JP3038942B2 - Birefringent diffraction grating polarizer and optical isolator - Google Patents

Birefringent diffraction grating polarizer and optical isolator

Info

Publication number
JP3038942B2
JP3038942B2 JP3024243A JP2424391A JP3038942B2 JP 3038942 B2 JP3038942 B2 JP 3038942B2 JP 3024243 A JP3024243 A JP 3024243A JP 2424391 A JP2424391 A JP 2424391A JP 3038942 B2 JP3038942 B2 JP 3038942B2
Authority
JP
Japan
Prior art keywords
axis
optical
polarizer
diffraction grating
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3024243A
Other languages
Japanese (ja)
Other versions
JPH04263205A (en
Inventor
豊 賣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3024243A priority Critical patent/JP3038942B2/en
Publication of JPH04263205A publication Critical patent/JPH04263205A/en
Application granted granted Critical
Publication of JP3038942B2 publication Critical patent/JP3038942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザを利用し
た各種光装置に使用する複屈折偏光板、特に偏光方向に
よって回折効率の異なる格子型偏光板および光アイソレ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringent polarizing plate for use in various optical devices utilizing a semiconductor laser, and more particularly to a grating-type polarizing plate and an optical isolator having different diffraction efficiencies depending on the polarization direction.

【0002】[0002]

【従来の技術】偏光素子特に偏光ビームスプリッタは、
直交する偏光間で光の伝搬方向を異ならしめることによ
って特定の偏光を得る素子である。このような素子は、
光ファイバ通信用光源モジュールや光ディスク用光ヘッ
ドなどに、光アイソレータや光サーキュレータを構成す
る部品として使われている。
2. Description of the Related Art Polarizing elements, especially polarizing beam splitters,
An element that obtains a specific polarization by making the propagation direction of light different between orthogonal polarizations. Such an element
It is used as a component of an optical isolator and an optical circulator in a light source module for optical fiber communication, an optical head for an optical disk, and the like.

【0003】従来、偏光ビームスプリッタとしては、グ
ラントムソンプリズムやロッションプリズムなど、複屈
折の大きな結晶の光反射面における偏光による透過ない
しは全反射の違いを利用し光路を分離するもの、または
ガラスなどの等方性光学媒質でできた全反射プリズム反
射面に誘電体多層膜を設け、この誘電体多層膜の偏光に
よる屈折率の違いを利用して、光を全反射ないしは透過
させるものが多く使用されている。しかしながら、これ
らの素子は大型であること、生産性が低いこと、値段が
高いことなどの欠点がある。
Conventionally, a polarizing beam splitter, such as a Glan-Thompson prism or a lotion prism, which separates an optical path by utilizing the difference in transmission or total reflection by polarized light on a light reflecting surface of a crystal having a large birefringence, or glass, etc. A dielectric multilayer film is provided on the reflecting surface of a total reflection prism made of an isotropic optical medium, and a material that totally reflects or transmits light by utilizing the difference in refractive index due to polarization of the dielectric multilayer film is often used. Have been. However, these devices have disadvantages such as large size, low productivity, and high price.

【0004】一方、近年小型で生産性が高いことを特徴
とする偏光素子として、特開昭63−314502号公
報に記載されている複屈折回折格子型偏光板が知られて
いる。図4は前記記載の複屈折回折格子型偏光板の構成
を示す斜視図であり、図5から図7は断面図である。複
屈折回折格子型偏光板は、ニオブ酸リチウム基板1の主
面に周期的なイオン交換領域2の光学的回折格子を設
け、かつイオン交換を施した領域と施していない領域の
間で常光線が受ける位相変化を相殺する手段を設けたも
のであり、偏光による回折効率の違いを利用して光路を
分離するものである。前記の常光線が受ける位相変化を
相殺する手段としては、図5の断面図に示すようにイオ
ン交換を施していない領域の表面を所望の深さだけ削っ
たもの、図6の断面図に示すようにイオン交換を施した
領域2上に誘電体膜3を形成したもの、または図7の断
面図に示すようにイオン交換を施した領域2上では厚く
イオン交換を施していない領域上では薄く誘電体膜2を
形成したもの等がある。例えば、ニオブ酸リチウムの主
面に周期的にプロトンイオン交換を施すと、プロトンイ
オン交換を施した領域では波長1.3μmの異常光線に
対する屈折率が約0.1増加し、常光線に対する屈折率
が約0.04減少する。従って、プロトンイオン交換を
施した領域の誘電体膜厚を、プロトンイオン交換を施し
ていない領域の誘電体膜厚に比べて厚くし、プロトンイ
オン交換を施した領域の常光線に対する屈折率の減少を
相殺することによって、常光線の1次以上の回折効率及
び異常光線の0次の回折効率を共に零にすることがで
き、偏光子になる。
On the other hand, a birefringent diffraction grating type polarizing plate described in Japanese Patent Application Laid-Open No. 63-314502 is known as a polarizing element characterized by small size and high productivity in recent years. FIG. 4 is a perspective view showing the configuration of the birefringent diffraction grating polarizer described above, and FIGS. 5 to 7 are cross-sectional views. The birefringent diffraction grating polarizer is provided with an optical diffraction grating of a periodic ion exchange region 2 on the main surface of a lithium niobate substrate 1 and has an ordinary ray between an ion-exchanged region and a non-ion-exchanged region. This is provided with means for canceling the phase change received by the light source, and separates the optical path by utilizing the difference in diffraction efficiency due to polarization. As means for canceling the phase change received by the ordinary ray, the surface of the region not subjected to ion exchange is cut to a desired depth as shown in the sectional view of FIG. 5, and the sectional view of FIG. The dielectric film 3 is formed on the ion-exchanged region 2 as described above, or is thick on the ion-exchanged region 2 and thin on the non-ion-exchanged region as shown in the sectional view of FIG. For example, a dielectric film 2 is formed. For example, when proton ion exchange is periodically performed on the main surface of lithium niobate, the refractive index for an extraordinary ray having a wavelength of 1.3 μm increases by about 0.1 in the area where the proton ion exchange is performed, and the refractive index for ordinary rays. Is reduced by about 0.04. Therefore, the thickness of the dielectric film in the region where the proton ion exchange is performed is made thicker than the dielectric film thickness in the region where the proton ion exchange is not performed, and the refractive index of the region where the proton ion exchange is performed with respect to ordinary light is reduced. By canceling out, both the first-order and higher-order diffraction efficiencies of the ordinary rays and the zero-order diffraction efficiencies of the extraordinary rays can be made zero, and the polarizer becomes a polarizer.

【0005】[0005]

【発明が解決しようとする課題】通常、光アイソレータ
等の素子自身からの反射戻り光を十分小さくする必要が
ある素子においては、入射光の光軸と素子表面のなす角
度を90度から若干ずらし、反射戻り光が入射光と同じ
経路を通らないようにする。しかしながら、上に述べた
構造の複屈折回折格子型偏光板においては、結晶の光学
軸と入射光の光軸のなす角度が90度からずれると消光
比の劣化が生じる。互いに光学軸が45度傾いた2つの
偏光板でファラデー回転子を挟んで張り合わされた光ア
イソレータの場合、両方の偏光板の光学軸がどちらも入
射光の光軸に対して90度のまま、偏光板の表面と入射
光の光軸のなす角度を90度からずらすことはできな
い。従って、光アイソレータを入射光の光軸から傾けた
場合、少なくともどちらかの偏光板の消光比が劣化し、
光アイソレータのアイソレーション比が劣化するという
問題点がある。また、偏光子単体で用いるときも、偏光
子を光学軸を回転中心としてしか傾けることができない
ため、戻り光を光学軸と垂直な平面内だけにしか逃すこ
とが出来ず、光学系の自由度が小さいという問題点もあ
る。
Normally, in an element such as an optical isolator, which is required to sufficiently reduce reflected return light from the element itself, the angle between the optical axis of incident light and the element surface is slightly shifted from 90 degrees. , So that the reflected return light does not pass through the same path as the incident light. However, in the birefringent diffraction grating polarizer having the structure described above, the extinction ratio deteriorates when the angle between the optical axis of the crystal and the optical axis of the incident light deviates from 90 degrees. In the case of an optical isolator stuck with a Faraday rotator sandwiched between two polarizing plates whose optical axes are inclined at 45 degrees to each other, the optical axes of both polarizing plates remain at 90 degrees with respect to the optical axis of the incident light. The angle between the surface of the polarizing plate and the optical axis of the incident light cannot be shifted from 90 degrees. Therefore, when the optical isolator is tilted from the optical axis of the incident light, the extinction ratio of at least one of the polarizing plates deteriorates,
There is a problem that the isolation ratio of the optical isolator deteriorates. Also, when the polarizer is used alone, the polarizer can only be tilted about the optical axis as the center of rotation, so the return light can only escape to a plane perpendicular to the optical axis, and the degree of freedom of the optical system can be reduced. Is also small.

【0006】本発明の目的は、高消光比低挿入損失で反
射戻り光の影響の小さい偏光素子、および高いアイソレ
ーション比を持ち反射戻り光の影響の小さい光アイソレ
ータを得ることである。
It is an object of the present invention to provide a polarizing element having a high extinction ratio and a low insertion loss and little influence of reflected return light, and an optical isolator having a high isolation ratio and little influence of reflected return light.

【0007】[0007]

【課題を解決するための手段】本発明は、光学的異方性
を持つ結晶板の主面に、周期を有するイオン交換領域の
光学的回折格子とこのイオン交換を施した領域を通過す
る特定の偏光成分の光に対して位相のずれを補償する手
段とを形成した複屈折回折格子型偏光子において、結晶
板の主面の法線が結晶のx軸またはy軸に対して格子ベ
クトルが光軸と垂直なときの1次の回折角の約半分の角
度で傾いていることを特徴とする複屈折回折格子型偏光
子である。本発明は、互いに光学軸が45度傾いた2枚
の複屈折回折格子型偏光子でファラデー回転子を挟んで
張り合わせた構造の光アイソレータにおいて、1枚の偏
光子は主面の法線と結晶のx軸またはy軸が平行であ
り、もう1枚の偏光子は主面の法線が結晶のxz平面内
でz軸から45度回転した軸を回転軸としてy軸から
子ベクトルが光軸と垂直なときの1次の回折角の約半分
の角度で傾いていることを特徴とする光アイソレータ、
または1枚の偏光子は主面の法線と結晶のx軸またはy
軸が平行であり、もう1枚の偏光子は主面の法線が結晶
のyz平面内でz軸から45度回転した軸を回転軸とし
てx軸から格子ベクトルが光軸と垂直なときの1次の回
折角の約半分の角度で傾いていることを特徴とする光ア
イソレータである。
SUMMARY OF THE INVENTION The present invention provides an optical diffraction grating having a periodic ion-exchange region on a principal surface of a crystal plate having optical anisotropy and a specific grating passing through the ion-exchanged region. In a birefringent diffraction grating polarizer formed with means for compensating for a phase shift with respect to the light of the polarized light component, the normal of the main surface of the crystal plate is a lattice base with respect to the x-axis or y-axis of the crystal.
Angle that is about half of the first-order diffraction angle when the vector is perpendicular to the optical axis
This is a birefringent diffraction grating polarizer characterized by being inclined at an angle. The present invention relates to an optical isolator having a structure in which two birefringent diffraction grating polarizers whose optical axes are inclined at 45 degrees to each other with a Faraday rotator interposed therebetween, wherein one polarizer has a normal to a principal surface and a crystal. rating of a parallel x-axis or y-axis, and the other one polarizer and an axis normal to the principal plane is rotated 45 degrees from the z axis in the xz plane of a crystal from the y-axis as a rotation axis
Approximately half the first-order diffraction angle when the child vector is perpendicular to the optical axis
Optical isolator characterized by being inclined at an angle of
Alternatively, one polarizer has a normal to the principal surface and the x-axis or y of the crystal.
The axes are parallel, and the other polarizer has a principal plane normal when the lattice vector is perpendicular to the optical axis from the x axis with the axis rotated 45 degrees from the z axis in the yz plane of the crystal as the rotation axis . 1st round
An optical isolator characterized by being inclined at about half the angle of the bend.

【0008】[0008]

【作用】前記のように、従来の複屈折回折格子型偏光板
における問題点は、偏光子の主面が結晶の光学軸と平行
なため、戻り光を逃がすために偏光子を傾けると、結晶
の光学軸まで傾いてしまい、偏光子の消光比が劣化する
点にある。そこで本発明の偏光子では、偏光子を傾けて
配置したときに結晶の光学軸と入射光の光軸が直交する
様に予め偏光子の主面と結晶の光学軸の間に角度を設け
てある。こうすることにより、偏光子を傾けても結晶の
光学軸と入射光の光軸を直交させることができ、偏光子
表面での反射戻り光を任意の方向に逃がし、かつ偏光子
の消光比の劣化を防ぐことができる。
As described above, the problem with the conventional birefringent diffraction grating polarizer is that the main surface of the polarizer is parallel to the optical axis of the crystal. In that the extinction ratio of the polarizer is degraded. Therefore, in the polarizer of the present invention, an angle is previously provided between the main surface of the polarizer and the optical axis of the crystal such that the optical axis of the crystal and the optical axis of the incident light are orthogonal to each other when the polarizer is arranged at an angle. is there. By doing so, even if the polarizer is tilted, the optical axis of the crystal can be made orthogonal to the optical axis of the incident light, the return light reflected on the polarizer surface can escape in any direction, and the extinction ratio of the polarizer can be reduced. Deterioration can be prevented.

【0009】回折格子の格子ベクトルが光軸と垂直な面
からθだけ傾いているとき、回折格子表面での入射光と
反射光の成す角度は2θであり、1次の回折角の小さい
方の角度φは、φ〜1/(1/φ0 +θ)となる。但
し、φ0 は格子ベクトルが光軸と垂直なときの1次の回
折角である。従って、θを大きくし過ぎるとφが小さく
なり0次回折光と1次回折光の分離度即ち偏光分離度が
劣化する。通常、θとφは同じように大きくすることが
要求されるので、θ=φとおくと、θ〜φ0 /2とな
る。従って、偏光子の主面と結晶の光学軸の間の角度
は、回折格子に垂直入射した光の1次の回折角の半分が
最適であり、その上限は1次の回折角と同程度である。
When the grating vector of the diffraction grating is inclined by θ from the plane perpendicular to the optical axis, the angle between the incident light and the reflected light on the surface of the diffraction grating is 2θ, and the angle of the first-order diffraction angle is smaller. The angle φ is φ〜1 / (1 / φ 0 + θ). Here, φ 0 is the first-order diffraction angle when the lattice vector is perpendicular to the optical axis. Therefore, if θ is too large, φ becomes small, and the degree of separation between the 0th-order diffracted light and the 1st-order diffracted light, that is, the degree of polarization separation deteriorates. Normally, it is required that the theta and phi to increase in the same way, by placing the theta = phi, the θ~φ 0/2. Therefore, the angle between the principal plane of the polarizer and the optical axis of the crystal is optimally half the primary diffraction angle of the light perpendicularly incident on the diffraction grating, and the upper limit is the same as the primary diffraction angle. is there.

【0010】また、ファラデー回転子を互いに光学軸が
45度傾いた2枚の複屈折回折格子型偏光子で挟んで張
り合わせた構造の光アイソレータにおいて、1枚の偏光
子は主面の法線と結晶のx軸またはy軸が平行であり、
もう1枚の偏光子は主面の法線が結晶のxz平面内また
はyz平面内でz軸から45度回転した軸を回転軸とし
てそれぞれy軸またはx軸からある角度だけ傾いている
ものを用いて、主面の法線が結晶のx軸またはy軸と平
行な偏光子の光学軸を回転軸とする方向に、もう一方の
偏光子の結晶の光学軸が入射光の光軸と直交する角度ま
で光アイソレータ全体を傾けて配置すると、両方の偏光
子の結晶の光学軸を入射光の光軸と直交させることが出
来る。従って、光アイソレータ表面での反射戻り光を入
射光の光軸から逃がし、かつ高いアイソレーション比を
得ることができる。
In an optical isolator having a structure in which a Faraday rotator is sandwiched between two birefringent diffraction grating polarizers whose optical axes are inclined at 45 degrees with respect to each other, one polarizer has a normal to the principal surface and The x or y axis of the crystal is parallel,
The other polarizer is such that the normal to the principal surface is inclined at an angle from the y-axis or x-axis, respectively, with the axis rotated 45 degrees from the z-axis in the xz plane or the yz plane of the crystal as the rotation axis. The normal axis of the principal surface is used as a rotation axis with the optical axis of the polarizer parallel to the x-axis or y-axis of the crystal, and the optical axis of the crystal of the other polarizer is orthogonal to the optical axis of the incident light. By tilting the entire optical isolator up to the desired angle, the optical axes of the crystals of both polarizers can be made orthogonal to the optical axis of the incident light. Therefore, the return light reflected on the surface of the optical isolator can escape from the optical axis of the incident light, and a high isolation ratio can be obtained.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明の複屈折回折格子型偏光子の
実施例の斜視図である。1は光学的異方性を持つ結晶基
板であり、この結晶のx軸またはy軸は基板1の表面の
法線4からθだけ傾いている。図1の実施例では結晶基
板1にはニオブ酸リチウムを用いており、結晶のy軸が
基板1の表面の法線ベクトル4からθだけ傾いている。
2はプロトンイオン交換領域であり、この交換領域を周
期的に形成してある。さらに、このプロトンイオン交換
領域2上には所望の厚さの誘電体膜3が設けてある。ま
た、図2の実施例では結晶のx軸が基板1の表面の法線
ベクトル4からθだけ傾いており、その他は図1の実施
例と同じである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an embodiment of the birefringent diffraction grating polarizer of the present invention. Reference numeral 1 denotes a crystal substrate having optical anisotropy, and the x-axis or the y-axis of the crystal is inclined by θ from the normal 4 of the surface of the substrate 1. In the embodiment of FIG. 1, lithium niobate is used for the crystal substrate 1, and the y-axis of the crystal is inclined by θ from the normal vector 4 on the surface of the substrate 1.
Reference numeral 2 denotes a proton ion exchange region, which is formed periodically. Further, a dielectric film 3 having a desired thickness is provided on the proton ion exchange region 2. Further, in the embodiment of FIG. 2, the x-axis of the crystal is inclined by θ from the normal vector 4 on the surface of the substrate 1, and the rest is the same as the embodiment of FIG.

【0012】図1および図2に示された回折格子の0次
の回折光強度は、COS2 {π[ΔnTp +(nd
1)Td ]/λ}で与えられる。但し、λは光の波長、
Δnはプロトンイオン交換領域2と結晶基板1の屈折率
差、Tp はプロトンイオン交換領域2の深さ、nd は誘
電体膜3の屈折率、Td は誘電体膜3の厚さである。光
の波長を1.3μmとすると、プロトンイオン交換によ
る屈折率の変化は、異常光線に対しては約+0.09で
あり、常光線に対しては約−0.04であるから、誘電
体膜3として屈折率が1.45の石英(SiO2 )膜を
用いるとすれば、プロトンイオン交換領域2の深さを約
5μm、石英膜の厚さを約440nmにすれば異常光線
の0次の回折光強度を0、常光線の0次の回折光強度を
1にすることができる。
The intensity of the 0th-order diffracted light of the diffraction grating shown in FIGS. 1 and 2 is COS 2 {π [ΔnT p + (n d
1) It is given by T d ] / λ}. Where λ is the wavelength of light,
Δn is the refractive index difference between the proton ion exchange region 2 and the crystal substrate 1, T p is the depth of the proton ion exchange region 2, n d is the refractive index of the dielectric film 3, and T d is the thickness of the dielectric film 3. is there. Assuming that the wavelength of light is 1.3 μm, the change in refractive index due to proton ion exchange is about +0.09 for an extraordinary ray and about −0.04 for an ordinary ray. If a quartz (SiO 2 ) film having a refractive index of 1.45 is used as the film 3, the depth of the proton ion exchange region 2 is about 5 μm, and the thickness of the quartz film is about 440 nm. Can be set to 0, and the 0th-order diffracted light intensity of the ordinary ray can be set to 1.

【0013】光の波長をλ、回折格子のピッチをΛとす
ると、回折格子の1次の回折角はλ/Λで与えられる。
従って、波長1.3μm,ピッチ50μmとすると、1
次の回折角は約1.5度となる。前に述べたように、偏
光子の主面と結晶の光学軸の間の角度θは、回折格子の
1次の回折角の半分が最適であるから、上記の場合0.
75度程度が最適である。
If the wavelength of light is λ and the pitch of the diffraction grating is Λ, the first-order diffraction angle of the diffraction grating is given by λ / Λ.
Therefore, if the wavelength is 1.3 μm and the pitch is 50 μm, 1
The next diffraction angle is about 1.5 degrees. As described above, since the angle θ between the main surface of the polarizer and the optical axis of the crystal is optimally a half of the first-order diffraction angle of the diffraction grating, the angle θ in the above case is equal to 0.
Approximately 75 degrees is optimal.

【0014】図1の回折格子のy軸が入射光5の光軸と
平行になるように配置すると、特定の直線偏光に対して
は常光成分を零にすることができるから、その偏光の入
射光はすべて回折される。逆に前記の偏光と直交する直
線偏光は異常光成分が零であるから、全く回折されない
ので偏光分離ができる。しかも偏光子の表面の法線4は
入射光の光軸5からθだけ傾いているので、偏光子の表
面で反射した戻り光6が入射光5と同じ経路を通って戻
ることを防ぐことができる。図2の回折格子の場合に
は、x軸が入射光5の光軸と平行になるように配置する
と全く同じ効果が得られる。
If the y-axis of the diffraction grating shown in FIG. 1 is arranged so as to be parallel to the optical axis of the incident light 5, the ordinary light component can be made zero for a specific linearly polarized light. All light is diffracted. Conversely, the linearly polarized light orthogonal to the above-mentioned polarized light has no extraordinary light component and is not diffracted at all. Moreover, since the normal 4 to the surface of the polarizer is inclined by θ from the optical axis 5 of the incident light, it is possible to prevent the return light 6 reflected on the surface of the polarizer from returning along the same path as the incident light 5. it can. In the case of the diffraction grating shown in FIG. 2, the same effect can be obtained if the x-axis is arranged so as to be parallel to the optical axis of the incident light 5.

【0015】本偏光子は薄いニオブ酸リチウム結晶板に
バッチプロセスによって大量に形成できるため、薄型で
安価な偏光子を得ることができる。
Since the present polarizer can be formed in a large amount on a thin lithium niobate crystal plate by a batch process, a thin and inexpensive polarizer can be obtained.

【0016】図3は本発明の光アイソレータの実施例の
斜視図である。ファラデー回転子9を互いに光学軸(Z
軸)が45度傾いた2枚の複屈折回折格子型偏光子7,
8で挟んで張り合わせ、これらを筒状の永久磁石10の
中に入れた構造になっている。1枚の複屈折回折格子型
偏光子8は主面の法線と結晶のy軸が平行であり、もう
1枚の偏光子7は主面の法線が結晶のxz平面内でz軸
から45度回転した軸を回転軸としてy軸からθだけ傾
いている。さらに、主面の法線が結晶のy軸と平行な複
屈折回折格子型偏光子8の光学軸(z軸)を回転軸とす
る方向に、もう一方の複屈折回折格子型偏光子7の結晶
のy軸が入射光5の光軸と平行になるように光アイソレ
ータ全体をθだけ傾けて配置すると、両方の複屈折回折
格子型偏光子7,8の結晶の光学軸を入射光5の光軸と
直交させることができる。従って、光アイソレータ表面
での反射戻り光6を入射光5の光軸から逃がし、かつ高
いアイソレーション比を得ることができる。
FIG. 3 is a perspective view of an embodiment of the optical isolator according to the present invention. The Faraday rotator 9 is connected to the optical axis (Z
Two axes of the birefringent diffraction grating polarizer 7, whose axes are inclined by 45 degrees,
8 and these are put in a cylindrical permanent magnet 10. One birefringent diffraction grating polarizer 8 has a normal to the principal surface parallel to the y-axis of the crystal, and another polarizer 7 has a principal normal to the x-plane of the crystal from the z-axis. The axis rotated by 45 degrees is inclined by θ from the y axis with the axis of rotation being the rotation axis. Furthermore, the direction of the rotation of the optical axis (z axis) of the birefringent diffraction grating polarizer 8 whose normal line to the main surface is parallel to the y axis of the crystal is set to the direction of the other birefringent diffraction grating polarizer 7. When the entire optical isolator is arranged at an angle of θ so that the y-axis of the crystal is parallel to the optical axis of the incident light 5, the optical axes of the crystals of both birefringent diffraction grating polarizers 7 and 8 are adjusted to the incident light 5. It can be orthogonal to the optical axis. Therefore, the return light 6 reflected on the surface of the optical isolator can escape from the optical axis of the incident light 5 and a high isolation ratio can be obtained.

【0017】[0017]

【発明の効果】以上に述べたように、本発明によれば薄
型で高消比低挿入損失で反射戻り光の影響の小さい偏光
素子、および薄型で高いアイソレーション比を持ち反射
戻り光の影響の小さい光アイソレータを得ることができ
る。
As described above, according to the present invention, a polarizing element which is thin, has a high extinction ratio and low insertion loss and is small in the influence of reflected return light, and is thin and has a high isolation ratio and is affected by the reflected return light. An optical isolator having a small size can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複屈折回折格子型偏光子の実施例の斜
視図である。
FIG. 1 is a perspective view of a birefringent diffraction grating polarizer according to an embodiment of the present invention.

【図2】本発明の複屈折回折格子型偏光子の別の実施例
の斜視図である。
FIG. 2 is a perspective view of another embodiment of the birefringent diffraction grating polarizer of the present invention.

【図3】本発明の光アイソレータの実施例の斜視図であ
る。
FIG. 3 is a perspective view of an embodiment of the optical isolator of the present invention.

【図4】従来例による複屈折回折格子型偏光子の実施例
の斜視図である。
FIG. 4 is a perspective view of an example of a conventional birefringent diffraction grating polarizer.

【図5】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 5 is a sectional view of an example of a conventional birefringent diffraction grating polarizer.

【図6】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 6 is a sectional view of an example of a conventional birefringent diffraction grating polarizer.

【図7】従来例による複屈折回折格子型偏光子の実施例
の断面図である。
FIG. 7 is a cross-sectional view of an example of a conventional birefringent diffraction grating polarizer.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム結晶基板 2 プロトンイオン交換領域 3 誘電体膜 4 基板1表面の法線 5 入射光 6 反射戻り光 7 複屈折回折格子型偏光子 8 複屈折回折格子型偏光子 9 ファラデー回転子 10 磁石 11 0次回折光 12 ±1次回折光 DESCRIPTION OF SYMBOLS 1 Lithium niobate crystal substrate 2 Proton ion exchange area 3 Dielectric film 4 Normal line of substrate 1 surface 5 Incident light 6 Reflection return light 7 Birefringent diffraction grating polarizer 8 Birefringent diffraction grating polarizer 9 Faraday rotator 10 Magnet 11 0th order diffracted light 12 ± 1st order diffracted light

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 5/30 G02B 5/18 G02B 27/28 G02B 27/42 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 5/30 G02B 5/18 G02B 27/28 G02B 27/42

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学的異方性を持つ結晶板の主面に、周
期を有するイオン交換領域の光学的回折格子とこのイオ
ン交換を施した領域を通過する特定の偏光成分の光に対
して位相のずれを補償する手段とを形成した複屈折回折
格子型偏光子において、結晶板の主面の法線が結晶のx
軸またはy軸に対して格子ベクトルが光軸と垂直なとき
の1次の回折角の約半分の角度で傾いていることを特徴
とする複屈折回折格子型偏光子。
1. An optical diffraction grating having a periodic ion-exchange region on a principal surface of a crystal plate having optical anisotropy, and a light having a specific polarization component passing through the ion-exchanged region. In a birefringent diffraction grating polarizer provided with a means for compensating for a phase shift, the normal to the main surface of the crystal plate is x
When the lattice vector is perpendicular to the optical axis with respect to the axis or y-axis
A birefringent diffraction grating polarizer, which is tilted at about half the primary diffraction angle .
【請求項2】 互いに光学軸が45度傾いた2枚の複屈
折回折格子型偏光子でファラデー回転子を挟んで張り合
わせた構造の光アイソレータにおいて、1枚の偏光子は
主面の法線と結晶のx軸またはy軸が平行であり、もう
1枚の偏光子は主面の法線が結晶のxz平面内でz軸か
ら45度回転した軸を回転軸としてy軸から格子ベクト
ルが光軸と垂直なときの1次の回折角の約半分の角度で
傾いていることを特徴とする光アイソレータ、または1
枚の偏光子は主面の法線と結晶のx軸またはy軸が平行
であり、もう1枚の偏光子は主面の法線が結晶のyz平
面内でz軸から45度回転した軸を回転軸としてx軸か
格子ベクトルが光軸と垂直なときの1次の回折角の約
半分の角度で傾いていることを特徴とする光アイソレー
タ。
2. An optical isolator having a structure in which two birefringent diffraction grating polarizers whose optical axes are inclined at 45 degrees to each other with a Faraday rotator interposed therebetween are bonded to each other. The x-axis or y-axis of the crystal is parallel, and the other polarizer has a lattice vector from the y-axis with the normal to the principal surface rotated 45 degrees from the z-axis in the xz plane of the crystal as the rotation axis.
An optical isolator characterized in that the light is tilted at about half the angle of the first diffraction order when the light is perpendicular to the optical axis , or
In one polarizer, the normal of the principal surface is parallel to the x-axis or y-axis of the crystal, and in the other polarizer, the normal of the principal surface is rotated by 45 degrees from the z-axis in the yz plane of the crystal. Is the primary diffraction angle when the lattice vector is perpendicular to the optical axis from the x-axis with
An optical isolator characterized by being inclined at a half angle .
JP3024243A 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator Expired - Fee Related JP3038942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024243A JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024243A JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Publications (2)

Publication Number Publication Date
JPH04263205A JPH04263205A (en) 1992-09-18
JP3038942B2 true JP3038942B2 (en) 2000-05-08

Family

ID=12132810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024243A Expired - Fee Related JP3038942B2 (en) 1991-02-19 1991-02-19 Birefringent diffraction grating polarizer and optical isolator

Country Status (1)

Country Link
JP (1) JP3038942B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425358C2 (en) * 1993-08-04 2002-04-25 Fraunhofer Ges Forschung Optical isolator device for arrangement in the beam path between a laser beam source and an object
CN113589434A (en) * 2021-08-04 2021-11-02 南京科天光电工程研究院有限公司 Novel polarization-independent optical isolator

Also Published As

Publication number Publication date
JPH04263205A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US5029988A (en) Birefringence diffraction grating type polarizer
EP1420275B1 (en) Isolator and optical attenuator
EP0349144B1 (en) Birefringence diffraction grating type polarizer
EP0612068B1 (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
US5377040A (en) Polarization independent optical device
JPS63314502A (en) Double refractive diffraction grating type polarizing plate
US7782738B2 (en) Phase plate and optical head device
JP3038942B2 (en) Birefringent diffraction grating polarizer and optical isolator
JP2541548B2 (en) Diffraction grating type optical polarizer
JP2803181B2 (en) Birefringent diffraction grating polarizer
JP3228773B2 (en) Optical isolator
US20030053209A1 (en) Dual stage optical isolator with reduced polarization mode dispersion and beam offset
JP2721879B2 (en) Self-temperature compensated optical isolator
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JP2848137B2 (en) Birefringent diffraction grating polarizer
JPS6355501A (en) Diffraction grating type polarizing plate
JPH05196813A (en) Diffraction grating type optical polarizing element
JPH0830767B2 (en) Hologram element
JP3492736B2 (en) Optical isolator
JP2594856B2 (en) Non-reciprocal light element
JPH02188715A (en) Optical isolator
JPH0212107A (en) Birefringent diffraction grating type polarizer
JPH0827406B2 (en) Birefringent diffraction grating polarizer and method for manufacturing the same
JPS5979220A (en) Optical isolator using superposed phase plate
JPH0990281A (en) Polarization independent type optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

LAPS Cancellation because of no payment of annual fees