JPS63314502A - Double refractive diffraction grating type polarizing plate - Google Patents

Double refractive diffraction grating type polarizing plate

Info

Publication number
JPS63314502A
JPS63314502A JP62130144A JP13014487A JPS63314502A JP S63314502 A JPS63314502 A JP S63314502A JP 62130144 A JP62130144 A JP 62130144A JP 13014487 A JP13014487 A JP 13014487A JP S63314502 A JPS63314502 A JP S63314502A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
ion exchange
optical
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62130144A
Other languages
Japanese (ja)
Other versions
JPH0575081B2 (en
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62130144A priority Critical patent/JPS63314502A/en
Publication of JPS63314502A publication Critical patent/JPS63314502A/en
Publication of JPH0575081B2 publication Critical patent/JPH0575081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain an extremely thin grating type optical polarizing plate by forming an optical diffraction grating of an ion exchange regions having periods on the main plane of a lithium niobate crystal plate and providing means for offsetting the phase change which the ordinary light component of the light waves transmitted through the diffraction grating receives in the ion exchange regions. CONSTITUTION:The lithium niobate crystal plate 1 has the proton ion exchange regions 2 which are periodically formed to provide the optical diffraction grating. Only the surface of, for example, the regions which are not subjected to the ion exchange are etched by as much as a desired depth in order to offset the phase change which the ordinary light component among the light waves to be transmitted through the diffraction grating receives in the ion exchange regions. The polarizing component oscillating in a y-axis direction, i.e., the ordinary light component passes the crystal plate 1 rectilinarly in the form of zero order light 4 when incident light 3 enters this polarizing plate. On the other hand, the extraordinary light component oscillating in the z-axis direction with the polarized incident light 3 oscillating in the y-axis direction emerges from the crystal plate 1 in the form of diffracted light 5 and 6. The thin and small-sized polarizing element is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザを利用した各種光装置に使用す
る複屈折偏光板、特に偏光方向によって回折効率の異な
る格子壁偏光板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a birefringent polarizing plate used in various optical devices using semiconductor lasers, and particularly to a grating wall polarizing plate whose diffraction efficiency differs depending on the polarization direction.

(従来の技術) 偏光素子特に偏光ビームスプリッタは、直交する偏光間
で光の伝搬方向を異ならしめる素子であって、グラント
ムソンプリズムやワッションプリズム等複屈折の大きい
結晶の光反射面における偏光による透過ないしは全反射
の違いを利用して光路を分離するものや、ガラス等の等
方性の光学媒質でできた全反射プリズムの反射面に誘電
体多層膜を設け、この誘電体多層膜の偏光による屈折率
の違いを利用して、光を全反射あるいは透過させるもの
が多く使われている。
(Prior art) A polarizing element, particularly a polarizing beam splitter, is an element that changes the propagation direction of light between orthogonal polarized lights. A dielectric multilayer film is provided on the reflective surface of a total reflection prism that uses the difference in transmission or total reflection to separate optical paths, or is made of an isotropic optical medium such as glass, and the polarization of this dielectric multilayer film is used. Many materials are used that completely reflect or transmit light by taking advantage of the difference in refractive index.

これらは光フアイバ通信用光源モジュールや光デイスク
用光ヘッドなどの光アイソレータや光サーキュレータを
構成する部品として使われている。例えば光通信用光源
モジュールでは、光フアイバコネクタ等からの反射光が
光源である半導体レーザに再入射するのを防ぐ光アイソ
レータとして、光磁性材料のファラデー効果を利用して
偏光を45°回転させる偏光回転子(ファラデー回転子
)と組み合わせて用いられる。また、光デイスク用光ヘ
ッドでは、光デイスク基板からの情報信号を光源に戻す
ことなく効率よく受光光学系へ導く光サーキュレータ素
子として、1/4波長板と組み合わせて用いられている
These are used as components for optical isolators and optical circulators such as light source modules for optical fiber communications and optical heads for optical disks. For example, in light source modules for optical communications, polarized light is used as an optical isolator to prevent reflected light from optical fiber connectors from re-entering the semiconductor laser that is the light source. Used in combination with a rotator (Faraday rotator). Further, in an optical head for an optical disk, it is used in combination with a quarter-wave plate as an optical circulator element that efficiently guides information signals from an optical disk substrate to a light receiving optical system without returning them to the light source.

(発明が解決しようとする問題点) これらの従来の偏光分離素子は大型であるという難点を
有する。光学的異方性結晶を使った偏光素子にしろ、誘
電体薄膜型の偏光素子にしろ光軸に対して45°ないし
それ以上に斜めに配した反射境界面を持つことから、す
くなくとも透過ビーム径の4倍の立方体となる。光デイ
スクヘッドとくに再生専用ではなく記録可能型の光ヘッ
ドに用いる場合には透過ビームが大きいため、この従来
の偏光素子は一辺が8〜10mmもの立方体となってい
る。このことが、光デイスク用光ヘッドの大きさを大き
くしている一つの原因を成している。
(Problems to be Solved by the Invention) These conventional polarization splitting elements have the disadvantage of being large. Whether it is a polarizing element using an optically anisotropic crystal or a dielectric thin film type polarizing element, it has a reflective boundary surface that is inclined at 45 degrees or more to the optical axis, so at least the diameter of the transmitted beam is It becomes a cube four times as large as . Since the transmitted beam is large when used in an optical disk head, particularly an optical head of a recordable type rather than a read-only type, this conventional polarizing element has a cubic shape with a side of 8 to 10 mm. This is one of the reasons why the size of the optical head for an optical disk is increased.

本発明の目的は、上記従来の偏光素子の難点を除去した
、極めて薄い格子型光偏光板を提供することにある。
An object of the present invention is to provide an extremely thin grating-type optical polarizing plate that eliminates the drawbacks of the conventional polarizing elements.

(問題点を解決するための手段) 本発明の回折格子型光偏光板の構成は、ニオブ酸リチウ
ム結晶板の主面に、周期を有するイオン交換領域の光学
的回折格子を形成し、がっ、該回折格子を透過させる光
波の常光成分が、前記イオ  −ン交換領域で受ける位
相変化を相殺する手段を設けたことを特徴とする。
(Means for Solving the Problems) The structure of the diffraction grating type light polarizing plate of the present invention is such that an optical diffraction grating of periodic ion exchange regions is formed on the main surface of a lithium niobate crystal plate. , characterized in that means is provided for canceling the phase change that the ordinary light component of the light wave transmitted through the diffraction grating undergoes in the ion exchange region.

以下、本発明の実施例について図面を参照して詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1) 第1図は本発明の第一の実施例の回折格子型光偏光板の
斜視図であって、1はニオブ酸リチウム結晶板、2はプ
ロトンイオン交換領域であり、この交換領域を周期的に
形成して光学的回折格子を設けである。さらに、該回折
1格子を透過させる光波のうち常光成分が前記イオン交
換領域で受ける位相変化を相殺させるために、その手段
として、この第一の実施例では第2図の断面図に示すよ
うに、イオン交換を施こさない領域の表面のみを所望の
深さだけエツチングを施しである。
(Example 1) FIG. 1 is a perspective view of a diffraction grating type light polarizing plate according to the first example of the present invention, in which 1 is a lithium niobate crystal plate, 2 is a proton ion exchange region, and The optical diffraction grating is provided by periodically forming regions. Furthermore, in order to offset the phase change that the ordinary light component of the light wave transmitted through the first diffraction grating undergoes in the ion exchange region, in this first embodiment, as shown in the cross-sectional view of FIG. Then, only the surface of the area where ion exchange will not be performed is etched to a desired depth.

本実施例では、X板のニオブ酸リチウム結晶に、Z軸方
向に周期を有するイオン交換領域と非交換領域で構成さ
れる格子を形成しである。この周期を形成するには、一
般に用いられているフォトリソグラフィ技術などで行え
ばよい。ニオブ酸リチウム結晶板にプロトンイオン(H
+)交換を施すと、施さない部位に比較して異常光線に
対する屈折率n6は0.13程度上昇し、常光線に対す
る屈折率n0は0.04程度減少する。この常光線に対
して、イオン交換領域の屈折率の減少によって、非交換
領域との間で生ず心位相変化を無くするために、その手
段として、この第一の実施例では、イオン交換を施さな
い領域の表面のみを、所望の深さだけエツチングを施し
ている。
In this example, a lattice consisting of an ion exchange region and a non-exchange region having a period in the Z-axis direction is formed in the lithium niobate crystal of the X plate. This period may be formed using a commonly used photolithography technique. Proton ions (H
+) When the exchange is performed, the refractive index n6 for extraordinary rays increases by about 0.13, and the refractive index n0 for ordinary rays decreases by about 0.04, compared to the region where no exchange is performed. In this first embodiment, ion exchange is used as a means for eliminating the cardiac phase change that occurs between the ordinary ray and the non-exchanged region by decreasing the refractive index of the ion exchange region. Only the surface of the unetched area is etched to the desired depth.

第2図の断面を有し、第1図の斜視図に示すような構造
の位相格子に入射光3が入射すると、y軸方向に振動す
る偏光成分すなわち常光成分は、イオン交換によ条非イ
オン交換領域より屈折率の低い格子が形成されていても
、非イオン交換領域の表面がエツチングされているため
に、面内において受ける位相変化は一様となって光学的
回折格子の効果はないため、0次光4となって結晶板1
を直進通過する。一方、入射光3とのZ軸方向に振動す
る偏光成分すなわち異常光成分に対しては、プロトンイ
オン交換領域2は−+ 0.13、非交換領域n6の屈
折率が周期的に異なり、それらの間で賜の段差のある光
学的位相回折格子に入射したことになり、回折光5及び
6となって結晶板1から出射する。
When incident light 3 enters a phase grating having the cross section shown in FIG. 2 and the structure shown in the perspective view of FIG. Even if a grating with a lower refractive index than the ion exchange region is formed, since the surface of the non-ion exchange region is etched, the phase change received in the plane is uniform and there is no effect of an optical diffraction grating. Therefore, the 0th order light 4 becomes the crystal plate 1.
Go straight through. On the other hand, for the polarized light component vibrating in the Z-axis direction with respect to the incident light 3, that is, the extraordinary light component, the proton ion exchange region 2 has a refractive index of −+ 0.13, and the refractive index of the non-exchange region n6 is periodically different. This means that the light is incident on an optical phase diffraction grating with a step between the two, and the diffracted light beams 5 and 6 are output from the crystal plate 1.

光学的に厚さが薄い回折格子にょる0次回折光の回折効
率J02(Φ)で与えられる。ここで、Φは回折格子に
よって異常光の受ける位相変化である。異常光線が総て
回折され、0次光成分4中に現れないためにはJ02(
Φ)=0、すなわち、Φ〜2.4であり、光波−長0.
8¥1mにたいしてTすなわち交換領域の厚さは2.3
11m程度、また光波長1.3pmにたいしては、3.
8¥1m程度と設定すればよい。さらに、段差−は、光
波長0.811mに対しては400A程度、11−3p
光に対して700A程度とすればよい。
It is given by the diffraction efficiency J02 (Φ) of the 0th order diffracted light by the optically thin diffraction grating. Here, Φ is the phase change that the extraordinary light undergoes due to the diffraction grating. J02 (
Φ)=0, that is, Φ~2.4, and the optical wavelength is 0.
For 8 yen 1m, T or the thickness of the exchange area is 2.3
11m, and for a light wavelength of 1.3pm, 3.
It is sufficient to set it to about 8 yen 1m. Furthermore, the level difference is about 400A for a light wavelength of 0.811m, and the height difference is 11-3p.
The light may be about 700A.

(実施例2) 第3図は本発明の第二の実施例の回折格子型光偏光板の
断面図であって、1はニオブ酸リチウム結晶板、2はプ
ロトンイオン交換領域であり、この交換領域を周期的に
形成して光学的回折格子を設けてある。該イオン交換を
施した領域の表面のみに、所望の厚さに設定せられた誘
電体膜7が設けである。
(Example 2) FIG. 3 is a sectional view of a diffraction grating type light polarizing plate according to a second example of the present invention, in which 1 is a lithium niobate crystal plate, 2 is a proton ion exchange region, and this exchange An optical diffraction grating is provided by periodically forming regions. A dielectric film 7 having a desired thickness is provided only on the surface of the ion-exchanged region.

第3図の断面を有する位相格子に、第1図と同様に光が
入射すると、y軸方向に振動する偏光成分すなわち常光
成分の受けるイオン交換を施した領域の屈折率の低下に
よる位相変化は該領域の上に設けた誘電体膜によって相
殺され、イオン交換による格子が形成されていても、光
学的回折格子の効果はなく、結晶板1を直進通過する。
When light enters a phase grating having the cross section shown in FIG. 3 in the same manner as shown in FIG. 1, the phase change due to the decrease in the refractive index of the ion-exchanged region affected by the polarized light component vibrating in the y-axis direction, that is, the ordinary light component, is Even if a grating due to ion exchange is formed by being canceled by the dielectric film provided on the region, there is no effect of an optical diffraction grating, and the light passes straight through the crystal plate 1.

一方、異常光成分に対しては、プロトンイオン交換領域
はn6+0.13、非交換領域はn6と屈折率が周期的
に異なり、更に誘電体膜が付加された光学的回折格子に
入射したことになり、回折光となって結晶板1から出射
する。
On the other hand, for the extraordinary light component, the refractive index is periodically different from n6+0.13 in the proton ion exchange region to n6 in the non-exchange region, and furthermore, the refractive index is different due to the fact that it is incident on the optical diffraction grating to which a dielectric film is added. The diffracted light is emitted from the crystal plate 1 as diffracted light.

異常光が総て回折され、常光が回折を受けないためのイ
オン交換の深さ及び誘電体膜の厚さに対する条件は、上
記実施例1と同様に求めることができ、光波長0.8p
mにたいして交換領域の厚さは2.3pm程度、また光
波長1.3μmにたいしては、3.8pm程度と設定す
ればよい。さらに、イオン交換を施しである領域の上に
設ける誘電体膜の厚さは屈折率1.45の5i02を誘
電体膜に用いたとき、波長0.8pmの光に対しては4
00A程度、1.3pm光に対しては700程度すれば
よい。
The conditions for the depth of ion exchange and the thickness of the dielectric film so that all the extraordinary light is diffracted and the ordinary light is not diffracted can be determined in the same manner as in Example 1 above, and the light wavelength is 0.8p.
The thickness of the exchange region may be set to about 2.3 pm for a light wavelength of 1.3 μm, and about 3.8 pm for a light wavelength of 1.3 μm. Furthermore, when 5i02 with a refractive index of 1.45 is used as the dielectric film, the thickness of the dielectric film provided on the area subjected to ion exchange is 4
For light of about 00 A and 1.3 pm, it is sufficient to set it to about 700.

(実施例3) 第4図は本発明の第三の実施例の回折格子型光偏光板の
断面図であって、1はニオブ酸リチウム結晶板、2はプ
ロトンイオン交換領域であり、この交換領域を周期的に
形成して光学的回折格子を設けである。さらに、該回折
格子を透過させる光波のうち常光成分が前記イオン交換
領域で受ける位相変化を相殺させるために、その手段と
して、この第三の実施例では、該イオン交換を施した領
域の表面とイオン交換を施してない領域の表面とで厚さ
を異ならしめた誘電体膜7を設けである。
(Example 3) FIG. 4 is a cross-sectional view of a diffraction grating type light polarizing plate according to a third example of the present invention, in which 1 is a lithium niobate crystal plate, 2 is a proton ion exchange region, and The optical diffraction grating is provided by periodically forming regions. Furthermore, in order to cancel the phase change that the ordinary light component of the light wave transmitted through the diffraction grating undergoes in the ion exchange region, in this third embodiment, as a means for canceling the phase change that the ordinary light component of the light wave transmitted through the diffraction grating is A dielectric film 7 is provided which has a different thickness on the surface of the area where ion exchange is not performed.

第4図の断面を有する位相格子に光が入射すると、y軸
方向に振動する偏光成分すなわち常光成分は、面内にお
いて受ける位相変化は一様となって光学的回折格子の効
果を受けないため、結晶板を直進通過する。一方、2軸
方向に振動する偏光成分すなわち異常光成分は、光学的
位相回折格子の効果を受け、回折光となって結晶板1か
ら出射する。
When light enters a phase grating having the cross section shown in Figure 4, the polarized light component vibrating in the y-axis direction, that is, the ordinary light component, undergoes a uniform phase change in the plane and is not affected by the effect of the optical diffraction grating. , passes straight through the crystal plate. On the other hand, the polarized light component vibrating in the biaxial directions, that is, the extraordinary light component, is affected by the optical phase diffraction grating and is emitted from the crystal plate 1 as diffracted light.

異常光が総て回折され、常光が回折を受けずに透過する
ためめイオン交換の深さ及び誘電体膜の段差に対する条
件は、上記実施例2と同様にすればよい。
Since all the extraordinary light is diffracted and the ordinary light is transmitted without undergoing diffraction, the conditions for the depth of ion exchange and the step difference in the dielectric film may be the same as in Example 2 above.

ニオブ酸リチウム結晶にプロトン交換を施す方法は、光
導波路を形成する方法としてよく知られており、たとえ
ば217°C程度に熱した安息香酸中にニオブ酸リチウ
ム結晶を6時間程度浸すと、2.311m程度の深さの
プロトンイオン交換が実現する。さらに、温度と時間を
増加させると交換深さをQm程度まで増加させることが
できる。
The method of performing proton exchange on lithium niobate crystals is a well-known method for forming optical waveguides. For example, when a lithium niobate crystal is immersed in benzoic acid heated to about 217°C for about 6 hours, 2. Proton ion exchange at a depth of approximately 311 meters will be realized. Furthermore, by increasing the temperature and time, the exchange depth can be increased to about Qm.

上記の作製法で使った格子型偏光素子を従来と同様の使
い方すなわち1/4波長板やファラデー回転子と組み合
わせることによって従来と同様の効果すなわち光アイソ
レーション効果を得ることができる。この格子型偏光素
子は、薄いニオブ酸リチウム結晶板を使って形成できる
ため、小型で薄い偏光素子を得ることができる。
By using the grating-type polarizing element used in the above manufacturing method in the same manner as in the past, that is, in combination with a quarter-wave plate or a Faraday rotator, the same effect as in the past, that is, the optical isolation effect can be obtained. Since this lattice type polarizing element can be formed using a thin lithium niobate crystal plate, a small and thin polarizing element can be obtained.

なお、上述のイオン交換時間の精度は、それほど高い精
度を必要としない。何故ならばイオン交換時間の設定が
不十分でJ。2(Φ)=0より僅かにずれても、この回
折格子を複数、例えばニオブ酸リチウム結晶の画面に回
折格子を形成するか、或は、複数の板を縦属に用いるこ
とによって、透過0次光の強度極めて小さくすることが
できる。
Note that the accuracy of the above-mentioned ion exchange time does not require very high accuracy. This is because the ion exchange time setting was insufficient. Even if there is a slight deviation from 2(Φ) = 0, the transmission can be reduced to 0 by forming a plurality of diffraction gratings, for example on a lithium niobate crystal screen, or by using multiple plates vertically. The intensity of the secondary light can be made extremely small.

さらに、上記の実施例では、プロトンイオン交換の場合
を述べたが、同じ効果は硝酸銀や硝酸タリウム等に浸し
た場合にもそれぞれ銀イオン(Ag+)交換、タリウム
イオン(TI+)交換が生じ、異常光屈折率の0.13
程度の屈折率上昇が確認されている。
Furthermore, in the above example, the case of proton ion exchange was described, but the same effect can be obtained when immersed in silver nitrate, thallium nitrate, etc., silver ion (Ag+) exchange and thallium ion (TI+) exchange occur, respectively, causing abnormalities. Optical refractive index of 0.13
A moderate increase in refractive index has been confirmed.

(発明の効果) 以上述べたように、本発明によれば薄くて小型の偏光素
子を得ることができ、さらには、ニオブ酸リチウム結晶
ウェハを素材として作製するため、バッチ処理による大
量安価の偏光素子を得ることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a thin and compact polarizing element, and furthermore, since it is manufactured using a lithium niobate crystal wafer as a material, it is possible to produce a polarizing element in large quantities and at low cost through batch processing. element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例の回折格子型光偏光板の
斜視図であり、第2図はその断面図であり、第3図及び
第4図は、それぞれ別なる実施例の構造断面図である。 1・・・ニオブ酸リチウム結晶板、2・・・イオン交換
領千  1  図 半  3  図
FIG. 1 is a perspective view of a diffraction grating type light polarizing plate according to a first embodiment of the present invention, FIG. 2 is a sectional view thereof, and FIGS. 3 and 4 are views of different embodiments. FIG. 1... Lithium niobate crystal plate, 2... Ion exchange area 1 Figure and a half 3 Figures

Claims (1)

【特許請求の範囲】[Claims] ニオブ酸リチウム結晶板の主面に周期を有するイオン交
換領域の光学的回折格子を形成し、かつ、該回折格子を
透過させる常光成分が、前記イオン交換を施こした領域
とイオン交換を施さない領域との間で受ける位相変化を
相殺する手段を設けたことを特徴とする複屈折回折格子
型光偏光板。
An optical diffraction grating of periodic ion-exchange regions is formed on the main surface of the lithium niobate crystal plate, and the ordinary light component transmitted through the diffraction grating is not ion-exchanged with the ion-exchanged region. 1. A birefringent diffraction grating type optical polarizing plate, characterized in that it is provided with means for canceling phase changes experienced between regions.
JP62130144A 1986-12-16 1987-05-26 Double refractive diffraction grating type polarizing plate Granted JPS63314502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130144A JPS63314502A (en) 1986-12-16 1987-05-26 Double refractive diffraction grating type polarizing plate

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP30078386 1986-12-16
JP61-300783 1986-12-16
JP61-300784 1986-12-16
JP30078486 1986-12-16
JP780587 1987-01-14
JP62-7805 1987-01-14
JP62130144A JPS63314502A (en) 1986-12-16 1987-05-26 Double refractive diffraction grating type polarizing plate

Publications (2)

Publication Number Publication Date
JPS63314502A true JPS63314502A (en) 1988-12-22
JPH0575081B2 JPH0575081B2 (en) 1993-10-19

Family

ID=27454800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130144A Granted JPS63314502A (en) 1986-12-16 1987-05-26 Double refractive diffraction grating type polarizing plate

Country Status (1)

Country Link
JP (1) JPS63314502A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405444A2 (en) * 1989-06-26 1991-01-02 Nec Corporation Optical head
EP0565381A2 (en) * 1992-04-08 1993-10-13 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
JPH0627322A (en) * 1992-04-08 1994-02-04 Matsushita Electric Ind Co Ltd Optical element and optical information processor using the element and production of optical element
EP0612068A2 (en) * 1993-02-16 1994-08-24 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
JPH06308309A (en) * 1993-02-24 1994-11-04 Nec Corp Double refraction diffraction grating type polarizer and optical head device
EP0692785A2 (en) 1994-06-30 1996-01-17 Matsushita Electric Industrial Co., Ltd. Optical head device
WO1999050692A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Polarizing diffraction grating and magneto-optical head made by using the same
US6046851A (en) * 1996-09-06 2000-04-04 Nec Corporation Polarization beam splitter and method for making the same
US6072579A (en) * 1998-08-27 2000-06-06 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector
US6292441B1 (en) 1997-04-16 2001-09-18 Matsushita Electric Industrial Co., Ltd. Optical head device, optical information apparatus, and method for detecting focus error signal
US6532202B1 (en) 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP2007234194A (en) * 2006-03-03 2007-09-13 Asahi Glass Co Ltd Optical head apparatus
JP2009146528A (en) * 2007-12-17 2009-07-02 Panasonic Corp Optical pickup device and optical disk device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405444A2 (en) * 1989-06-26 1991-01-02 Nec Corporation Optical head
US5493555A (en) * 1989-06-26 1996-02-20 Nec Corporation Optical head using birefringent diffraction grating
US5455712A (en) * 1992-04-08 1995-10-03 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
EP0565381A2 (en) * 1992-04-08 1993-10-13 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
EP0565381A3 (en) * 1992-04-08 1993-12-01 Matsushita Electric Ind Co Ltd Optical element and method of fabricating the same
JPH0627322A (en) * 1992-04-08 1994-02-04 Matsushita Electric Ind Co Ltd Optical element and optical information processor using the element and production of optical element
US5367403A (en) * 1992-04-08 1994-11-22 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
US5659531A (en) * 1993-02-16 1997-08-19 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
EP0911822A2 (en) * 1993-02-16 1999-04-28 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
EP0911822A3 (en) * 1993-02-16 2004-09-22 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
EP0612068A3 (en) * 1993-02-16 1995-12-06 Nec Corp Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein.
US5535055A (en) * 1993-02-16 1996-07-09 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
EP0612068A2 (en) * 1993-02-16 1994-08-24 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
US5883741A (en) * 1993-02-16 1999-03-16 Nec Corporation Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
JPH06308309A (en) * 1993-02-24 1994-11-04 Nec Corp Double refraction diffraction grating type polarizer and optical head device
US5757754A (en) * 1994-06-30 1998-05-26 Matsushita Electric Industrial Co., Ltd. Holographic optical head
US5748599A (en) * 1994-06-30 1998-05-05 Matsushita Electric Industrial Co., Ltd. Holographic optical device
EP0692785A2 (en) 1994-06-30 1996-01-17 Matsushita Electric Industrial Co., Ltd. Optical head device
US6046851A (en) * 1996-09-06 2000-04-04 Nec Corporation Polarization beam splitter and method for making the same
US6292441B1 (en) 1997-04-16 2001-09-18 Matsushita Electric Industrial Co., Ltd. Optical head device, optical information apparatus, and method for detecting focus error signal
WO1999050692A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Polarizing diffraction grating and magneto-optical head made by using the same
US6072579A (en) * 1998-08-27 2000-06-06 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector
US6618344B1 (en) 1998-08-27 2003-09-09 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector
US6532202B1 (en) 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP2007234194A (en) * 2006-03-03 2007-09-13 Asahi Glass Co Ltd Optical head apparatus
JP2009146528A (en) * 2007-12-17 2009-07-02 Panasonic Corp Optical pickup device and optical disk device

Also Published As

Publication number Publication date
JPH0575081B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
US5029988A (en) Birefringence diffraction grating type polarizer
EP1420275B1 (en) Isolator and optical attenuator
US4221464A (en) Hybrid Brewster's angle wire grid infrared polarizer
US4871226A (en) Mounting of optical fibers to integrated optical chips
WO2004008196A1 (en) Polarization analyzer
US6249619B1 (en) Optical isolator
JPS63314502A (en) Double refractive diffraction grating type polarizing plate
US6359733B1 (en) Composite optical element, optical isolator, optical circulator, optical switch and processes for producing them
AU611739B2 (en) Optical isolator
JP2803181B2 (en) Birefringent diffraction grating polarizer
EP0484626B1 (en) Polarizing beam splitter
JP2541548B2 (en) Diffraction grating type optical polarizer
JPS6355501A (en) Diffraction grating type polarizing plate
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP3038942B2 (en) Birefringent diffraction grating polarizer and optical isolator
JPH05196813A (en) Diffraction grating type optical polarizing element
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
JPH0830767B2 (en) Hologram element
JP2561912B2 (en) Polarization separation waveguide
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JPH0212107A (en) Birefringent diffraction grating type polarizer
JPH07191281A (en) Fiber type optical isolator
JP2007041207A (en) Polarized beam splitter
JPH11352326A (en) Double refractive diffraction grating type polarizer and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 14