JPS6355501A - Diffraction grating type polarizing plate - Google Patents

Diffraction grating type polarizing plate

Info

Publication number
JPS6355501A
JPS6355501A JP20103986A JP20103986A JPS6355501A JP S6355501 A JPS6355501 A JP S6355501A JP 20103986 A JP20103986 A JP 20103986A JP 20103986 A JP20103986 A JP 20103986A JP S6355501 A JPS6355501 A JP S6355501A
Authority
JP
Japan
Prior art keywords
lithium niobate
ion exchange
polarizing element
optical
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20103986A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20103986A priority Critical patent/JPS6355501A/en
Publication of JPS6355501A publication Critical patent/JPS6355501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain a thin and small-sized polarizing element by forming an optical diffraction grating having ion exchange regions periodically to the main plane of a lithium niobate crystal plate. CONSTITUTION:The proton ion exchange regions 2 are periodically formed on the lithium niobate crystal plate 1. The grating constituted of the ion exchange regions 2 having periods in the z-axis direction and the non-exchange regions is formed on the lithium niobate crystal plate 1 of an x-axis. The refractive index (no) to ordinary rays does not change and the refractive index (ne) to extraordinary light increases by about 0.13 to the refractive index approximately equal to (ne) if the lithium niobate is subjected to a proton ion exchange. The similar effect; i.e., optical isolation effect or optical circulation effect is obtainable by using the grating type polarizing element formed in the above- mentioned manner in the same manner as heretofore; i.e., by combining the same with a quarter-wave plate. Since this grating type polarizing element is formable by using the thin lithium niobate crystal plate, compact and thin polarizing element is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半纏体レーザを利用した各種光装置に使用す
る複屈折偏光板、%に偏光方向によって回折効率の異な
る格子型偏光板に関する0(従来の技術) 偏光素子特に偏光ビームスプリ、りは、直交する偏光間
で光の伝搬方向を異ならしめる素子であって、グラント
ムノンプリズムやロ、クヨンプリズム等、複屈折の大き
い結晶の光反射面における偏光による透過ないしは全反
射の違いを利用して光路を分離するもの、また、ガラス
等の等方性の光学媒質でできた全反射プリズムの反射面
に誘電体多層膜を設け、この誘電体多層膜の偏光による
屈折率の違いを利用して、光を全反射又は透過させるも
のが多く使用されている。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a birefringent polarizing plate used in various optical devices using a semi-integrated laser, and a grating type polarizing plate having diffraction efficiency that differs depending on the polarization direction. (Prior art) A polarizing element, particularly a polarizing beam splitter, is an element that changes the propagation direction of light between orthogonal polarized lights, and is used to reflect light from crystals with large birefringence, such as Glantomnon prisms, B, Kuyon prisms, etc. A dielectric multilayer film is provided on the reflective surface of a total reflection prism made of an isotropic optical medium such as glass. Many are used that completely reflect or transmit light by utilizing the difference in refractive index due to polarization of the multilayer film.

これらは元ファイバ通信用光源モジュールや光デイスク
用光へ、ドなどに光アイソレータや光サーキュレータを
構成する部品として使われている。
These are used as components for optical isolators and optical circulators in optical fiber communication light source modules, optical discs, and other devices.

例えば光7アイμ通信用光源モジュールでは、光フアイ
バコネクタ等からの反射光が光源である半導体レーザに
再入射するのを防ぐ光アイソレータとして、光磁性材料
のファラデー効果’Y +lJ用して偏光を45°回転
させる偏光回転子(ファラデー回転子)と組合せて用い
られている。また、光デイスク用光へ、ドでは、光デイ
スク基板からの情報信号を光源へ戻すことなく効率よ〈
受元光学系へ導びく光サーキユレータ素子として、17
4波長板と組合せて用いられている。
For example, in a light source module for optical 7-eye μ communication, the Faraday effect 'Y + lJ of a photomagnetic material is used as an optical isolator to prevent reflected light from an optical fiber connector etc. from re-entering the semiconductor laser that is the light source. It is used in combination with a polarization rotator (Faraday rotator) that rotates the light by 45 degrees. In addition, when transmitting light for optical disks, the information signal from the optical disk substrate is not returned to the light source, making it more efficient.
17 as an optical circulator element leading to the receiving optical system.
It is used in combination with a 4-wavelength plate.

(発明が解決しようとする問題点) これら従来の偏光分離素子は大型であるという龜点を有
する0光字的異方性結晶を使った偏光素子にしろ、誘電
体薄膜型の偏光素子にしろ光軸に対して45 乃至はそ
れ以上に斜めに配した反射境界面をもつことから、少く
とも透過ビーム径の5倍の正立方体となる。光デイスク
ヘッドとくに再生専用で1言なく記録可能型の光へ、ド
に用いる場合には透過ビームが大きいため、この従来の
偏光素子は一辺が8〜10mmもの立方体となっている
。このことが、光デイスク用光へ、ドの大きさを大きく
しているひとつの原因をなしている0本発明の目的は、
上記従来の偏光素子の電点を餘去した、極めて薄い格子
型光偏光板を提供することにある。
(Problems to be Solved by the Invention) These conventional polarization splitting elements have the disadvantage of being large, regardless of whether they are polarizing elements using zero-light anisotropic crystals or dielectric thin film type polarizing elements. Since it has a reflective boundary surface obliquely arranged at 45 degrees or more with respect to the optical axis, it becomes a regular cube with a diameter at least 5 times the diameter of the transmitted beam. Since the transmitted beam is large when used for optical disk heads, particularly those of a reproducing-only type that can record without a word, the conventional polarizing element has a cubic shape with sides of 8 to 10 mm. This is one of the reasons why the size of the light for optical discs is increasing.The purpose of the present invention is to
The object of the present invention is to provide an extremely thin grating-type optical polarizing plate that eliminates the electrical point of the conventional polarizing element.

(問題点を解決するための手段) 本発明の回折格子型光偏光板の構成は、ニオブ酸リチウ
ム結晶板の主面に周期を有するH イオン交換領域の1
を学的回折格子を形成したことを特徴とする。
(Means for Solving the Problems) The structure of the diffraction grating type light polarizing plate of the present invention is such that one of the H ion exchange regions having a period on the main surface of the lithium niobate crystal plate.
It is characterized by forming a mechanical diffraction grating.

(実施例) 以下1本発明の実施例について図面を参照して詳細に説
明する。
(Example) An example of the present invention will be described below in detail with reference to the drawings.

第1図は本発明の一実施例の回折格子型光偏光板の斜視
図であって、1はニオブ酸リチウム結晶板、2はプロト
ノイオン交換領域であり、この交換領域を周期的に形成
しである。
FIG. 1 is a perspective view of a diffraction grating type light polarizing plate according to an embodiment of the present invention, in which 1 is a lithium niobate crystal plate, 2 is a protonoion exchange region, and this exchange region is formed periodically. It is.

未実施例では、X軸のニオブ酸リチウム結晶板に、Z軸
方向に周期を有するイオン交換領域と非交換領域で構成
される格子を形成しである。この周期を構成するには、
一般に用いられているフォトリソグラフィ技術等で行な
えば良い。ニオブ酸リチウムにプロトンイオノ交換を施
こすと常光線に対する屈折率noG2変化せず、異常光
に対する屈折率neは0.13程度上昇しほぼne;n
o  となる。
In a non-example, a lattice consisting of an ion exchange region and a non-exchange region having a period in the Z-axis direction is formed on a lithium niobate crystal plate on the X-axis. To configure this cycle,
This may be performed using a commonly used photolithography technique or the like. When lithium niobate is subjected to proton ion exchange, the refractive index noG2 for ordinary rays does not change, and the refractive index ne for extraordinary rays increases by about 0.13, making it almost ne;n
It becomes o.

第1図のように格子状に形成すると、入射光3のy軸方
向に振動する偏光成分すなわち常光成分にたいしては、
イオン交換による格子が形成されていても1面内圧おい
て屈折率は一様であって光学的回折格子の効果は無いた
め、O次光4となりて結晶板1を直進透過する。一方、
入射光3の2軸方向に振動する偏光成分すなわち異常光
成分に対しては、プロト/イオン交換領域2はne+Q
、33゜非交換領域はneの屈折率が周期的に異なる光
学的回折格子に入射したことになシ、回折光5及び6と
なって結晶板1かも放射する0イオン交換領域2のニオ
ブ酸リチウム結晶中への深さが浅い場合、すなわち、光
学的に厚さの薄い回折格子による0次回折光の回折効率
はJO(2にT)で与えられる。
When formed in a lattice shape as shown in Fig. 1, for the polarized light component vibrating in the y-axis direction of the incident light 3, that is, the ordinary light component,
Even if a grating is formed by ion exchange, the refractive index is uniform at one in-plane pressure and there is no effect of an optical diffraction grating, so the O-order light 4 is transmitted straight through the crystal plate 1. on the other hand,
For the polarized light component vibrating in the biaxial directions of the incident light 3, that is, the extraordinary light component, the proto/ion exchange region 2 is ne+Q.
, 33° Since the non-exchanged region is incident on an optical diffraction grating in which the refractive index of ne periodically differs, the niobic acid in the ion-exchanged region 2 becomes diffracted light 5 and 6 and is also emitted from the crystal plate 1. When the depth into the lithium crystal is shallow, that is, the diffraction efficiency of the 0th order diffracted light by an optically thin diffraction grating is given by JO (2 to T).

ここで、に=πΔn/λO9Δnは交換領域と非交換領
域との屈折率の差0.】3であり、JOは真空中の波長
、Tは格子の厚さすなわち交換領域の深さである0異常
光線がすべて回折され、θ次光成分4中に現われないた
めにはJO2(2にT)=0゜すなわち、2にT;2.
4であり、光波長0.8μmにたいしてTすなわち交換
領域の埠さは2.3μm程度、また光波長1.3μmに
たいしては3.8μm程度と設定すればよい。
Here, =πΔn/λO9Δn is the difference in refractive index between the exchange region and the non-exchange region, which is 0. 】3, JO is the wavelength in vacuum, and T is the thickness of the grating, that is, the depth of the exchange region. T)=0°, that is, 2 to T; 2.
4, and for a light wavelength of 0.8 .mu.m, T, that is, the wall thickness of the exchange region, may be set to about 2.3 .mu.m, and for a light wavelength of 1.3 .mu.m, to about 3.8 .mu.m.

ニオブ酸リチウム結晶にプロトンイオン交換を施こし、
光導彼′R1t−形成する方法は工く知られており、2
17℃程度に熱した安息香酸中にリオプ酸すテクム結晶
を6時間程度ひたすと、2.3μm程度の深さのイオン
交換が実現する。さらに、温友と時間を増加させると交
換深さを4μmaitで増加させることができる。
By performing proton ion exchange on lithium niobate crystals,
The method of forming the light guide is well known;
When TECUMU crystals containing lyopic acid are immersed in benzoic acid heated to about 17° C. for about 6 hours, ion exchange to a depth of about 2.3 μm is achieved. Furthermore, if the time is increased, the exchange depth can be increased by 4 μmait.

上記の作製法で作った格子屋偏元素子を従来と同様の使
い方すなわち174波長板と組合せることによって同様
の効果すなわち元アイソレージ目ン効果乃至は元す−キ
ュレーシ曹ン効果を得ることができる。この格子型偏光
素子は、薄いニオブ酸リチウム結晶8jを使って形成で
きるため、小型で薄い偏光素子を得ることができる。
By using the lattice polarized element produced by the above manufacturing method in the same manner as before, that is, in combination with a 174-wave plate, it is possible to obtain the same effect, that is, the original isolation effect or the original isolation effect. . Since this lattice type polarizing element can be formed using the thin lithium niobate crystal 8j, a small and thin polarizing element can be obtained.

さらに上述のイオン交換時間の精度は、それほど高い精
度を必要としない。何故ならはイオン交換時間の設定が
不十分でJo(2kT)=0エク僅かにずれても、この
回折格子を複数、すなわちニオブ酸リチウム結晶の両面
に回折格子を設けるか、史には、(l数の版tR絖に用
−ることによって、透過0久尤の強直を極めて小δくす
ることができる。
Furthermore, the accuracy of the ion exchange time described above does not require very high accuracy. This is because even if the ion exchange time is insufficiently set and Jo (2kT) = 0 is slightly off, it is necessary to install multiple diffraction gratings, that is, to provide diffraction gratings on both sides of the lithium niobate crystal ( By using it for l number of plates tR, it is possible to make the rigidity of the transmission 0 kyu to be extremely small δ.

なお、上記の実施例では、1Qトンイオン交換の場合を
述べたが、同じ効果は硝酸銀や硝酸タリクム尋にひたし
た場合もそれぞれ銀イオン交換。
In the above example, the case of 1Q ton ion exchange was described, but the same effect can be obtained by immersing silver ion exchange in silver nitrate or talicum nitrate.

クリ9ムイオン交換が生じ、異常光屈折率の0.13程
度の屈折率上昇が確認されている。
It has been confirmed that cream ion exchange occurs and the refractive index increases by about 0.13 in the extraordinary refractive index.

(発明の効果) 以上詳細に述べた工うに、本発明によれは薄くて小型の
偏光素子を得ることができ、さらには。
(Effects of the Invention) As described in detail above, according to the present invention, a thin and compact polarizing element can be obtained, and furthermore.

ニオブ酸結晶りエハ1に素材として作製するため、バダ
テ処理による大量安価な偏光素子とすることができる。
Since it is manufactured using the niobic acid crystal wafer 1 as a material, it is possible to produce a polarizing element in large quantities and at low cost by using a badate process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施例の回折格子型光偏光板のfl
+視図親図る。 1・・・・・・ニオブ酸リチウム結晶板、2・・・・・
・イオン交侠領域、3・・・・・・入射光、4〜6・・
・・・・回析出討元。 代理人 弁理士  内 原   音。 ・−/。 第 l 聰 手続補正書く自発) 5 62.7.−6 昭和   年   月   日   61、事件の表示
 昭和61年特許願第201039号2、発明の名称 
回折格子型光偏光板 3、補正をする者 事件との関係       出 願 人任 所    
東京都港区芝五丁目33番1号名 称    (423
)  日本電気株式会社代表者 関本忠弘 4、代理人 住 所 〒108東京都港区芝五丁目37番8号住友三
田とル ミ 電話 東京 (03)456−3111 (大代表)(
連絡先 日本電気株式会社 特許部)、補正の対象 明細書の特許請求の範囲の欄 、補正の内容 (1)特許請求の範囲を別紙のとおり補正する。
FIG. 1 shows the fl of a diffraction grating type light polarizing plate according to an embodiment of the invention.
+ View parent plan. 1... Lithium niobate crystal plate, 2...
・Ion exchange region, 3...Incoming light, 4-6...
・・・・Regeneration analysis source. Agent Patent Attorney Oto Uchihara.・-/. Vol. 1 (Volunteer to write procedural amendments) 5 62.7. -6 Showa year month/day 61, Indication of the case 1988 Patent Application No. 201039 2, Title of the invention
Diffraction grating type light polarizing plate 3, relationship with the case of the person making the amendment
5-33-1 Shiba, Minato-ku, Tokyo Name (423)
) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent Address: 5-37-8 Shiba, Minato-ku, Tokyo 108 Sumitomo Sanda and Lumi Denwa Tokyo (03) 456-3111 (Main Representative) (
(Contact address: Patent Department, NEC Corporation), Claims column of the specification to be amended, Contents of the amendment (1) The scope of claims will be amended as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] ニオブ酸リチウム結晶板の主面に周期を有するH^+イ
オン交換領域の光学的回折格子を形成したことを特徴と
する回折格子型光偏光板。
A diffraction grating type optical polarizing plate, characterized in that an optical diffraction grating of periodic H^+ ion exchange regions is formed on the main surface of a lithium niobate crystal plate.
JP20103986A 1986-08-26 1986-08-26 Diffraction grating type polarizing plate Pending JPS6355501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20103986A JPS6355501A (en) 1986-08-26 1986-08-26 Diffraction grating type polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20103986A JPS6355501A (en) 1986-08-26 1986-08-26 Diffraction grating type polarizing plate

Publications (1)

Publication Number Publication Date
JPS6355501A true JPS6355501A (en) 1988-03-10

Family

ID=16434413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20103986A Pending JPS6355501A (en) 1986-08-26 1986-08-26 Diffraction grating type polarizing plate

Country Status (1)

Country Link
JP (1) JPS6355501A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349309A2 (en) * 1988-06-29 1990-01-03 Nec Corporation Birefringence diffraction grating type polarizer
EP0349144A2 (en) * 1988-06-29 1990-01-03 Nec Corporation Birefringence diffraction grating type polarizer
JPH06308309A (en) * 1993-02-24 1994-11-04 Nec Corp Double refraction diffraction grating type polarizer and optical head device
US6130778A (en) * 1997-04-17 2000-10-10 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and process for producing them
US6621630B2 (en) 2000-03-30 2003-09-16 Tdk Corporation Composite optical element, optical isolator, optical attenuator and processes for producing them
US7515818B2 (en) 2004-10-29 2009-04-07 Canon Kabushiki Kaisha Image capturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349309A2 (en) * 1988-06-29 1990-01-03 Nec Corporation Birefringence diffraction grating type polarizer
EP0349144A2 (en) * 1988-06-29 1990-01-03 Nec Corporation Birefringence diffraction grating type polarizer
JPH06308309A (en) * 1993-02-24 1994-11-04 Nec Corp Double refraction diffraction grating type polarizer and optical head device
US6130778A (en) * 1997-04-17 2000-10-10 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and process for producing them
US6359733B1 (en) 1997-04-17 2002-03-19 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and processes for producing them
US6621630B2 (en) 2000-03-30 2003-09-16 Tdk Corporation Composite optical element, optical isolator, optical attenuator and processes for producing them
US7515818B2 (en) 2004-10-29 2009-04-07 Canon Kabushiki Kaisha Image capturing apparatus

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
US5029988A (en) Birefringence diffraction grating type polarizer
JP2795295B2 (en) Spherical optical isolator
US6249619B1 (en) Optical isolator
US3622220A (en) Holographic optical polarizers and beam splitters
JPH03132603A (en) Polarizer
JPH0575081B2 (en)
US5377040A (en) Polarization independent optical device
JPS6355501A (en) Diffraction grating type polarizing plate
JP2541548B2 (en) Diffraction grating type optical polarizer
JP2803181B2 (en) Birefringent diffraction grating polarizer
JP3038942B2 (en) Birefringent diffraction grating polarizer and optical isolator
JPH0391715A (en) Optical isolator
JPH02188715A (en) Optical isolator
JPH05196813A (en) Diffraction grating type optical polarizing element
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JP2725324B2 (en) Optical head for optical recording media
JP3154169B2 (en) Optical circulator
JP2598531Y2 (en) Optical isolator
JP2775499B2 (en) Optical isolator
JPH0352145A (en) Optical pickup
JPS60257420A (en) Optical isolator
JPH04216522A (en) 3-terminal optical circulator
JPH0372961B2 (en)
JPH112725A (en) Compound optical element, optical isolator, optical circulator, and optical switch, and their manufacture