payment of annual fees