JPH0850261A - Optical circulator - Google Patents

Optical circulator

Info

Publication number
JPH0850261A
JPH0850261A JP18435994A JP18435994A JPH0850261A JP H0850261 A JPH0850261 A JP H0850261A JP 18435994 A JP18435994 A JP 18435994A JP 18435994 A JP18435994 A JP 18435994A JP H0850261 A JPH0850261 A JP H0850261A
Authority
JP
Japan
Prior art keywords
optical
wave plate
circuit
waveguide
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18435994A
Other languages
Japanese (ja)
Inventor
Hiroshi Terui
博 照井
Yasuyuki Inoue
靖之 井上
Yasubumi Yamada
泰文 山田
Akiyuki Tate
彰之 館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18435994A priority Critical patent/JPH0850261A/en
Publication of JPH0850261A publication Critical patent/JPH0850261A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the same functions as heretofore by simple optical circuits which are shorter in their lengths and are fewer in constituting element circuits by inserting 45 deg.C nonreciprocal polarization rotators and half-wave plates inclined at a specific angle from the circuit plane in this order into optical paths without holding a double refractive optical medium. CONSTITUTION:This optical circulator consists of two pieces of 3dB directional couplers 1, an M-Z type optical interference circuit consisting of two pieces of the optical paths A, B of an equal optical path length therebetween, two pieces of the nonreciprocal 45 deg. polarization rotators 3 inserted into the optical paths A and B and the half-wave plate 2 connected thereto without holding the double refractive optical medium therebetween. The 45 deg.C nonreciprocal polarization rotator 3 and the half-wave plate 2 are inserted in this order into the optical path A in the part where the Z direction is the optical axis. The half-wave plate 2 is so installed that its optical axis has an angle of +22.5 deg.C when viewed in the Z direction. On the other hand, the half-wave plate 2 and the 45 deg. nonreciprocal polarization rotator 3 are inserted in this order 10 the optical path B by reversing the order from the order in the optical path A in the part where the Z direction is the optical axis. Further, the half-wave plate 2 is so installed that its optical axis has an angle of -22.5 deg. when viewed in the Z direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光情報処理の
分野で用いられる種々の導波型光回路を構成する上での
構成要素の一つである導波型光サーキュレータに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical circulator which is one of the constituent elements in constructing various waveguide type optical circuits used in the fields of optical communication and optical information processing. is there.

【0002】[0002]

【従来の技術】従来の導波型光サーキュレータの構成は
図5に示すようなものであった。すなわち、二個の縦列
接続された3dB方向性結合器1からなるマッハ・ツェ
ンダ(Mach-Zehnder型:以下「M−Z型」と略す)の光
干渉回路において半波長分の光路長差をつけるとともに
短光路側に90度配置の半波長板2を挿入して導波型の
偏光分離回路とし、これら偏光分離回路の間に45度非
相反偏波回転器3と22.5度配置の半波長板2からなる
2個の0−90度非相反偏波制御器が設置されたもので
あった。
2. Description of the Related Art A conventional waveguide type optical circulator has a structure as shown in FIG. That is, in the optical interference circuit of Mach-Zehnder (Mach-Zehnder type: hereinafter abbreviated as “MZ type”) including two 3 dB directional couplers 1 connected in cascade, an optical path length difference of half a wavelength is provided. At the same time, a half-wave plate 2 arranged at 90 degrees is inserted on the short optical path side to form a waveguide type polarization separation circuit. Between these polarization separation circuits, a 45 degree non-reciprocal polarization rotator 3 and a 22.5 degree arrangement half are arranged. Two 0-90 degree non-reciprocal polarization controllers composed of the wave plate 2 were installed.

【0003】このような構成において、ポート1から入
射した光がポート3に出射する場合、ポート3から入射
した光は0−90度非相反偏波制御器の作用によってポ
ート2に出射することとなり、この光回路は図6に示す
ような入出射関係をもつ光サーキュレータ動作を示す。
In such a structure, when the light incident from the port 1 is emitted to the port 3, the light incident from the port 3 is emitted to the port 2 by the action of the 0-90 degree nonreciprocal polarization controller. The optical circuit exhibits an optical circulator operation having an input / output relationship as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】このような従来構成で
は、一見して判るように回路長が長くなり、必然的に挿
入損が増えるとともに、この光サーキュレータ回路を組
み込んだ光回路が1枚の回路ウエーハから採れる数も限
られてしまうという問題点があった。
In such a conventional structure, the circuit length becomes long as is apparent, and the insertion loss inevitably increases, and one optical circuit incorporating this optical circulator circuit is provided. There was a problem that the number of circuit wafers that could be taken was limited.

【0005】本発明は、従来の光サーキュレータ回路と
同一機能をより短尺なでしかも構成要素回路の少ない単
純な光回路で光サーキュレータを提供することを目的と
するものである。
An object of the present invention is to provide an optical circulator having the same function as that of a conventional optical circulator circuit, but with a simple optical circuit having a shorter length and a smaller number of component circuits.

【0006】[0006]

【課題を解決するための手段】二本の入出力用光導波
路、二個の3dB方向性結合器、前記二個の方向性結合
器に挟まれた光路長の等しい二本の光路よりなる導波型
マッハ・ツェンダ型光干渉回路を基本構成とした光サー
キュレータであって、前記マッハ・ツェンダ型光回路
に、入力回路から入射した光の伝搬方向に対して、一方
の光路には45度非相反偏波回転器と、光学主軸を光軸
に垂直な面内で回路面から+22.5度傾けた半波長板
が、この順に両者間に複屈折光学媒体を挟む事なく挿入
され、もう一方の光路には、光学主軸を光軸に垂直な面
内で回路面から−22.5度傾けた半波長板と、上記と等
しい偏波回転方向の45度非相反偏波回転器がこの順に
両者間に複屈折光学媒体を挟む事なく挿入されているこ
とを特徴とする。
SOLUTION TO THE PROBLEMS Two input / output optical waveguides, two 3 dB directional couplers, and a waveguide having two equal optical path lengths sandwiched between the two directional couplers. An optical circulator having a wave-type Mach-Zehnder interferometer as a basic structure, wherein one optical path is 45 degrees away from the propagation direction of light incident from the input circuit to the Mach-Zehnder interferometer. A reciprocal polarization rotator and a half-wave plate whose optical principal axis is tilted +22.5 degrees from the circuit plane in a plane perpendicular to the optical axis are inserted in this order without sandwiching a birefringent optical medium, and the other side. In the optical path of, a half-wave plate whose optical main axis is tilted by -22.5 degrees from the circuit plane in a plane perpendicular to the optical axis and a 45-degree non-reciprocal polarization rotator in the same polarization rotation direction as above are placed in this order. It is characterized in that the birefringent optical medium is inserted between the both without being sandwiched.

【0007】上記光サーキュレータにおいて、前記45
度非相反偏波回転器が磁気光学光導波路よりなることを
特徴とする。
In the above optical circulator, the 45
The non-reciprocal polarization rotator comprises a magneto-optical waveguide.

【0008】上記光サーキュレータにおいて、前記半波
長板がポリイミドからなることを特徴とする。
In the above optical circulator, the half-wave plate is made of polyimide.

【0009】以下、本発明に係る光サーキュレータの内
容を説明する。
The contents of the optical circulator according to the present invention will be described below.

【0010】図1に本発明の導波型光サーキュレータの
構成を示す。光サーキュレータは図のxz面を回路面と
して、二個の3dB方向性結合器1とその間の等しい光
路長の二本の光路A,BからなるM−Z型光干渉回路
と、光路A,B中に挿入された二個の非相反45度偏波
回転器3、及びそれらと複屈折光媒体を挟む事なくつな
がる半波長板2からなる。光路Aには、z方向を光軸と
する部位に図の左側から、45度非相反偏波回転器3と
半波長板2がこの順に挿入されている。半波長板2は、
その光学軸(ここでは便宜上、低屈折率方向とする)が
z方向にみて+22.5度の角度をなすように設置されて
いる。一方光路Bには、z方向を光軸とする部位に左か
ら光路Aとは順序を逆にして半波長板2と45度非相反
偏波回転器3の順にこれらが挿入されている。さらに半
波長板2は、光学軸がz方向にみて−22.5度の角度を
なすように設定されている。二個の45度非相反偏波回
転器3の偏波回転方向および光路長は光路A,Bいずれ
においても同じであるように設定されており、ここでは
便宜上z方向に伝搬する光に対して右回りとする。
FIG. 1 shows the configuration of a waveguide type optical circulator of the present invention. The optical circulator has an MZ type optical interference circuit including two 3 dB directional couplers 1 and two optical paths A and B having the same optical path length between them, with the xz plane in the figure as a circuit surface, and optical paths A and B. It is composed of two non-reciprocal 45-degree polarization rotators 3 inserted therein and a half-wave plate 2 which is connected to them without sandwiching a birefringent optical medium. In the optical path A, a 45-degree non-reciprocal polarization rotator 3 and a half-wave plate 2 are inserted in this order from the left side of the figure at a portion having the optical axis in the z direction. The half-wave plate 2 is
The optical axis (here, for the sake of convenience, the low refractive index direction) is installed so as to form an angle of +22.5 degrees when viewed in the z direction. On the other hand, in the optical path B, the half-wave plate 2 and the 45-degree non-reciprocal polarization rotator 3 are inserted in this order from the left in the part having the optical axis in the z direction in the reverse order of the optical path A. Further, the half-wave plate 2 is set so that the optical axis forms an angle of −22.5 degrees when viewed in the z direction. The polarization rotation directions and the optical path lengths of the two 45-degree non-reciprocal polarization rotators 3 are set to be the same in both the optical paths A and B. Here, for the light propagating in the z direction, for convenience. Turn clockwise.

【0011】図1から明らかなように、本発明の作用上
の特徴は、図5に示す従来例と比較して二個の偏波分離
回路が不要である点である。
As is apparent from FIG. 1, the operational characteristic of the present invention is that two polarization separation circuits are not required as compared with the conventional example shown in FIG.

【0012】次に、本発明の光サーキュレータの動作に
ついて図2に従って説明する。一般光導波路は導波路と
基板界面での応力で誘起される複屈折をもつ。この複屈
折の光学軸は一般に基板と平行な回路面内と回路に垂直
な方向となる。このような光導波路中の光の伝搬は、電
界が回路面内にあるTEモードと回路面に垂直な方向の
電界をもつTMモードの二つの独立なモードに別れて伝
搬する。そこで以下では光の伝搬をこれら二つの独立な
モードに分けて考える。
Next, the operation of the optical circulator of the present invention will be described with reference to FIG. A general optical waveguide has birefringence induced by stress at the interface between the waveguide and the substrate. The optical axis of this birefringence is generally in the circuit plane parallel to the substrate and in the direction perpendicular to the circuit. The propagation of light in such an optical waveguide is divided into two independent modes, a TE mode in which the electric field is in the circuit plane and a TM mode in which the electric field is in the direction perpendicular to the circuit plane. Therefore, in the following, light propagation will be divided into these two independent modes.

【0013】さて、ポート1あるいはポート2から3d
B光結合器1を通過して光路Aを伝搬してきた光につい
て考える。時刻t=0においてTEモード、TMモード
両電界の振動ベクトルが図のAf (fはforward 、順方
向)の場合に示すように、x方向及びy方向に最大振幅
の状態で45度非相反偏波回転器3に入射したとする。
すると回転器3の屈折率をn1 、長さをd1 として回転
器3の出口で時刻t=n1 1 /cでは、偏波方向が右
回りに45度回転した状態で最大振幅となる。なお、こ
こでcは光速度である。
Now, port 1 or ports 2 to 3d
Consider the light that has passed through the B optical coupler 1 and propagated along the optical path A. At time t = 0, as shown in the case where the vibration vectors of both the TE mode and TM mode electric fields are A f (f is forward, forward direction) in the figure, 45 degrees non-reciprocal in the state of maximum amplitude in the x direction and the y direction. It is assumed that the light is incident on the polarization rotator 3.
Then, when the refractive index of the rotator 3 is n 1 and the length is d 1 , at the exit of the rotator 3 at time t = n 1 d 1 / c, the maximum amplitude is obtained when the polarization direction is rotated clockwise by 45 degrees. Become. Here, c is the speed of light.

【0014】次に半波長板2に入射して時刻がさらにn
2 2 /c経過した時の半波長板出口での偏波状態は、
半波長板の低屈折率光学軸がx軸から22.5度傾いてお
り、これに垂直な成分は半波長分遅れるので、振動ベク
トルは光学軸2′を挟んで線対象な偏波角度になった状
態で最大振幅となる。ここでn2 ,d2 は半波長板2の
低屈折率光学軸2′に対応する屈折率、及び半波長板2
の厚みである。
Next, when the light enters the half-wave plate 2, the time is further n.
The polarization state at the exit of the half-wave plate when 2 d 2 / c has passed is
The low-refractive-index optical axis of the half-wave plate is tilted by 22.5 degrees from the x-axis, and the component perpendicular to this is delayed by half a wavelength, so the vibration vector is line-polarized with the optical axis 2'in between. The maximum amplitude is reached when the Here, n 2 and d 2 are the refractive index corresponding to the low refractive index optical axis 2 ′ of the half-wave plate 2, and the half-wave plate 2
Is the thickness of.

【0015】次に光路Bについて考える。ポート1,2
から入射した光がBf に示すように、時刻t=0で半波
長板2に入射したとする。TE,TM両モードの振動ベ
クトルの状態は、上記光路Aで考えたのと同じ状態とす
る。半波長板2の出口での時刻t=n2 2 /cでの通
過光の偏波状態はx方向から−22.5度傾いた光学軸
2′に対して線対象な偏波角度で最大振幅となる。
Next, the optical path B will be considered. Ports 1 and 2
It is assumed that the light that has entered from is incident on the half-wave plate 2 at time t = 0 as shown by B f . The states of the vibration vectors in both TE and TM modes are the same as those considered in the optical path A. The polarization state of the transmitted light at the time t = n 2 d 2 / c at the exit of the half-wave plate 2 is a polarization angle that is line-symmetric with respect to the optical axis 2 ′ inclined by −22.5 degrees from the x direction. Maximum amplitude.

【0016】この状態で45度非相反偏波回転器3に入
射してさらに時刻n1 1 /c経た時の回転器出口での
偏波状態は、45度右回りに回転した最大振幅状態とな
る。時刻t=0で偏波回転器3と半波長板2で構成され
た非相反偏波制御器に同時に入射して、時刻t=n1
1 /c+n2 2 /c経過して出射した光路AとBの光
の振動ベクトルを比較すると、TE,TM両モードとも
ベクトルの向きが反対となっており、位相が半波長分ず
れたことになる。
In this state, the polarization state at the exit of the rotator when it is incident on the 45-degree non-reciprocal polarization rotator 3 and has passed time n 1 d 1 / c is the maximum amplitude state rotated clockwise by 45 degrees. Becomes At time t = 0, the light enters the non-reciprocal polarization controller composed of the polarization rotator 3 and the half-wave plate 2 at the same time, and the time t = n 1 d
Comparing the vibration vectors of the light on the optical paths A and B emitted after the passage of 1 / c + n 2 d 2 / c, the directions of the vectors are opposite in both TE and TM modes, and the phases are shifted by half a wavelength. become.

【0017】次にポート3,ポート4から光が入射した
場合を考える。このとき光は−z方向に進むことにな
り、半波長板2の光学軸2′の傾き角度が上記と逆に感
じることとなり、また45度非相反偏波回転器3の偏波
回転方向は、−z方向にみて左回りとなる。
Next, consider the case where light is incident from the ports 3 and 4. At this time, the light travels in the -z direction, the tilt angle of the optical axis 2'of the half-wave plate 2 feels opposite to the above, and the polarization rotation direction of the 45-degree nonreciprocal polarization rotator 3 is , -Counterclockwise when viewed in the -z direction.

【0018】これらのことを考慮して非相反偏波制御器
を通過したあとの偏波状態を光路Aの場合と同様に考察
すると、図中のAb (bはbackward,逆方向)、Bb
比較から判るように、光路A,Bを通過する光はTE,
TM両モードとも同位相となる。
Considering these points and considering the polarization state after passing through the non-reciprocal polarization controller in the same manner as in the case of the optical path A, A b (b is backward, reverse direction), B in the figure. As can be seen from the comparison of b , the light passing through the optical paths A and B is TE,
Both TM modes have the same phase.

【0019】二個の3dB方向性光結合器1で構成され
たM−Z型光干渉回路では、光路AとBを通過したとき
の位相関係が半波長ずれる場合、スルーポートに出射
し、同相である場合クロスポートに出射する。この特性
と上記考察から、本発明の光回路において、ポート1、
あるいは2から入射した光は位相が半波長分ずれてスル
ーポート3、あるいは4に出射し、一方ポート3、ある
いは4から入射した光は同相となってクロスポート2あ
るいは1に出射することになり、図6に示す光サーキュ
レータ動作が実現する。しかもTE,TM両モードとも
同一動作するので偏波無依存動作となる。
In the MZ type optical interference circuit composed of two 3 dB directional optical couplers 1, when the phase relationship when passing through the optical paths A and B deviates by half a wavelength, the light is emitted to the through port and the same phase. If it is, it is emitted to the cross port. From this characteristic and the above consideration, in the optical circuit of the present invention, port 1,
Alternatively, the light incident from 2 is emitted to the through port 3 or 4 with the phase shifted by a half wavelength, while the light incident from the port 3 or 4 is emitted in the same phase to the cross port 2 or 1. The optical circulator operation shown in FIG. 6 is realized. Moreover, since both TE and TM modes operate in the same manner, polarization independent operation is achieved.

【0020】[0020]

【実施例】以下、本発明の好適な実施例について説明す
る。図3は本実施例に係る光サーキュレータの概略図で
ある。本実施例の光サーキュレータの主要構成部品は、
45度非相反偏波回転器3の機能を有する磁気光学光導
波路11、3dB方向性光結合器1からなるM−Z型光
干渉回路12および半波長板13の3点である。以下に
まずこの3点の作製について述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 3 is a schematic diagram of the optical circulator according to the present embodiment. The main components of the optical circulator of this embodiment are
These are the MZ type optical interference circuit 12 including the magneto-optical waveguide 11 having the function of the 45-degree non-reciprocal polarization rotator 3 and the 3 dB directional optical coupler 1 and the half-wave plate 13. First, the production of these three points will be described below.

【0021】1)磁気光学光導波路 磁気光学光導波路11は以下のようにして作製した。先
ず、ガドリニウムガリウムガーネット(Gd3 Ga5
12)単結晶の(111)面を基板として、これにイット
リウムアイアンガーネット(YFe5 12,通称YI
G)単結晶膜の液相エピタキシャル成長技術、ガーネッ
ト膜のイオンビームエッチング技術等によって埋め込み
YIG光導波路アレイを作製した。工程は、アンダーク
ラッド層成長、コア層成長、導波路コアパターンエッチ
ング、オーバークラッド層成長の順である。光軸方向は
<110>方向としてあり、コアは4μm角、導波路間
隔は250μmである。長さは、偏波回転角が45度
(波長1.55μm)となる長さ3.02mmにした。必要
な磁場の強度は、光軸方向に1400eであった。端面
には後述する干渉回路と屈折率整合するような無反射コ
ートを施した。作製した磁気光学導波路23の形状は図
3に示すようなものであり(図では成長面が下向きとな
っている)、コア直上のオーバークラッド層は、凸状表
面を呈していた。
1) Magneto-Optical Optical Waveguide The magneto-optical optical waveguide 11 was manufactured as follows. First, gadolinium gallium garnet (Gd 3 Ga 5 O
12 ) The (111) plane of the single crystal is used as a substrate, and yttrium iron garnet (YFe 5 O 12 , commonly known as YI
G) A buried YIG optical waveguide array was manufactured by a liquid phase epitaxial growth technique for a single crystal film, an ion beam etching technique for a garnet film, and the like. The steps are: under clad layer growth, core layer growth, waveguide core pattern etching, and over clad layer growth. The optical axis direction is the <110> direction, the core is 4 μm square, and the waveguide interval is 250 μm. The length was 3.02 mm at which the polarization rotation angle was 45 degrees (wavelength 1.55 μm). The required magnetic field strength was 1400e in the optical axis direction. A non-reflective coating was applied to the end face so as to match the refractive index with an interference circuit described later. The shape of the manufactured magneto-optical waveguide 23 was as shown in FIG. 3 (the growth surface was downward in the figure), and the overclad layer immediately above the core had a convex surface.

【0022】2)M−Z型干渉回路 上記磁気光学導波路11をM−Z型干渉回路の間に挿入
するわけであるが、ここでは図3に示すように、干渉回
路中に磁気光学導波路11を成長面を下にして挿入する
こととし、このときに挿入部位に磁気光学導波路11の
コア14と干渉回路のコア15の高さ方向(y方向)の
位置が一致するような高さの台16を設けた導波回路を
以下の工程で作製した。まず(100)シリコン単結晶
基板17の磁気光学導波路11を設置するべき位置に、
この導波路11のコア直上凸表面を避けた配置に台16
を作製した。パターン化は、熱酸化膜をマスクとして水
酸化カリウムによるエッチングで行った。次に石英を主
成分とするアンダークラッド層を台16の高さ以上に火
炎直接堆積法にて堆積し、台16の表面まで研磨して平
坦化した。次にさらにアンダークラッド層を所望の高さ
に積層した後コア層を堆積し、コア層をM−Z型干渉回
路パターンにドライエッチングした。次にオーバークラ
ッド層を堆積した。導波路のコアのサイズは6μm角、
屈折率差は0.75%である。光路A,Bの間隔は3.0m
m、全回路長は3.5cmである。同時に干渉回路の外側
に250μm離れた位置に、磁気光学導波路位置決めの
際に用いる直線状のモニタ導波路18を設置しておい
た。光路A,B上の磁気光学導波路11の設置部位外の
ところに熱光学効果による位相調整用にヒータ19をク
ロム蒸着膜で形成した。最後に磁気光学導波路11を挿
入する部位に幅3.04mmになるようにダイシングソー
で面取りを行いこの間のガラスを緩衝弗酸で取り除いて
図3に示す干渉回路を作製した。
2) MZ type interference circuit The magneto-optical waveguide 11 is inserted between the MZ type interference circuits. Here, as shown in FIG. 3, a magneto-optical waveguide is inserted in the interference circuit. The waveguide 11 is inserted with the growth surface facing downward, and at this time, a height such that the core 14 of the magneto-optical waveguide 11 and the core 15 of the interference circuit are aligned in the height direction (y direction) at the insertion site. A waveguide circuit provided with the pedestal 16 was manufactured by the following steps. First, at a position where the magneto-optical waveguide 11 of the (100) silicon single crystal substrate 17 is to be installed,
The table 16 is placed in an arrangement avoiding the convex surface right above the core of the waveguide 11.
Was produced. The patterning was performed by etching with potassium hydroxide using the thermal oxide film as a mask. Next, an under-cladding layer containing quartz as a main component was deposited by a flame direct deposition method to a height of the base 16 or higher, and the surface of the base 16 was polished and flattened. Next, after further stacking an underclad layer at a desired height, a core layer was deposited, and the core layer was dry-etched into an MZ type interference circuit pattern. Next, an overclad layer was deposited. The size of the waveguide core is 6 μm square,
The refractive index difference is 0.75%. The distance between optical paths A and B is 3.0 m
m, the total circuit length is 3.5 cm. At the same time, a linear monitor waveguide 18 used for positioning the magneto-optical waveguide was set outside the interference circuit at a distance of 250 μm. A heater 19 is formed on the optical paths A and B outside the installation site of the magneto-optical waveguide 11 for the phase adjustment by the thermo-optic effect with a chromium vapor deposition film. Finally, the portion into which the magneto-optical waveguide 11 was inserted was chamfered with a dicing saw so as to have a width of 3.04 mm, and the glass in between was chamfered with buffer hydrofluoric acid to fabricate the interference circuit shown in FIG.

【0023】3)半波長板 半波長板13には、ポリイミド板を用いた。ポリイミド
板は延伸処理を施すことによって複屈折が発生し、延伸
方向の屈折率が大きくなる。ここで使用したものは、複
屈折Δn=0.053(波長1.55μm)のフッソ化ポリ
イミドであり、厚みは14.6μmである。この半波長板
13から延伸方向に垂直な方向を光軸としてこの軸から
22.5度、及び−22.5度の角度をなす辺を有する長方
形を切り出した。
3) Half-wave plate As the half-wave plate 13, a polyimide plate was used. When the polyimide plate is stretched, birefringence occurs and the refractive index in the stretching direction increases. The one used here is a fluorinated polyimide having birefringence Δn = 0.053 (wavelength 1.55 μm) and has a thickness of 14.6 μm. A rectangle having sides having angles of 22.5 degrees and -22.5 degrees from this axis was cut out from the half-wave plate 13 with an optical axis perpendicular to the stretching direction.

【0024】次に組立について述べる。まず干渉回路の
磁気光学導波路挿入部位にエポキシ接着剤を適量塗布し
ておいてからここに磁気光学導波路11を挿入し、モニ
タ導波路18に光を導波させてモニタして干渉回路と磁
気光学導波路11を最適位置に合わせその状態で保持し
て接着剤を硬化させ、固定した。その際に片側に半波長
板13を挿入するスペースを確保しておいた。磁気光学
導波路二個を固定した後半波長板13を挿入し、干渉回
路、磁気光学導波路11、半波長板13の間を屈折率整
合紫外線硬化樹脂で埋め、硬化させた。最後に回路の上
に図4に示すように磁石20をかぶせて光サーキュレー
タを完成した。このサーキュレータの挿入損は、2.1〜
2.6dB、アイソレーションは15〜20dBであった
(波長1.55μm)。位相調整用ヒータ19に電流を流
すことによって、アイソレーションは25dBまで向上
した。尚、図1に示す従来構成の光サーキュレータも同
時に作製したが、挿入は〜5dBとなり、また全回路長
は7cmであった。
Next, the assembly will be described. First, an appropriate amount of epoxy adhesive is applied to a portion of the interference circuit where the magneto-optical waveguide is inserted, and then the magneto-optical waveguide 11 is inserted therein. The magneto-optical waveguide 11 was aligned at the optimum position and held in that state, and the adhesive was cured and fixed. At that time, a space for inserting the half-wave plate 13 was secured on one side. The latter half wave plate 13 with the two magneto-optical waveguides fixed was inserted, and the space between the interference circuit, the magneto-optic waveguide 11, and the half wave plate 13 was filled with a refractive index matching ultraviolet curing resin and cured. Finally, a magnet 20 was placed on the circuit as shown in FIG. 4 to complete the optical circulator. The insertion loss of this circulator is 2.1-
It was 2.6 dB and the isolation was 15 to 20 dB (wavelength 1.55 μm). By passing a current through the phase adjustment heater 19, the isolation was improved to 25 dB. An optical circulator of the conventional configuration shown in FIG. 1 was also manufactured at the same time, but the insertion was ˜5 dB and the total circuit length was 7 cm.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、従
来例に比較して非相反偏波制御器の両側の偏波分離回路
が不要となり、回路構成が簡単になるとともに、回路長
が大幅に短縮できる。従って歩留まりが向上するととも
に挿入損が大幅に低減できる。光サーキュレータ回路
は、単体での使用のほかに他の回路と組み合わせて使用
される場合が多く、その場合、上記特長から光回路設計
の自由度が大幅に増すことも明らかである。
As described above, according to the present invention, the polarization separation circuits on both sides of the non-reciprocal polarization controller are not required as compared with the conventional example, the circuit configuration is simplified, and the circuit length is reduced. It can be greatly shortened. Therefore, the yield is improved and the insertion loss can be significantly reduced. The optical circulator circuit is often used in combination with other circuits in addition to being used alone, and in that case, it is clear that the degree of freedom in optical circuit design is greatly increased from the above features.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光サーキュレータの構成を示す図。FIG. 1 is a diagram showing a configuration of an optical circulator of the present invention.

【図2】本発明の光サーキュレータの動作の説明図。FIG. 2 is an explanatory diagram of the operation of the optical circulator of the present invention.

【図3】本発明の光サーキュレータの実施例の第一の
図。
FIG. 3 is a first diagram of an embodiment of the optical circulator of the present invention.

【図4】本発明の光サーキュレータの実施例の第二の
図。
FIG. 4 is a second diagram of an embodiment of the optical circulator of the present invention.

【図5】従来の導波型光サーキュレータの構成を示す
図。
FIG. 5 is a diagram showing a configuration of a conventional waveguide type optical circulator.

【図6】光サーキュレータの動作の説明図。FIG. 6 is an explanatory diagram of the operation of the optical circulator.

【符号の説明】[Explanation of symbols]

1 3dB方向性光結合器 2 半波長板 2′ 波長板光学軸 3 45度非相反偏波回転器 11 磁気光学導波路 12 M−Z型光干渉回路 13 半波長板 14 磁気光学導波路のコア 15 M−Z型光干渉回路のコア 16 台 17 (100)シリコン基板 18 モニタ導波路 19 位相調整用ヒータ 20 磁石 1 3 dB directional optical coupler 2 half-wave plate 2'wave plate optical axis 3 45 degree non-reciprocal polarization rotator 11 magneto-optical waveguide 12 MZ type optical interference circuit 13 half-wave plate 14 core of magneto-optical waveguide 15 M-Z type optical interference circuit core 16 units 17 (100) silicon substrate 18 monitor waveguide 19 phase adjustment heater 20 magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 館 彰之 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiyuki Tate 1-6-1, Saiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二本の入出力用光導波路、二個の3dB
方向性結合器、前記二個の方向性結合器に挟まれた光路
長の等しい二本の光路よりなる導波型マッハ・ツェンダ
型光干渉回路を基本構成とした光サーキュレータであっ
て、 前記マッハ・ツェンダ型光回路に、入力回路から入射し
た光の伝搬方向に対して、一方の光路には45度非相反
偏波回転器と、光学主軸を光軸に垂直な面内で回路面か
ら+22.5度傾けた半波長板が、この順に両者間に複屈
折光学媒体を挟む事なく挿入され、もう一方の光路に
は、光学主軸を光軸に垂直な面内で回路面から−22.5
度傾けた半波長板と、上記と等しい偏波回転方向の45
度非相反偏波回転器がこの順に両者間に複屈折光学媒体
を挟む事なく挿入されていることを特徴とする光サーキ
ュレータ。
1. Two input / output optical waveguides, two 3 dB
A directional coupler, an optical circulator having a waveguide-type Mach-Zehnder type optical interference circuit composed of two optical paths having the same optical path length sandwiched between the two directional couplers as a basic configuration, wherein the Mach -For the propagation direction of the light incident from the input circuit to the Zener type optical circuit, a 45-degree non-reciprocal polarization rotator is provided in one optical path, and +22 from the circuit surface in the plane where the optical main axis is perpendicular to the optical axis. A half-wave plate tilted at an angle of 5 degrees is inserted in this order without sandwiching a birefringent optical medium between them, and the other optical path has a main optical axis in the plane perpendicular to the optical axis from the circuit surface -22. 5
Half-wave plate tilted by 45 degrees and 45
An optical circulator characterized in that a non-reciprocal polarization rotator is inserted in this order without sandwiching a birefringent optical medium between them.
【請求項2】 請求項1に記載の光サーキュレータにお
いて、前記45度非相反偏波回転器が磁気光学光導波路
よりなることを特徴とする光サーキュレータ。
2. The optical circulator according to claim 1, wherein the 45-degree nonreciprocal polarization rotator comprises a magneto-optical waveguide.
【請求項3】 請求項1または2に記載の光サーキュレ
ータにおいて、前記半波長板がポリイミドからなること
を特徴とする光サーキュレータ。
3. The optical circulator according to claim 1, wherein the half-wave plate is made of polyimide.
JP18435994A 1994-08-05 1994-08-05 Optical circulator Withdrawn JPH0850261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18435994A JPH0850261A (en) 1994-08-05 1994-08-05 Optical circulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18435994A JPH0850261A (en) 1994-08-05 1994-08-05 Optical circulator

Publications (1)

Publication Number Publication Date
JPH0850261A true JPH0850261A (en) 1996-02-20

Family

ID=16151865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18435994A Withdrawn JPH0850261A (en) 1994-08-05 1994-08-05 Optical circulator

Country Status (1)

Country Link
JP (1) JPH0850261A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793130A1 (en) * 1996-02-28 1997-09-03 Nippon Telegraph And Telephone Corporation Polarization independent optical nonreciprocal circuit
US6130778A (en) * 1997-04-17 2000-10-10 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and process for producing them
WO2002035266A1 (en) * 2000-10-28 2002-05-02 Bookham Technology Plc Polarisation beam splitters/combiners
JP2003302603A (en) * 2002-04-11 2003-10-24 Tokyo Inst Of Technol Interferometer type optical isolator and optical circulator
WO2007094515A1 (en) * 2006-02-17 2007-08-23 Mitsumi Electric Co., Ltd. Waveguide optical isolator and magnet holder used for waveguide optical isolator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793130A1 (en) * 1996-02-28 1997-09-03 Nippon Telegraph And Telephone Corporation Polarization independent optical nonreciprocal circuit
US5905823A (en) * 1996-02-28 1999-05-18 Nippon Telegraph And Telephone Corporation Polarization independent optical nonreciprocal circuit based on even mode to odd mode conversion
US6130778A (en) * 1997-04-17 2000-10-10 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and process for producing them
US6359733B1 (en) 1997-04-17 2002-03-19 Tdk Corporation Composite optical element, optical isolator, optical circulator, optical switch and processes for producing them
WO2002035266A1 (en) * 2000-10-28 2002-05-02 Bookham Technology Plc Polarisation beam splitters/combiners
JP2003302603A (en) * 2002-04-11 2003-10-24 Tokyo Inst Of Technol Interferometer type optical isolator and optical circulator
WO2007094515A1 (en) * 2006-02-17 2007-08-23 Mitsumi Electric Co., Ltd. Waveguide optical isolator and magnet holder used for waveguide optical isolator
JP2007219285A (en) * 2006-02-17 2007-08-30 Mitsumi Electric Co Ltd Magnet holder for waveguide type optical isolator and waveguide type optical isolator using the same
US7826690B2 (en) 2006-02-17 2010-11-02 Mitsumi Electric Co., Ltd. Waveguide type optical isolator and magnet holder used in waveguide type optical isolator

Similar Documents

Publication Publication Date Title
EP0491607B1 (en) Optical circulator
US6757101B2 (en) None-mechanical dual stage optical switches
US6577430B1 (en) Bi-directional optical switch
US20020131171A1 (en) Optical fiber polarization independent non-reciprocal phase shifter
JP2001281598A (en) Complex optical element, optical isolator, light attenuator and their manufacturing methods
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
US5479551A (en) Optical fiber non-reciprocal phase shifters and optical isolators using them
US20020044710A1 (en) Optical fiber non-reciprocal phase shifter
US4032217A (en) Optical wave guide for carrying out phase-tuning between two modes of light propagation
JPH0850261A (en) Optical circulator
JP2758457B2 (en) Waveguide type optical circulator
JP2005099737A (en) Magnetooptic optical component
JPH11119158A (en) Optical circulator array
JP3540826B2 (en) Fiber type optical isolator
JP2784496B2 (en) Waveguide type optical isolator
JPH0651241A (en) Optical non-reciprocal circuit
Wolfe Thin films for non-reciprocal magneto-optic devices
JPH0868965A (en) Optical non-reciprocal circuit
JPH0862646A (en) Optical switch
JP2890525B2 (en) Optical isolator
JPS6343725B2 (en)
JP2002107671A (en) Waveguide type optical isolator
JPH1068910A (en) Optical nonreciprocal circuit
JP2570826B2 (en) Solid state circulator
JP2862630B2 (en) Waveguide type optical isolator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106