JPH0830767B2 - Hologram element - Google Patents

Hologram element

Info

Publication number
JPH0830767B2
JPH0830767B2 JP4292853A JP29285392A JPH0830767B2 JP H0830767 B2 JPH0830767 B2 JP H0830767B2 JP 4292853 A JP4292853 A JP 4292853A JP 29285392 A JP29285392 A JP 29285392A JP H0830767 B2 JPH0830767 B2 JP H0830767B2
Authority
JP
Japan
Prior art keywords
hologram element
proton exchange
light
exchange region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4292853A
Other languages
Japanese (ja)
Other versions
JPH06194523A (en
Inventor
昭知 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4292853A priority Critical patent/JPH0830767B2/en
Publication of JPH06194523A publication Critical patent/JPH06194523A/en
Publication of JPH0830767B2 publication Critical patent/JPH0830767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバー通信用
光源モジュールや、光ディスク用光ヘッドに使われる偏
光子の作用を有するホログラム素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source module for optical fiber communication and a hologram element having a function of a polarizer used in an optical head for an optical disk.

【0002】[0002]

【従来の技術】偏光子特に偏光ビームスプリッタは、直
交する偏光間での光の伝搬方向を異ならしめることによ
って特定の偏光を得る素子である。従来、偏光ビームス
プリッタとしては、グラントムソンプリズムやロッショ
ンプリズムなど、複屈折の大きな結晶のはり合わせ面に
おける偏光による透過ないしは反射の違いを利用し、光
路を分離するもの、またはガラスなどの等方性光学媒質
でできたプリズムはり合わせ型ビームスプリッタの反射
面に誘電体多層膜を設け、この誘電体多層膜の偏光によ
る干渉の違いを利用して、光を反射ないし透過させるも
のが多く使用されている。
2. Description of the Related Art A polarizer, especially a polarization beam splitter, is an element that obtains a specific polarized light by changing the propagation directions of light between orthogonal polarized lights. Conventionally, polarization beam splitters, such as Glan-Thompson prisms and Lotion prisms, which use the difference in transmission or reflection due to polarized light on the bonding surface of crystals with large birefringence, are used to separate the optical path, or isotropic materials such as glass. A multi-layer prism that is made of a transparent optical medium is provided with a dielectric multilayer film on the reflecting surface of a beam splitter, and the one that reflects or transmits light is often used by utilizing the difference in interference due to the polarization of the dielectric multilayer film. ing.

【0003】しかしながら、これらの素子は大型である
こと、生産性が低いこと、価格が高いことなどの欠点が
ある。また、上記のバルク型の偏光子は偏光子機能のみ
持ち、光ディスク用光ヘッドに用いた場合、焦点誤差検
出機能及びトラック誤差検出機能などの複合化が難しく
光ヘッドの小型化が困難である。
However, these devices have drawbacks such as large size, low productivity, and high price. Further, the above bulk-type polarizer has only a polarizer function, and when used in an optical head for an optical disc, it is difficult to combine a focus error detection function and a track error detection function, and it is difficult to downsize the optical head.

【0004】一方、近年小型で生産性が高く、偏光子機
能を有するホログラム素子として、特開昭63−314
502号公報に記載されている複屈折回折格子型偏光子
が知られている。
On the other hand, in recent years, a hologram element having a small size and high productivity and a polarizer function has been disclosed in Japanese Patent Laid-Open No. 63-314.
A birefringent diffraction grating type polarizer described in Japanese Patent No. 502 is known.

【0005】図4は、この複屈折回折格子型偏光子の断
面図である。複屈折結晶であるニオブ酸リチウム基板1
のX板、あるいはY板に安息香酸によるプロトン交換を
施すと、一例として光ディスク装置に一般的に用いられ
る0.78μmの波長の光に対しては基板の結晶光学軸
に平行な偏光の光である異常光に対する屈折率は約0.
11増加し、その光学軸に垂直な偏光の光である常光に
対する屈折率は約0.04減少する。そこでプロトン交
換を施した交換領域2と施さない非交換領域を周期的に
配置した格子にすると回折格子として作用する。この格
子に交換領域2を通過する常光と非交換領域を通過する
常光の位相差を相殺するために交換領域上に適当な厚さ
の位相補償膜3を形成すると、常光に対してはの格子は
回折格子としては働かず、常光を回折せずに透過させる
ことができる。つまり、この格子は単なる透明基板に見
える。
FIG. 4 is a sectional view of this birefringent diffraction grating type polarizer. Lithium niobate substrate which is a birefringent crystal 1
When the X-plate or the Y-plate is subjected to proton exchange with benzoic acid, for example, with respect to light having a wavelength of 0.78 μm which is generally used in optical disk devices, it is polarized light parallel to the crystal optical axis of the substrate. The refractive index for certain extraordinary light is about 0.
11 increases, and the refractive index for ordinary light, which is polarized light perpendicular to the optical axis, decreases by about 0.04. Therefore, a grating in which an exchange region 2 that has undergone proton exchange and a non-exchange region that has not undergone proton exchange are periodically arranged functions as a diffraction grating. If a phase compensation film 3 having an appropriate thickness is formed on the exchange region to cancel the phase difference between the ordinary light passing through the exchange region 2 and the ordinary light passing through the non-exchange region in this lattice, the lattice for the ordinary light is formed. Does not work as a diffraction grating and can transmit ordinary light without diffraction. So this lattice looks like a mere transparent substrate.

【0006】図5(a)は、常光に対するその位相分布
を示した図である。符号7は位相補償膜による位相差、
符号8はプロトン交換領域による位相差を示している。
上記の常光に対する位相差相殺条件を満足させながら交
換領域2の深さを変えることにより、異常光に対する位
相差がπでかつ交換領域と非交換領域の幅が共に半周期
に等しいときは、異常光は完全に回折される。図5
(b)は、異常光の位相分布を示した図である。ここ
で、符号9はプロトン交換領域による位相差を示してい
る。
FIG. 5A is a diagram showing the phase distribution of ordinary light. Reference numeral 7 is a phase difference due to the phase compensation film,
Reference numeral 8 indicates a phase difference due to the proton exchange region.
By changing the depth of the exchange region 2 while satisfying the above-mentioned phase difference cancellation condition for ordinary light, when the phase difference for the extraordinary light is π and the widths of the exchange region and the non-exchange region are both equal to a half cycle, an abnormality occurs. The light is completely diffracted. Figure 5
(B) is a figure showing a phase distribution of extraordinary light. Here, reference numeral 9 indicates a phase difference due to the proton exchange region.

【0007】また、この複屈折回折格子型偏光子を光ヘ
ッド装置用に利用している例として、特開平3−291
37号公報と特開平3−29129号公報に記載されて
いるホログラム素子がある。これらのホログラム素子は
偏光子機能をもつために図4に示す断面構造をとりなが
ら、格子パターンは光ヘッドの焦点誤差信号、トラック
誤差信号を検出するために図6に示すように回折方向が
ことなる複数の格子領域から形成されている。同様な格
子パターンとして図7のように格子領域が分割されたパ
ターンもある。
Further, as an example of utilizing this birefringent diffraction grating type polarizer for an optical head device, Japanese Patent Laid-Open No. 3-291
There are hologram elements described in Japanese Patent No. 37 and Japanese Patent Application Laid-Open No. 3-29129. Since these hologram elements have the cross-sectional structure shown in FIG. 4 because they have a polarizer function, the grating pattern has different diffraction directions as shown in FIG. 6 to detect the focus error signal and the track error signal of the optical head. Is formed from a plurality of lattice areas. As a similar grid pattern, there is a pattern in which a grid area is divided as shown in FIG.

【0008】このホログラム素子の製造方法として、特
開平4−143788号公報に記載されている製造方法
がある。図8にその製造方法を示す。図8(a)、
(b)、(c)に示すようにニオブ酸リチウム基板1上
に格子パターンをもったフォトレジスト膜18を形成し
た後、下層の金属膜14にエッチングによりその格子パ
ターンを転写してプロトン交換用保護マスク15を形成
する。そして、図8(d)に示すようにプロトン交換を
行う。次に、フォトレジストを塗布し、基板1の裏面か
ら露光、現像して図8(e)に示すように保護マスク1
5上のみにフォトレジスト16を残す。そして、図8
(f)、(g)に示すように位相補償膜用の誘電体を堆
積させて、最後にフォトレジスト16および保護マスク
15を除去することにより複屈折格子型偏光子を作製す
る。この方法では、プロトン交換領域2を形成するため
に用いたプロトン交換用保護マスク15を用いて位相補
償膜3を形成するセルフアライメントの方式をとってお
り、製造工程が簡略化でき、また位置ずれも生じくく再
現性良い。
As a method of manufacturing this hologram element, there is a manufacturing method described in JP-A-4-143788. FIG. 8 shows the manufacturing method. FIG. 8 (a),
After forming a photoresist film 18 having a lattice pattern on the lithium niobate substrate 1 as shown in (b) and (c), the lattice pattern is transferred to the lower metal film 14 by etching to transfer protons. The protection mask 15 is formed. Then, proton exchange is performed as shown in FIG. Next, a photoresist is applied, and the back surface of the substrate 1 is exposed and developed to form a protective mask 1 as shown in FIG.
Photoresist 16 is left only on 5. And FIG.
As shown in (f) and (g), a dielectric material for the phase compensation film is deposited, and finally the photoresist 16 and the protective mask 15 are removed to produce a birefringent grating polarizer. In this method, the self-alignment method is used in which the phase compensation film 3 is formed using the proton exchange protection mask 15 used to form the proton exchange region 2, so that the manufacturing process can be simplified and the misalignment can be prevented. Reproducibility is also good.

【0009】[0009]

【発明が解決しようとする課題】上記の従来のセルフア
ライメント方式による製造では、プロトン交換領域と位
相補償膜を形成するためにプロトン交換用保護マスクを
形成することが必要で、製造方法が煩雑となっている。
本発明の目的は、セルフアライメント方式で製造しなが
ら製造方法が一層簡略化できる構造のホログラム素子お
よびその製造方法を提供することにある。
In the above-mentioned conventional self-alignment method of manufacturing, it is necessary to form a proton exchange protection mask in order to form the proton exchange region and the phase compensation film, and the manufacturing method is complicated. Has become.
An object of the present invention is to provide a hologram element having a structure in which the manufacturing method can be further simplified while manufacturing by a self-alignment method, and a manufacturing method thereof.

【課題を解決するための手段】[Means for Solving the Problems]

【0010】本発明のホログラム素子は光学異方性を持
つ結晶板の主面に、周期的に設けられたイオン交換領域
から成る光学的回折格子と、前記イオン交換領域以外の
領域上に前記結晶板の屈折率とほぼ同じ屈折率を持つ誘
電体を設け回折格子を形成したことを特徴とする。
In the hologram element of the present invention, an optical diffraction grating composed of ion exchange regions periodically provided on the main surface of a crystal plate having optical anisotropy, and other than the ion exchange region are provided.
An index having an index of refraction almost equal to that of the crystal plate on the region
It is characterized in that a diffraction grating is formed by providing an electric body.

【0011】また、ホログラム素子の少なくとも一方の
面に反射防止膜が形成されていることを特徴とする。
Further , at least one of the hologram elements
It is characterized in that an antireflection film is formed on the surface.

【0012】[0012]

【作用】本発明の作用・原理は次の通りである。本発明
のホログラム素子では製造方法を簡素化するために図1
に示すような構造を採っている。誘電体の位相補償膜を
従来のようなプロトン交換領域上でなくプロトン交換さ
れていない領域上に形成している。この格子の回折は従
来の技術と同じくプロトン交換領域の常光、異常光に対
する屈折率変化の差を利用した原理を用いている。即
ち、常光に対してはプロトン交換領域を通過する光と誘
電体の位相補償膜を通過する光の位相差が0あるいは実
質的に無位相と等価な2πの整数倍となっており、常光
は回折されずに透過する。一方、異常光に対してはその
位相差がπの奇数倍として、かつプロトン交換領域と位
相補償膜領域の幅を等しくすることにより完全に回折す
ることができる。これらのに位相関係は次式で与えられ
る。
The operation and principle of the present invention are as follows. In order to simplify the manufacturing method of the hologram element of the present invention, FIG.
The structure is as shown in. The dielectric phase compensation film is formed not on the conventional proton exchange region but on the region not proton exchanged. Diffraction of this grating uses the principle of utilizing the difference in refractive index change between ordinary light and extraordinary light in the proton exchange region as in the conventional technique. That is, with respect to ordinary light, the phase difference between the light passing through the proton exchange region and the light passing through the dielectric phase compensation film is 0 or an integer multiple of 2π which is substantially equivalent to no phase. Transmits without being diffracted. On the other hand, the extraordinary light can be completely diffracted by setting the phase difference to be an odd multiple of π and making the widths of the proton exchange region and the phase compensation film region equal. The phase relation of these is given by the following equation.

【0013】{(nd −no u t )・Td −Δno ・T
p }・2π/λ=2nπ {(nd −no u t )・Td −Δne ・Tp }・2π/
λ=(2m+1)π ここでnd 、Td は位相補償膜の屈折率及び厚さ、Tp
はプロトン交換層の深さ、Δne 、Δno はプロトン交
換層の異常光、常光の屈折率変化量、no u tはホログ
ラム基板外の屈折率、λは光の波長を示しており、m、
nは整数である。
[0013] {(n d -n out) · T d -Δn o · T
p} · 2π / λ = 2nπ {(n d -n out) · T d -Δn e · T p} · 2π /
λ = (2m + 1) π where n d and T d are the refractive index and thickness of the phase compensation film, and T p
Is the depth of the proton exchange layer, Δn e , Δn o are extraordinary rays of the proton exchange layer, the amount of change in the refractive index of ordinary light, n out is the refractive index outside the hologram substrate, λ is the wavelength of light, m,
n is an integer.

【0014】逆に、異常光に対してプロトン交換領域を
通過する光と誘電体の位相補償膜を通過する光の位相差
が0あるいは実質的に無位相と等価な2πの整数倍とし
て、常光に対してはその位相差がπの奇数倍として、か
つプロトン交換領域と位相補償膜領域の幅を等しくする
ことによっても偏光子機能が実現できる。この場合は異
常光が回折されずに透過し、常光が完全に回折される。
これらの位相関係は次式で与えられる。 {(nd −no u t )・Td −Δne ・Tp }・2π/
λ=2m’π {(nd −no u t )・Td −Δno ・Tp }・2π/
λ=(2n’+1)π ここでm’,n’は整数である。
On the contrary, the ordinary light is defined as an integer multiple of 2π which is equivalent to 0 or substantially no phase difference between the light passing through the proton exchange region and the light passing through the dielectric phase compensation film for extraordinary light. In contrast, the polarizer function can be realized also by setting the phase difference to be an odd multiple of π and making the widths of the proton exchange region and the phase compensation film region equal. In this case, the extraordinary ray is transmitted without being diffracted, and the ordinary ray is completely diffracted.
These phase relationships are given by: {(N d -n out) · T d -Δn e · T p} · 2π /
λ = 2m'π {(n d -n out) · T d -Δn o · T p} · 2π /
λ = (2n ′ + 1) π where m ′ and n ′ are integers.

【0015】この構造では、最初に誘電体の位相補償膜
をパターニングにより形成することにより、プロトン交
換用保護マスクとしても兼用することができるため製造
工程の削減が可能となる。
In this structure, since the phase compensation film of the dielectric is first formed by patterning, it can be used also as a protective mask for proton exchange, so that the number of manufacturing steps can be reduced.

【0016】[0016]

【実施例】図1は本発明のホログラム素子の第一の実施
例の断面図である。位相補償膜12としてニオブ酸リチ
ウム基板10とほぼ同じ2.2の屈折率の誘電体膜を用
いた場合、0.78μmの波長の光に対しては、一例と
して位相補償膜12の厚さを約240nm、プロトン交
換領域11の深さは約2.6μmとすることにより、作
用のところで述べた異常光の位相差が0、常光の位相差
がπの条件を満たし偏光子機能が実現できる。この誘電
体膜としてNb2 5 などがある。
1 is a sectional view of a first embodiment of a hologram element of the present invention. When a dielectric film having a refractive index of 2.2 which is almost the same as that of the lithium niobate substrate 10 is used as the phase compensation film 12, the thickness of the phase compensation film 12 is set as an example for light having a wavelength of 0.78 μm. By setting the wavelength of about 240 nm and the depth of the proton exchange region 11 to about 2.6 μm, the polarizer function can be realized by satisfying the conditions of the phase difference of the extraordinary light being 0 and the phase difference of the ordinary light being π described in the action. Nb 2 O 5 or the like is used as this dielectric film.

【0017】図2は本発明の製造方法の実施例を説明す
るための図である。図2(a)に示すようにニオブ酸リ
チウム基板10上にフォトレジスト17を塗布し、フォ
トマスクを用いてパターニングを行う。次に、図2
(b)、(c)に示すように、位相補償膜用の誘電体を
堆積した後フォトレジストの溶剤に浸してフォトレジス
ト17の除去を行い位相補償膜12を形成する。最後に
図2(b)に示すように基板をプロトン交換用ソースに
浸すことによりプロトン交換領域11を形成する。この
プロトン交換ソースとして安息香酸、ピロリン酸などが
ある。
FIG. 2 is a diagram for explaining an embodiment of the manufacturing method of the present invention. As shown in FIG. 2A, a photoresist 17 is applied on the lithium niobate substrate 10 and patterned using a photomask. Next, FIG.
As shown in (b) and (c), the phase compensating film 12 is formed by depositing a dielectric for the phase compensating film and then immersing it in a solvent of the photoresist to remove the photoresist 17. Finally, as shown in FIG. 2B, the substrate is immersed in a proton exchange source to form a proton exchange region 11. Examples of the proton exchange source include benzoic acid and pyrophosphoric acid.

【0018】図3はホログラム素子の第二の実施例を示
す断面図であり、反射防止膜5、6を施している。
FIG. 3 is a sectional view showing a second embodiment of the hologram element, which is provided with antireflection films 5 and 6.

【0019】本発明のホログラム素子は図6、図7に示
すような格子パターンにすることにより光ヘッドにも用
いることができる。
The hologram element of the present invention can also be used in an optical head by forming a lattice pattern as shown in FIGS.

【0020】[0020]

【発明の効果】本発明の構造を採ることによりホログラ
ム素子の製造方法を大幅に簡素化することができ、素子
の低コスト化を図ることができる。また、本発明の製造
方法ではセルフアライメント方式のため高精度で素子が
作製可能なため、高い消光比が実現できる。
By adopting the structure of the present invention, the method of manufacturing a hologram element can be greatly simplified and the cost of the element can be reduced. Further, in the manufacturing method of the present invention, since the device can be manufactured with high accuracy due to the self-alignment method, a high extinction ratio can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のホログラム素子の第一の実施例を示す
断面図である。
FIG. 1 is a sectional view showing a first embodiment of a hologram element of the present invention.

【図2】本発明のホログラム素子の製造方法の実施例を
説明する図である。
FIG. 2 is a diagram illustrating an embodiment of the method for manufacturing a hologram element according to the present invention.

【図3】本発明のホログラム素子の第二の実施例を示す
断面図である。
FIG. 3 is a sectional view showing a second embodiment of the hologram element of the present invention.

【図4】従来のホログラム素子の断面図である。FIG. 4 is a cross-sectional view of a conventional hologram element.

【図5】従来のホログラム素子の位相分布を示す図であ
る。
FIG. 5 is a diagram showing a phase distribution of a conventional hologram element.

【図6】従来のホログラム素子の格子パターンを示す図
である。
FIG. 6 is a diagram showing a lattice pattern of a conventional hologram element.

【図7】従来のホログラム素子の格子パターンを示す図
である。
FIG. 7 is a diagram showing a lattice pattern of a conventional hologram element.

【図8】従来のホログラム素子の製造方法を示す図であ
る。
FIG. 8 is a diagram showing a conventional method for manufacturing a hologram element.

【符号の説明】[Explanation of symbols]

1、10 ニオブ酸リチウム基板 2、11 プロトン交換領域 3、12 位相補償膜 5、6 反射防止膜 7 位相補償膜の位相差 8、9 プロトン交換領域の位相差 14 金属膜 15 プロトン交換用保護マスク 16、17、18 フォトレジスト 1, 10 Lithium niobate substrate 2, 11 Proton exchange region 3, 12 Phase compensation film 5, 6 Antireflection film 7 Phase difference of phase compensation film 8, 9 Phase difference of proton exchange region 14 Metal film 15 Protective mask for proton exchange 16, 17, 18 photoresist

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学異方性を持つ結晶板の主面に、周期
的に設けられたイオン交換領域から成る光学的回折格子
と、前記イオン交換領域以外の領域上に前記結晶板の屈
折率とほぼ同じ屈折率を持つ誘電体を設け回折格子を形
成したことを特徴とするホログラム素子。
1. An optical diffraction grating comprising ion exchange regions periodically provided on a main surface of a crystal plate having optical anisotropy, and a bending of the crystal plate on a region other than the ion exchange region.
A hologram element characterized in that a diffraction grating is formed by providing a dielectric material having a refractive index substantially the same as the folding index .
【請求項2】 前記ホログラム素子の少なくとも一方の2. At least one of the hologram elements
面に反射防止膜が形成されていることを特徴とする請求Claims characterized in that an antireflection film is formed on the surface
項1記載のホログラム素子。Item 1. The hologram element according to item 1.
JP4292853A 1992-10-30 1992-10-30 Hologram element Expired - Fee Related JPH0830767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4292853A JPH0830767B2 (en) 1992-10-30 1992-10-30 Hologram element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4292853A JPH0830767B2 (en) 1992-10-30 1992-10-30 Hologram element

Publications (2)

Publication Number Publication Date
JPH06194523A JPH06194523A (en) 1994-07-15
JPH0830767B2 true JPH0830767B2 (en) 1996-03-27

Family

ID=17787220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4292853A Expired - Fee Related JPH0830767B2 (en) 1992-10-30 1992-10-30 Hologram element

Country Status (1)

Country Link
JP (1) JPH0830767B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827780B2 (en) * 1996-10-28 2006-09-27 富士写真フイルム株式会社 Electrode for optical waveguide device and method for forming the same
US20040263981A1 (en) * 2003-06-27 2004-12-30 Coleman Christopher L. Diffractive optical element with anti-reflection coating
JP2005114857A (en) * 2003-10-03 2005-04-28 Enplas Corp Optical element and optical pickup device using the same
CN1295528C (en) * 2004-11-05 2007-01-17 中国科学院上海微系统与信息技术研究所 Method for preparing integrated Prague plane waveguide grating by primary ion exchange process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219701A (en) * 1990-12-20 1992-08-10 Omron Corp Polarization-dependent type grating element and its manufacture, and optical head device thereof

Also Published As

Publication number Publication date
JPH06194523A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
EP1420275B1 (en) Isolator and optical attenuator
US5029988A (en) Birefringence diffraction grating type polarizer
EP0612068B1 (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
JPH0830767B2 (en) Hologram element
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPH05289027A (en) Polarizer, optical element with polarizer and its production
JP3500963B2 (en) Master hologram
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP2503538B2 (en) Method for manufacturing diffraction grating type polarizing plate
JPH0627322A (en) Optical element and optical information processor using the element and production of optical element
JP3686537B2 (en) Polarization separation element and method of making the polarization separation element
JP3299383B2 (en) Polarizing beam splitter and optical head device using the same
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JP3426661B2 (en) Optical isolator
JPH05196813A (en) Diffraction grating type optical polarizing element
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JPH0827406B2 (en) Birefringent diffraction grating polarizer and method for manufacturing the same
JP3038942B2 (en) Birefringent diffraction grating polarizer and optical isolator
JP2674318B2 (en) Hologram manufacturing method
JPH11352326A (en) Double refractive diffraction grating type polarizer and its production
JPH09102138A (en) Optical head device and its production
JPH06222383A (en) Liquid crystal spatial optical modulation element
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees