JPH07191281A - Fiber type optical isolator - Google Patents

Fiber type optical isolator

Info

Publication number
JPH07191281A
JPH07191281A JP5329251A JP32925193A JPH07191281A JP H07191281 A JPH07191281 A JP H07191281A JP 5329251 A JP5329251 A JP 5329251A JP 32925193 A JP32925193 A JP 32925193A JP H07191281 A JPH07191281 A JP H07191281A
Authority
JP
Japan
Prior art keywords
optical
fiber
optical isolator
isolator
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5329251A
Other languages
Japanese (ja)
Other versions
JP3540826B2 (en
Inventor
Yasushi Sato
恭史 佐藤
Masanori Koshiba
正則 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32925193A priority Critical patent/JP3540826B2/en
Publication of JPH07191281A publication Critical patent/JPH07191281A/en
Application granted granted Critical
Publication of JP3540826B2 publication Critical patent/JP3540826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the fiber type optical isolator which consists of a small number of components, and is reducible in size, wide in application, and large in utilization value. CONSTITUTION:The fiber type optical isolator is constituted by removing part of the clad 3 of a single-mode optical fiber 1 installed while bent having curvature and loading the removal part with a magnetooptic material 4, and then a magnetic field is applied at right angles to the propagation direction of light to cause a nonreciprocal phase shift by magnetooptic effect in the core 2 of the single-mode optical fiber 1; and the relation of loss due to the bending of the optical fiber 1 with the value of a propagation constant is utilized to vary an attenuation quantity in the opposite direction from the forward direction. Consequently, a lens is not necessary and there is no polarizer, etc., so the need for optical alignment is eliminated to decrease the number of components; and the optical fiber itself is used as an optical isolator to reduce the size, and there is no incidence/projection surface present halfway, so reflected light from the inside of the optical isolator is reduced. Further, the isolator can be added directly to an optical fiber for transmission, so the fiber type optical isolator which is wide in application and large in utilization value is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信や光計測の分野に
おいて用いられる光アイソレータ関し、特に全体をファ
イバ型に構成したファイバ型光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator used in the fields of optical communication and optical measurement, and more particularly to a fiber type optical isolator having a fiber structure as a whole.

【0002】[0002]

【従来の技術】光計測や光通信に用いられる半導体レー
ザー(以下LDと称する)は、反射光が戻ってきてLD
の活性層に入射すると、発振波長や出力の変動が起こり
正確な信号の送信、計測ができなくなる。この反射光を
遮断するために用いられるのが光アイソレータであり、
特に任意の光ファイバ間や、ファイバアンプに用いられ
る光アイソレータをインライン型もしくはピグテイル型
光アイソレータという。図6(a)(b)に従来のイン
ライン型光アイソレータの構成例を示す。7は入射光
線、8は複屈折板、例えば一軸結晶からその光軸が表面
と傾く様に切り出し平行平板に研磨したもので、この平
行平板に垂直に入射した光線を互いに垂直な2つの直線
偏光に分離する。9はYIG等で形成されたファラデー
回転子であり、光の伝搬方向と平行に外部より磁界を印
加されている。光はファラデー回転子9により磁界の方
向を軸に偏光面を45°回転させる。10は光の伝搬方
向を軸に偏光面を45°回転させる旋光子。11は複屈
折板であって、光の伝搬方向を軸に複屈折板8の光学軸
と11の光学軸とが平行になるよう設置されている。1
2、13は光をファイバに結合するためのレンズ系であ
る。なおレンズ12から13へ向かう方を順方向、反対
を逆方向とする。順方向の光は図6(a)に示すように
互いに直交する2つの偏光成分が複屈折板8で分離され
別々に偏光面の回転をした後、複屈折板11により合成
され伝搬して行く。逆方向の光は図6(b)に示すよう
に複屈折板11により互いに直交する偏光成分を持つ2
つの光に分離され、別々に偏光面を回転させた後、複屈
折板8によりさらに分離されるため遮断される。これに
より、反射光が戻ることを防止するようになる。
2. Description of the Related Art Semiconductor lasers (hereinafter referred to as LDs) used for optical measurement and optical communication are LDs whose reflected light returns.
When the light enters the active layer, the oscillation wavelength and output fluctuate, and accurate signal transmission and measurement cannot be performed. An optical isolator is used to block this reflected light.
In particular, an optical isolator used for an arbitrary optical fiber or for a fiber amplifier is called an in-line type or pigtail type optical isolator. FIGS. 6A and 6B show a configuration example of a conventional in-line type optical isolator. Reference numeral 7 is an incident light ray, and 8 is a birefringent plate, for example, a uniaxial crystal cut out so that its optical axis is inclined to the surface and polished into parallel flat plates. To separate. Reference numeral 9 denotes a Faraday rotator formed of YIG or the like, to which a magnetic field is applied from the outside in parallel with the light propagation direction. The Faraday rotator 9 rotates the light by 45 ° about the plane of polarization about the direction of the magnetic field. Reference numeral 10 is an optical rotator that rotates the plane of polarization by 45 ° about the light propagation direction. Reference numeral 11 denotes a birefringent plate, which is installed so that the optical axis of the birefringent plate 8 and the optical axis of 11 are parallel to each other with the light propagation direction as an axis. 1
Reference numerals 2 and 13 are lens systems for coupling light into a fiber. The direction from the lens 12 to the lens 13 is the forward direction, and the opposite is the reverse direction. As shown in FIG. 6A, two polarization components orthogonal to each other in the forward direction are separated by the birefringent plate 8 and their polarization planes are rotated separately, and then are combined and propagated by the birefringent plate 11. . The light in the opposite direction has polarization components orthogonal to each other due to the birefringence plate 11 as shown in FIG.
The light is separated into two lights, and the polarization planes are rotated separately, and then the lights are further separated by the birefringent plate 8 and thus blocked. This prevents the reflected light from returning.

【0003】[0003]

【発明が解決しようとする課題】ところが、前述のよう
なインライン型光アイソレータは、非常に多くの部品を
使うため高価になってしまう。またそれぞれの部品の位
置調整が必要で、特にレンズと光ファイバの光学的結合
は手間が掛かるものである。さらに多数の光学素子の入
射面からの反射光がアイソレーションを劣化させる原因
になっていた。
However, the above-described in-line type optical isolator uses a large number of parts and is therefore expensive. In addition, it is necessary to adjust the position of each component, and in particular, optical coupling between the lens and the optical fiber is troublesome. Further, the reflected light from the incident surface of many optical elements has been a cause of deterioration of isolation.

【0004】[0004]

【課題を解決するための手段】本発明は、上記のような
問題点を解決するため、伝送用の通常の光ファイバ自体
に直接光アイソレータ機能を付加する方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention provides a method for directly adding an optical isolator function to an ordinary optical fiber for transmission in order to solve the above problems.

【0005】具体的には、曲率を有するように曲げて設
置した伝送用の光ファイバのクラッドの一部を除去し、
その部分に磁気光学物質を装荷する。前記磁気光学物質
に光の進行方向と垂直方向に磁界を印加することにより
本来等方性であるファイバに非相反位相シフトを生じさ
せて、光ファイバの曲げによる減衰が伝搬定数により異
なることを利用し、順方向と逆方向の光の損失に差をつ
けるものである。
Specifically, a part of the cladding of the optical fiber for transmission which is bent and installed so as to have a curvature is removed,
A magneto-optical material is loaded on the part. By applying a magnetic field to the magneto-optical material in a direction perpendicular to the traveling direction of light, a non-reciprocal phase shift is caused in the originally isotropic fiber, and the attenuation due to bending of the optical fiber varies depending on the propagation constant. However, it makes a difference in the light loss in the forward and backward directions.

【0006】ここで、磁気光学導波路の非相反位相シフ
トについて図5の斜視概略図を用いて簡単に説明する。
磁気光学材料4からなる導波層と基板14から構成され
る3次元導波路6における光の導波モードは、電磁界の
主成分がEx とHy であるEx モードと、電磁界の主成
分がEy とHx であるEy モードに大別される。これら
のモードはハイブリッドモードになっているが、簡単の
ためにEx モードはEy =0とおいてTEモード、Ey
モードはHy =0とおいてTMモードとそれぞれ近似す
ることができる。なおE(Ex 、Ey 、Ez )を電界ベ
クトル、H(Hx 、Hy 、Hz )を磁界ベクトルとす
る。磁気光学材料4で形成した従来の非相反導波路で
は、導波路のX方向に磁界を印加することによってTM
モードに非相反位相シフトが生じる。これは+Z方向に
伝搬する光と−Z方向に伝搬する光の伝搬定数が異なる
現象で、磁界を印加しない場合のTMモードの伝搬定数
をβ0とすれば、磁界印加時の伝搬定数は+Z方向を順
方向としてβf =β0 +△β、−Z方向を逆方向として
βb =β0 −△βとなる。△βが磁気光学効果によって
生じる非相反位相シフトで、βf −βb を非相反移相量
という。
Here, the non-reciprocal phase shift of the magneto-optical waveguide will be briefly described with reference to the perspective schematic view of FIG.
In the waveguide mode of light in the three-dimensional waveguide 6 composed of the waveguide layer made of the magneto-optical material 4 and the substrate 14, the Ex mode in which the main components of the electromagnetic field are Ex and Hy and the main component of the electromagnetic field are It is roughly divided into Ey mode, which is Ey and Hx. These modes are hybrid modes, but for the sake of simplicity, set Ex mode to Ey = 0, TE mode, Ey
The mode can be approximated to the TM mode by setting Hy = 0. E (Ex, Ey, Ez) is an electric field vector, and H (Hx, Hy, Hz) is a magnetic field vector. In the conventional non-reciprocal waveguide formed of the magneto-optical material 4, TM is applied by applying a magnetic field in the X direction of the waveguide.
A non-reciprocal phase shift occurs in the mode. This is a phenomenon in which the propagation constants of light propagating in the + Z direction and light propagating in the -Z direction are different. If the propagation constant of the TM mode when no magnetic field is applied is β0, the propagation constant when the magnetic field is applied is in the + Z direction. For the forward direction, βf = β0 + Δβ, and for the -Z direction in the reverse direction, βb = β0 -Δβ. Δβ is the nonreciprocal phase shift generated by the magneto-optical effect, and βf −βb is called the nonreciprocal phase shift amount.

【0007】[0007]

【実施例】図1は本発明の第1の実施例の断面概略図を
示す。石英系のシングルモード光ファイバ1を曲げて基
板14に設置し、そのクラッド3の一部を除去しその部
分に磁気光学材料4であるCe置換YIG単結晶を装荷
している。即ち、磁気光学材料4をシングルモード光フ
ァイバ1に装荷する事により生じる非相反位相シフト
と、シングルモード光ファイバ1を曲げることによる損
失を利用してファイバ型光アイソレータ5を構成するも
のである。
1 shows a schematic sectional view of a first embodiment of the present invention. The quartz single mode optical fiber 1 is bent and installed on the substrate 14, a part of the clad 3 is removed, and a Ce-substituted YIG single crystal which is the magneto-optical material 4 is loaded on the part. That is, the fiber type optical isolator 5 is constructed by utilizing the non-reciprocal phase shift generated by loading the magneto-optical material 4 on the single mode optical fiber 1 and the loss caused by bending the single mode optical fiber 1.

【0008】これまでは導波路に磁気光学効果を生じさ
せるためには、光が主として存在する導波層そのものを
磁気光学材料で形成していた。ここに形成に伴う困難
や、最適な屈折率差の制御、導波路とファイバの結合の
問題が生じる原因があった。ところが伝搬する光の電磁
界は導波層、あるいはコアの外部までエバネッセント波
として存在しており、このエバネッセント波に磁気光学
材料を作用させることにより、本来等方性であった光フ
ァイバを伝搬する光に磁気光学効果を生じさせることが
できる。
In the past, in order to generate the magneto-optical effect in the waveguide, the waveguide layer itself in which light mainly exists was formed of a magneto-optical material. Here, there are some problems such as difficulty in formation, optimal control of refractive index difference, and problems of coupling between waveguide and fiber. However, the electromagnetic field of the propagating light exists as an evanescent wave to the outside of the waveguide layer or the core, and the magneto-optical material acts on the evanescent wave to propagate through the originally isotropic optical fiber. A magneto-optical effect can be produced in light.

【0009】図2は、図1の構造を解析の為に模式化し
たものであり、光の伝搬方向に垂直な断面図を示してい
る。シングルモード光ファイバ1のコア2は本来円形だ
が、正方形に近似してある。また、クラッド3の一部を
削除して磁気光学材料4を装荷する事によりX方向とY
方向で対称性が異なるため矩形導波路同様に導波モード
をTE、TMと近似して考える。磁界はX方向に印加す
る。図3は図2の構造においてコア2と磁気光学材料4
の距離Hを変化させて非相反位相シフト量Φ=βf −β
b を有限要素法で計算したものである。磁気光学材料4
の厚さd=0.4μm、コア径を6μmとし、光ファイ
バ1のコア2の屈折率は1.5045、クラッド3の屈
折率は1.5、Ce置換YIGの屈折率は2.23、磁
気光学定数γは7.7×10-3、としている。非相反位
相シフト量はHにより変化しているが0〜3μmで約1
6.5rad/cmを示している。このようにコア2が
等方性の物質であっても、非相反位相シフトを生じせし
めることが可能である。
FIG. 2 is a schematic view of the structure of FIG. 1 for analysis, and shows a sectional view perpendicular to the light propagation direction. The core 2 of the single-mode optical fiber 1 is originally circular, but is approximate to a square. Further, by removing a part of the clad 3 and loading the magneto-optical material 4, the X direction and the Y direction can be changed.
Since the symmetry is different depending on the direction, the waveguide modes are considered to be similar to TE and TM as in the rectangular waveguide. The magnetic field is applied in the X direction. FIG. 3 shows the core 2 and the magneto-optical material 4 in the structure of FIG.
By changing the distance H of the non-reciprocal phase shift amount Φ = β f −β
b is calculated by the finite element method. Magneto-optical material 4
Thickness d = 0.4 μm, the core diameter is 6 μm, the refractive index of the core 2 of the optical fiber 1 is 1.504, the refractive index of the cladding 3 is 1.5, and the refractive index of the Ce-substituted YIG is 2.23. The magneto-optical constant γ is set to 7.7 × 10 -3. The non-reciprocal phase shift amount changes depending on H, but it is about 1 at 0 to 3 μm.
It shows 6.5 rad / cm. Thus, even if the core 2 is an isotropic material, it is possible to cause a non-reciprocal phase shift.

【0010】このファイバ型非相反部品を利用してファ
イバ型光アイソレータ5を構成するためにシングルモー
ド光ファイバ1の磁気光学材料4の装荷部に図1の様な
曲げを与えてある。この曲げにより、電磁界はさらに曲
げの外側に、即ち磁気光学材料に近い部分に分布し非相
反性を増大させる。また曲げによる損失は、伝搬定数が
小さいほど大きくなる。非相反位相シフトの結果、順方
向伝搬定数>逆方向伝搬定数になり、さらに曲げにより
順方向損失<逆方向損失となりアイソレータ動作を発揮
することができる。
In order to construct a fiber type optical isolator 5 using this fiber type non-reciprocal component, the loading portion of the magneto-optical material 4 of the single mode optical fiber 1 is bent as shown in FIG. By this bending, the electromagnetic field is further distributed outside the bending, that is, in the portion close to the magneto-optical material, and the non-reciprocity is increased. The loss due to bending increases as the propagation constant decreases. As a result of the non-reciprocal phase shift, the forward propagation constant> the backward propagation constant, and further, the bending causes the forward loss <the backward loss, and the isolator operation can be exhibited.

【0011】以上の原理を図4のグラフを用いて簡単に
説明する。横にファイバのコア2と磁気光学材料4の距
離H、縦に伝搬定数βをとる。カットオフ値の下は連続
モードである放射モードになり、光はクラッド3に放射
されコアに閉じ込められない。カットオフ条件はコア2
とクラッド3の屈折率差で決まり、また磁界を印加しな
い場合の伝搬定数β0 とカットオフの関係はシングルモ
ード光ファイバ1に対する曲げ、応力、シングルモード
光ファイバ1に装荷される物質の物性、コア2と装荷さ
れる物質との距離等で変わる。磁界を印加する事により
伝搬定数は順方向βf 、逆方向βb となる。図1の実施
例1では曲げによりβ0 とカットオフ値を近づけ、逆方
向伝搬定数βb だけが放射モードと重なり(斜線部)損
失を生じる様に構成することができるのである。
The above principle will be briefly described with reference to the graph of FIG. The distance H between the fiber core 2 and the magneto-optical material 4 is taken horizontally, and the propagation constant β is taken vertically. Below the cutoff value, the emission mode is a continuous mode, and light is emitted to the cladding 3 and is not confined in the core. Cut-off condition is core 2
Is determined by the difference in refractive index between the cladding 3 and the cladding 3, and the relationship between the propagation constant β 0 and the cutoff when no magnetic field is applied is the bending, stress, physical properties of the material loaded in the single mode optical fiber 1, core It depends on the distance between 2 and the substance to be loaded. By applying a magnetic field, the propagation constant becomes forward βf and backward βb. In Example 1 of FIG. 1, β 0 and the cutoff value can be made close to each other by bending, and only the backward propagation constant β b can be configured to overlap with the radiation mode (shaded portion) to cause loss.

【0012】また非相反位相シフトはTMモードに発生
するので、このファイバ型光アイソレータ5は順方向は
TEモード透過、TMモード透過、逆方向はTEモード
透過、TMモード遮断という動作をする。
Since the non-reciprocal phase shift occurs in the TM mode, the fiber type optical isolator 5 operates in the forward direction with TE mode transmission and TM mode transmission, and in the reverse direction with TE mode transmission and TM mode cutoff.

【0013】図7は、伝搬定数の調整と放射光の減衰量
を増大させるために図1のファイバ型光アイソレータ5
の磁気光学材料4の上部にアルミニウム、銀、銅などの
金属膜15を形成した本発明の第2の実施例を示す断面
概略図である。光に対しては金属は誘電率が非常に小さ
く(負)、さらに大きな損失を与える。従って、ファイ
バ型光アイソレータ5を構成するために金属膜15の面
積や厚みを調整して最適な伝搬定数を得たり、放射する
光に大きな減衰を与える事によりアイソレーションを向
上する事が可能である。
FIG. 7 shows a fiber type optical isolator 5 of FIG. 1 for adjusting the propagation constant and increasing the attenuation of the emitted light.
5 is a schematic cross-sectional view showing a second embodiment of the present invention in which a metal film 15 of aluminum, silver, copper or the like is formed on the magneto-optical material 4 of FIG. Metal has a very low dielectric constant (negative) with respect to light, which causes a larger loss. Therefore, it is possible to improve the isolation by adjusting the area and the thickness of the metal film 15 to obtain the optimum propagation constant for constructing the fiber type optical isolator 5 and by giving a large attenuation to the emitted light. is there.

【0014】また光の伝搬定数は導波層に対する応力で
制御する事もできる。従って図1及び図7において上下
方向から応力を加える事により、伝搬定数を制御しTE
モードとTMモードが容易に変換しないよう伝搬定数を
分離したり、作製時の寸法公差の補正や、さらに効率の
良いアイソレータ動作を得る事が可能となる。図8は本
発明のファイバ型光アイソレータの第3の実施例を示す
斜視概略図で、図1に示す実施例1のファイバ型光アイ
ソレータ5を光の進行方向を軸に90度回転して2つ直
列に設置した例を示す斜視概略図である。2つのファイ
バ型光アイソレータ5ではTMモードとTEモードが入
れ替わるので、順方向はTE、TMモード透過、逆方向
はTE、TMモード遮断となり偏光無依存の光アイソレ
ータが構成できる。なお、ファイバ型光アイソレータ5
は図7に示す実施例2のものであってもよい。
The propagation constant of light can also be controlled by the stress on the waveguiding layer. Therefore, in FIGS. 1 and 7, by applying stress from the vertical direction, the propagation constant is controlled and TE
It is possible to separate the propagation constants so that the modes and the TM modes are not easily converted, to correct the dimensional tolerance during manufacturing, and to obtain a more efficient isolator operation. FIG. 8 is a schematic perspective view showing a third embodiment of the fiber type optical isolator of the present invention. The fiber type optical isolator 5 of the first example shown in FIG. It is a perspective schematic diagram showing an example installed in series. Since the TM mode and the TE mode are interchanged in the two fiber type optical isolators 5, TE and TM mode transmission in the forward direction and TE and TM mode cutoff in the opposite direction can be realized and a polarization independent optical isolator can be constructed. The fiber type optical isolator 5
May be that of the second embodiment shown in FIG.

【0015】このように任意の等方性のファイバを加工
する事により任意の箇所に非相反性を付加し、非常に容
易に安価に光アイソレータを構成することができる。
By processing an arbitrary isotropic fiber in this manner, non-reciprocity is added to an arbitrary position, and an optical isolator can be constructed very easily and inexpensively.

【0016】[0016]

【発明の効果】以上のように、本発明のファイバ型光ア
イソレータによれば、曲率を有するように曲げて設置し
た光ファイバのクラッドの一部を除去し、前記除去部に
磁気光学材料を装荷して構成した後、光の伝搬方向と垂
直な方向に磁界を印加し光ファイバのコアに磁気光学効
果による非相反位相シフトを生じさせ、ファイバの曲げ
による損失が伝搬定数の大きさに関連することを利用
し、順方向と逆方向の減衰量を変えたことにより、さら
に磁気光学材料上に金属膜を形成して、伝搬定数の調整
と放射光の減衰量の増大をはかることにより、レンズが
不要で偏光子等がないため光学的アライメントが不要に
なり、部品点数が少なく、光ファイバ自体を光アイソレ
ータにするため小型になり、途中に入出射面が存在しな
いため、光アイソレータ内部からの反射光が減少し、ま
た任意の伝送用ファイバに直接付加できるため、応用性
が高く、利用価値が大きいものとなる。
As described above, according to the fiber type optical isolator of the present invention, a part of the clad of the optical fiber bent and installed so as to have a curvature is removed, and the removed portion is loaded with the magneto-optical material. Then, a magnetic field is applied in a direction perpendicular to the light propagation direction to cause a non-reciprocal phase shift due to the magneto-optical effect in the core of the optical fiber, and the loss due to bending of the fiber is related to the magnitude of the propagation constant. By changing the amount of attenuation in the forward and reverse directions, a metal film is further formed on the magneto-optical material to adjust the propagation constant and increase the amount of attenuation of radiated light. Is unnecessary and there is no need for optical alignment because there is no polarizer, etc., the number of parts is small, the optical fiber itself is an optical isolator, so the size is small. Reduces the reflected light from the internal data, and because that can be added directly to any transmission fiber, high applicability, it becomes larger utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面概略図であ
る。
FIG. 1 is a schematic sectional view showing a first embodiment of the present invention.

【図2】図1の光の進行方向に垂直な断面図である。FIG. 2 is a cross-sectional view perpendicular to the traveling direction of light in FIG.

【図3】非相反位相シフトを示すグラフである。FIG. 3 is a graph showing non-reciprocal phase shift.

【図4】ファイバ型アイソレータの動作原理を示すグラ
フである。
FIG. 4 is a graph showing the operating principle of the fiber type isolator.

【図5】磁気光学導波路を示す斜視概略図である。FIG. 5 is a schematic perspective view showing a magneto-optical waveguide.

【図6】インライン型アイソレータの従来の構成例を示
す図である。
FIG. 6 is a diagram showing a conventional configuration example of an in-line type isolator.

【図7】本発明の第2の実施例を示す断面概略図であ
る。
FIG. 7 is a schematic cross-sectional view showing a second embodiment of the present invention.

【図8】本発明の第3の実施例を示す斜視概略図であ
る。
FIG. 8 is a schematic perspective view showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:シングルモード光ファイバ 7:入射光線 2:コア 8、11:複
屈折板 3:クラッド 9:ファラデ
ー回転子 4:磁気光学材料 10:施光子 5:ファイバ型光アイソレータ 12、13:
レンズ 6:3次元導波路 14:基板
1: Single-mode optical fiber 7: Incident light beam 2: Core 8, 11: Birefringent plate 3: Clad 9: Faraday rotator 4: Magneto-optical material 10: Optical element 5: Fiber type optical isolator 12, 13:
Lens 6: Three-dimensional waveguide 14: Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】曲率を有するように曲げて設置した光ファ
イバのクラッドの一部を除去し、前記除去部に磁気光学
材料を装荷して構成した後、光の伝搬方向と垂直な方向
に磁界を印加し光ファイバのコアに磁気光学効果による
非相反位相シフトを生じさせ、光ファイバの曲げによる
損失が伝搬定数の大きさに関連することを利用し、順方
向と逆方向の減衰量を変えた事を特徴としたファイバ型
光アイソレータ。
1. A part of the clad of an optical fiber bent to have a curvature is removed, and a magneto-optical material is loaded on the removed part to construct a magnetic field in a direction perpendicular to the light propagation direction. Is applied to cause a nonreciprocal phase shift in the core of the optical fiber due to the magneto-optical effect, and the fact that the loss due to bending of the optical fiber is related to the magnitude of the propagation constant is used to change the attenuation in the forward and reverse directions. A fiber-type optical isolator that features
【請求項2】磁気光学材料上に金属膜を形成して、伝搬
定数の調整と放射光の減衰量の増大をはかることを特徴
とする請求項1に記載のファイバ型光アイソレータ。
2. The fiber type optical isolator according to claim 1, wherein a metal film is formed on the magneto-optical material to adjust the propagation constant and increase the attenuation of the emitted light.
【請求項3】請求項1および/または請求項2によるフ
ァイバ型光アイソレータを用いて、一方が光の進行方向
を軸にして90度回転している2つのファイバ型光アイ
ソレータを直列に設けることを特徴とする偏光無依存型
ファイバ型光アイソレータ。
3. A fiber-type optical isolator according to claim 1 and / or 2, wherein two fiber-type optical isolators, one of which is rotated by 90 degrees about the traveling direction of light, are provided in series. A polarization-independent fiber type optical isolator characterized by.
JP32925193A 1993-12-27 1993-12-27 Fiber type optical isolator Expired - Fee Related JP3540826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32925193A JP3540826B2 (en) 1993-12-27 1993-12-27 Fiber type optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32925193A JP3540826B2 (en) 1993-12-27 1993-12-27 Fiber type optical isolator

Publications (2)

Publication Number Publication Date
JPH07191281A true JPH07191281A (en) 1995-07-28
JP3540826B2 JP3540826B2 (en) 2004-07-07

Family

ID=18219357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32925193A Expired - Fee Related JP3540826B2 (en) 1993-12-27 1993-12-27 Fiber type optical isolator

Country Status (1)

Country Link
JP (1) JP3540826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041065A (en) * 1998-02-20 2001-05-15 케빈 알. 스튜어트 Fiber optic attenuators and attenuation systems
CN113625477A (en) * 2020-05-09 2021-11-09 中天科技光纤有限公司 Optical isolator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249445A (en) * 2016-08-31 2016-12-21 欧阳征标 The low damage type magneto-optic thin film magnetic surface unidirectional waveguide of turning round of fast mould random angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641762B2 (en) * 1983-12-05 1989-01-12 Litton Systems Inc
JPH06242402A (en) * 1993-02-15 1994-09-02 Kyocera Corp Fiber type optical isolator
JPH0764023A (en) * 1993-08-26 1995-03-10 Kyocera Corp Fiber type optical isolator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641762B2 (en) * 1983-12-05 1989-01-12 Litton Systems Inc
JPH06242402A (en) * 1993-02-15 1994-09-02 Kyocera Corp Fiber type optical isolator
JPH0764023A (en) * 1993-08-26 1995-03-10 Kyocera Corp Fiber type optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041065A (en) * 1998-02-20 2001-05-15 케빈 알. 스튜어트 Fiber optic attenuators and attenuation systems
CN113625477A (en) * 2020-05-09 2021-11-09 中天科技光纤有限公司 Optical isolator

Also Published As

Publication number Publication date
JP3540826B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US5204771A (en) Optical circulator
US4695123A (en) Cutoff polarizer and method
JP2565099B2 (en) Optical non-reciprocal circuit
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
JPH03288104A (en) Unidirectional mode converter and optical isolator using the same
JP3540826B2 (en) Fiber type optical isolator
US7024073B2 (en) Reflective variable light attenuator
JP3457711B2 (en) Fiber type optical isolator
JP2989982B2 (en) Fiber type optical isolator
JP2721879B2 (en) Self-temperature compensated optical isolator
JPS59101604A (en) Optical isolator
JPH0850261A (en) Optical circulator
JPH0216882B2 (en)
JP3495066B2 (en) Optical fiber type non-reciprocal device
JPH04125602A (en) Optical waveguide type polarizer
JPH06100732B2 (en) Fiber type isolator
JP3457710B2 (en) Optical fiber parts
JP2784496B2 (en) Waveguide type optical isolator
JPS59224819A (en) Faraday rotator
JPH10239637A (en) Optical isolator and optical module using the isolator
JP2687923B2 (en) Optical nonreciprocal circuit and manufacturing method thereof
JPH0868965A (en) Optical non-reciprocal circuit
JP2890525B2 (en) Optical isolator
JP3130131B2 (en) Optical isolator
JPS6123530B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees