JP3495066B2 - Optical fiber type non-reciprocal device - Google Patents

Optical fiber type non-reciprocal device

Info

Publication number
JP3495066B2
JP3495066B2 JP25164993A JP25164993A JP3495066B2 JP 3495066 B2 JP3495066 B2 JP 3495066B2 JP 25164993 A JP25164993 A JP 25164993A JP 25164993 A JP25164993 A JP 25164993A JP 3495066 B2 JP3495066 B2 JP 3495066B2
Authority
JP
Japan
Prior art keywords
optical
magneto
reciprocal
optical fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25164993A
Other languages
Japanese (ja)
Other versions
JPH07104227A (en
Inventor
恭史 佐藤
正則 小柴
秀萍 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25164993A priority Critical patent/JP3495066B2/en
Publication of JPH07104227A publication Critical patent/JPH07104227A/en
Application granted granted Critical
Publication of JP3495066B2 publication Critical patent/JP3495066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は光通信や光計測の分野に
おいて用いられる光アイソレータ、光サーキュレータ、
光スイッチ等に応用される非相反デバイスに関し、特に
全体をファイバ型に構成した光ファイバ型非相反デバイ
スに関する。 【0002】 【従来技術】磁気光学効果による非相反な作用を利用
し、光アイソレータや光サーキュレータが作られてい
る。磁性ガーネット等で導波路を形成し、導波層に磁気
光学効果を持たせたものを特に磁気光学導波路という。
磁気光学効果のうち特に非相反な作用を利用するものを
非相反導波路という場合もある。非相反導波路は導波路
型アイソレータや変調器等に用いられ、非相反位相シフ
トや非相反な偏光面の回転(ファラデー回転)をする。
従来の非相反導波路は、基板6の上に導波層5を形成し
たリブ型(図4(A))と呼ばれるものや、クラッド3
内に導波層5を埋め込んだ埋め込み型(図4(B))と
いうような矩形のものが主流であった。これは、液相エ
ピタキシャル(LPE)法や、スパッタリング法等で形
成されるものである。またファイバセンサー用として磁
気光学材料をファイバ型に成型したファラデー回転ファ
イバや、ファイバ型デバイスとして磁気光学材料4(フ
ァラデー回転子)を光ファイバ1で挟み込んだ構成(図
5)のファイバ型ファラデー回転子等も提案されてい
る。 【0003】磁気光学導波路の非相反な作用について図
4(A)を用いて簡単に説明する。このような3次元導
波路における光の導波モードは、電磁界の主成分がEx
とHy であるEx モードと、電磁界の主成分がEy とH
x であるEy モードに大別される。これらのモードはハ
イブリッドモードになっているが、簡単のためにEx
ードはEy =0とおいてTEモードに、Ey モードはH
y =0とおいてTMモードにそれぞれ近似することがで
きる。なおE(Ex 、Ey 、Ez )を電界ベクトル、H
(Hx 、Hy 、Hz )を磁界ベクトルとする。導波層5
を磁気光学材料で形成した従来の非相反導波路では、導
波路のX方向に磁界を印加することによってTMモード
に非相反位相シフトが生じる。これは+Z方向に伝搬す
る光と−Z方向に伝搬する光の伝搬定数が異なる現象
で、磁界を印加しない場合のTMモードの伝搬定数をβ
TMとすれば、磁界印加時の伝搬定数はβTM±△βとなる
(複号±はZ方向に対応する)。この△βが非相反位相
シフトの量で非相反位相量といわれる。これらは「信学
論VOL.J71−C pp702〜708 犬塚、岡
村、山本 1988」等の文献に詳しく記載されてい
る。また、Z方向に磁界を印加することにより伝搬光は
ファラデー回転を生じる。これは非相反な偏光面の回転
(TE−TMモード変換)であり、+Z方向に伝搬する
光も−Z方向に伝搬する光も磁界の方向を軸に同方向及
び同角度に、光の伝搬方向を基準にすれば逆方向に回転
する。 【0004】 【課題を解決するための手段】上記問題点に鑑みて本発
明は、光ファイバのクラッドの長手方向における一部を
除去し、前記除去部に磁気光学材料を装荷してコアと磁
気光学材料を3μm以下に近接させることで、導波層で
あるコアの外部にしみ出した電磁界に前記磁気光学材料
を作用させ、光ファイバのコアに非相反性の磁気光学効
果を生じさせることを特徴とするものである。 【0005】また磁気光学材料をファイバ状に成形した
ものもあったが、元来センサー用等で、矩形導波路の接
続の問題を解決するために考案されたものでなかった。
ガーネット等の磁気光学材料をファイバ状に成形するこ
とがまず困難であり、高価になる。またコネクタ等で他
のファイバとの結合は比較的容易だが、通常のファイバ
の材料である石英と磁気光学材料の屈折率が大きく異な
るため接続点で反射が生じるという問題点があった。 【0006】さらに図5のような光ファイバ1に磁気光
学材料4を挟む構造でも、光ファイバ1と磁気光学材料
4の境界で反射が生じ、レンズがないためさらに結合効
率が悪くなってしまっていた。 【0007】本発明の目的は、上述の課題を解決するた
めに、磁気光学効果を用いた非相反な導波路において、
簡単な構成で、他の光学系との接続における光の反射や
損失の少ない光ファイバ型非相反デバイスを提供するこ
とである。 【0008】 【課題を解決するための手段】本発明は、上述の問題点
を解決するため、伝送用の通常の光ファイバ自体に直接
非相反特性を付加する方法を提供するものである。具体
的には、伝送用の光ファイバのクラッドの一部を除去
し、その部分に磁気光学物質を装荷することによって、
本来等方性であるファイバに非相反性を生じさせる。 【0009】 【作用】従来、磁気光学効果を生じさせるためには、光
が主として存在する導波層やコアそのものを磁気光学材
料で形成していた。ここに形成に伴う困難や、屈折率
差、結合の問題が生じる原因があった。ところが、光が
閉じ込められているといっても伝搬する光の電磁界は導
波層の外部にまで浸み出している。この外部に浸み出し
た電磁界に磁気光学材料を作用させることにより、本来
等方性であった光ファイバのコアに磁気光学効果を生じ
させることが可能か否か検討を行った結果、それが可能
であり、また磁気光学効果の大きさも実用レベルである
ことが見出された。 【0010】 【実施例】図1は本発明の実施例を示す。石英系のシン
グルモード光ファイバ1のクラッド3の一部を除去しそ
の部分に磁気光学材料4を装荷する。ここではCe置換
YIG単結晶を装荷している。 【0011】図2は、図1の構造を解析の為に模式化し
たものであり、光の伝搬方向に垂直な断面を示してい
る。光ファイバ1のコア2は本来円形だが、正方形に近
似してある。磁界はX方向に印加する。図3は図2の構
造においてコア2と磁気光学材料4の距離Hを変化させ
て非相反位相シフト量を有限要素法で計算したものであ
る。磁気光学材料4の厚さd=0.4μm、コア径を6
μmとして、光ファイバ1は石英を材料としコア2の屈
折率は1.5045、クラッド3の屈折率は1.5、C
e置換YIGの屈折率は2.23、磁気光学定数γは
7.7×10-3、としている。非相反位相シフト量はH
により変化しているが0μmから3μmで約16.5r
ad/cmを示している。参考のため先に挙げた文献を
見れば、矩形の非相反導波路の非相反位相シフトは約
1.0から2.2rad/cmの値であり、同等以上の
非相反位相シフト量が生じており実用的なデバイスを形
成できることが分かる。このようにコア2が等方性の物
質であっても、コア2と磁気光学材料4を接近させ伝搬
光に作用させることにより、非相反位相シフトを生じせ
しめることが可能なのである。 【0012】したがって、コアが等方性の物質であって
もより非相反性が生じるために、光ファイバ自体、或い
はコアの材料が磁気光学材料である必要はなく、任意の
等方性のファイバを加工する事により任意の箇所に非相
反性を付加する事ができる。これにより、非常に容易に
安価に光アイソレータや光サーキュレータ、変調器等を
構成することができる。 【0013】 【効果】本発明は、単純な構造であり、レンズがないた
め光学的アライメントが不要になる。また、部品点数が
少なく小型になる。また、伝送用ファイバと同一のファ
イバを使うことにより他の光ファイバと接続する場合
に、接続点での屈折率の差が生じず反射が少なく結合効
率も上がる。さらに、光ファイバの任意の箇所に非相反
性を生じさせることができる。このように、任意の伝送
用ファイバに直接非相反特性を付加できるため、応用性
が高く、利用価値が大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator, an optical circulator, and an optical isolator used in the fields of optical communication and optical measurement.
The present invention relates to a non-reciprocal device applied to an optical switch or the like, and more particularly, to an optical fiber type non-reciprocal device having a fiber type as a whole. 2. Description of the Related Art Optical isolators and optical circulators have been manufactured utilizing the non-reciprocal action of the magneto-optical effect. A waveguide formed by magnetic garnet or the like and having a waveguide layer having a magneto-optical effect is particularly called a magneto-optical waveguide.
A non-reciprocal waveguide that uses a non-reciprocal effect among the magneto-optical effects may be used. The non-reciprocal waveguide is used for a waveguide type isolator, a modulator, and the like, and performs non-reciprocal phase shift and rotation of a non-reciprocal polarization plane (Faraday rotation).
Conventional non-reciprocal waveguides include a rib type (FIG. 4A) in which a waveguide layer 5 is formed on a substrate 6 and a clad 3.
A rectangular type such as an embedded type in which a waveguide layer 5 is embedded therein (FIG. 4B) was mainly used. This is formed by a liquid phase epitaxial (LPE) method, a sputtering method, or the like. Further, a Faraday rotation fiber in which a magneto-optical material is molded into a fiber type for a fiber sensor, or a fiber type Faraday rotator in which a magneto-optical material 4 (Faraday rotator) is sandwiched between optical fibers 1 as a fiber type device (FIG. 5). Etc. have also been proposed. The non-reciprocal action of the magneto-optical waveguide will be briefly described with reference to FIG. In the waveguide mode of light in such a three-dimensional waveguide, the main component of the electromagnetic field is Ex.
And the E x mode, which is a Hy, and the main component of the electromagnetic field Ey H
It is roughly divided into Ey mode which is x. These modes have become hybrid mode, E x mode for simplicity the TE mode at the Ey = 0, E y mode H
It is possible to approximate each of the TM modes by setting y = 0. E (Ex, Ey, Ez) is an electric field vector, H
Let (Hx, Hy, Hz) be the magnetic field vector. Waveguide layer 5
In a conventional non-reciprocal waveguide formed by using a magneto-optical material, a non-reciprocal phase shift occurs in the TM mode by applying a magnetic field in the X direction of the waveguide. This is a phenomenon in which the propagation constant of light propagating in the + Z direction is different from the propagation constant of light propagating in the −Z direction, and the propagation constant of the TM mode when no magnetic field is applied is β
If TM, the propagation constant at the time of applying a magnetic field is βTM ± △ β (the compound ± corresponds to the Z direction). This Δβ is the amount of nonreciprocal phase shift and is called the nonreciprocal phase amount. These are described in detail in literatures such as "Religion Theory Vol. J71-C pp 702-708 Inuzuka, Okamura, Yamamoto 1988". Further, by applying a magnetic field in the Z direction, the propagating light causes Faraday rotation. This is a non-reciprocal rotation of the polarization plane (TE-TM mode conversion). Both the light propagating in the + Z direction and the light propagating in the -Z direction propagate in the same direction and the same angle about the direction of the magnetic field. It rotates in the opposite direction based on the direction. SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method for removing a part of a cladding of an optical fiber in a longitudinal direction and loading a magneto-optical material on the removed portion to form a core and a magnetic material. By bringing the optical material close to 3 μm or less, the magneto-optical material acts on an electromagnetic field that has permeated outside the core, which is a waveguide layer, to cause a non-reciprocal magneto-optical effect on the core of the optical fiber. It is characterized by the following. [0005] In addition, there is a magneto-optical material formed into a fiber shape, but it was not originally designed for a sensor or the like to solve the problem of connection of a rectangular waveguide.
It is difficult and expensive to mold a magneto-optical material such as garnet into a fiber shape. In addition, although coupling with other fibers is relatively easy using a connector or the like, there is a problem that reflection occurs at a connection point because the refractive index of quartz, which is a material of ordinary fibers, and that of a magneto-optical material are significantly different. Further, even in the structure in which the magneto-optical material 4 is interposed between the optical fiber 1 as shown in FIG. 5, reflection occurs at the boundary between the optical fiber 1 and the magneto-optical material 4, and the coupling efficiency is further deteriorated because there is no lens. Was. An object of the present invention is to provide a non-reciprocal waveguide using the magneto-optical effect to solve the above-mentioned problems.
An object of the present invention is to provide an optical fiber type non-reciprocal device having a simple configuration and having less light reflection and loss in connection with another optical system. SUMMARY OF THE INVENTION The present invention provides a method for directly adding non-reciprocal characteristics to a normal optical fiber for transmission to solve the above-mentioned problems. Specifically, by removing a part of the cladding of the optical fiber for transmission, and loading the part with a magneto-optical material,
It causes non-reciprocity in fibers that are isotropic in nature. Conventionally, in order to generate a magneto-optical effect, a waveguide layer or a core itself in which light mainly exists has been formed of a magneto-optical material. Here, there were difficulties involved in the formation, the refractive index difference, and the problem of the coupling. However, even though the light is confined, the electromagnetic field of the propagating light is seeping out of the waveguide layer. As a result of examining whether or not it is possible to cause a magneto-optical effect on the originally isotropic optical fiber core by applying a magneto-optical material to the electromagnetic field that has oozed out, And the magnitude of the magneto-optical effect was also found to be at a practical level. FIG. 1 shows an embodiment of the present invention. A part of the clad 3 of the quartz single mode optical fiber 1 is removed, and a magneto-optical material 4 is loaded on the part. Here, a Ce-substituted YIG single crystal is loaded. FIG. 2 is a schematic diagram of the structure of FIG. 1 for analysis, and shows a cross section perpendicular to the light propagation direction. The core 2 of the optical fiber 1 is essentially circular, but approximated to a square. A magnetic field is applied in the X direction. FIG. 3 shows the non-reciprocal phase shift calculated by the finite element method while changing the distance H between the core 2 and the magneto-optical material 4 in the structure of FIG. The thickness d of the magneto-optical material 4 is 0.4 μm, and the core diameter is 6
The optical fiber 1 is made of quartz, the refractive index of the core 2 is 1.545, the refractive index of the clad 3 is 1.5, and C
The refractive index of the e-substituted YIG is 2.23, and the magneto-optical constant γ is 7.7 × 10 −3 . Non-reciprocal phase shift is H
About 16.5r from 0 μm to 3 μm
ad / cm. According to the literature mentioned above for reference, the non-reciprocal phase shift of the rectangular non-reciprocal waveguide is a value of about 1.0 to 2.2 rad / cm, and a non-reciprocal phase shift amount equal to or more than that occurs. It can be seen that a practical device can be formed. As described above, even when the core 2 is an isotropic substance, a non-reciprocal phase shift can be generated by bringing the core 2 and the magneto-optical material 4 closer to each other and acting on the propagating light. Therefore, even if the core is made of an isotropic substance, non-reciprocity occurs. Therefore, the optical fiber itself or the material of the core does not need to be a magneto-optical material. By processing, non-reciprocity can be added to an arbitrary portion. Thus, an optical isolator, an optical circulator, a modulator, and the like can be configured very easily and inexpensively. The present invention has a simple structure and does not require an optical alignment because there is no lens. Further, the number of parts is small and the size is small. In addition, when the same fiber as the transmission fiber is used to connect to another optical fiber, there is no difference in the refractive index at the connection point, the reflection is small, and the coupling efficiency is increased. Further, non-reciprocity can be generated at an arbitrary portion of the optical fiber. As described above, since nonreciprocal characteristics can be directly added to an arbitrary transmission fiber, the applicability is high and the utility value is high.

【図面の簡単な説明】 【図1】本発明の一実施例を示す光ファイバ型非相反デ
バイスの斜視図。 【図2】本発明の断面模式図。 【図3】本発明における非相反位相シフト量を示すグラ
フ。 【図4】非相反導波路の従来例を示す図。 【図5】ファイバ型ファラデー回転子の従来例を示す
図。 【符号の説明】 1:光ファイバ、2:コア、3:クラッド、4:磁気光
学材料、5:導波層、6:基板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an optical fiber type non-reciprocal device showing one embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the present invention. FIG. 3 is a graph showing a non-reciprocal phase shift amount in the present invention. FIG. 4 is a diagram showing a conventional example of a non-reciprocal waveguide. FIG. 5 is a diagram showing a conventional example of a fiber type Faraday rotator. [Description of Signs] 1: optical fiber, 2: core, 3: clad, 4: magneto-optical material, 5: waveguide layer, 6: substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−198122(JP,A) 特開 昭55−26544(JP,A) 電子情報通信学会論文誌 C,1988 年,Vol.J71−C, No.5, 702−708 (58)調査した分野(Int.Cl.7,DB名) G02F 1/09 505 G02B 27/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-198122 (JP, A) JP-A-55-26544 (JP, A) Transactions of the Institute of Electronics, Information and Communication Engineers C, 1988, Vol. J71-C, No. 5, 702-708 (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/09 505 G02B 27/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】光ファイバのクラッドの長手方向における
一部を除去し、前記除去部に磁気光学材料を装荷してコ
アと磁気光学材料を3μm以下に近接させることで、導
波層であるコアの外部にしみ出した電磁界に前記磁気光
学材料を作用させ、光ファイバのコアに非相反性の磁気
光学効果を生じさせることを特徴とする光ファイバ型非
相反デバイス。
(57) [Claim 1] A part of a cladding of an optical fiber in a longitudinal direction is removed, and a magneto-optical material is loaded on the removed part to remove the cladding.
By bringing the magneto-optical material close to 3 μm or less,
The magnetic light is applied to the electromagnetic field that has leaked out of the core, which is a wave layer.
An optical fiber type non-reciprocal device characterized in that a non-reciprocal magneto-optical effect is generated in a core of an optical fiber by acting a chemical material .
JP25164993A 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device Expired - Fee Related JP3495066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25164993A JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25164993A JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Publications (2)

Publication Number Publication Date
JPH07104227A JPH07104227A (en) 1995-04-21
JP3495066B2 true JP3495066B2 (en) 2004-02-09

Family

ID=17225965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25164993A Expired - Fee Related JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Country Status (1)

Country Link
JP (1) JP3495066B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054707B1 (en) 1999-03-19 2000-06-19 東京大学長 Optical isolator
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会論文誌 C,1988年,Vol.J71−C, No.5,702−708

Also Published As

Publication number Publication date
JPH07104227A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
Sugimoto et al. Waveguide polarization-independent optical circulator
US5042896A (en) Polarization device
CA2052923C (en) Polarization-independent optical switches/modulators
Takei et al. Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift
US3923373A (en) Coupling to graded index waveguide
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
US3830555A (en) Nonreciprocal waveguide mode converter
EP0699936A2 (en) Optical fiber non-reciprocal phase shifters and optical isolators using them
JP3495066B2 (en) Optical fiber type non-reciprocal device
US20040047531A1 (en) Waveguide mach-zehnder optical isolator utilizing transverse magneto-optical phase shift
US4032217A (en) Optical wave guide for carrying out phase-tuning between two modes of light propagation
JP3540826B2 (en) Fiber type optical isolator
Okamura et al. A design for a nonreciprocal phase shifter
JP2758457B2 (en) Waveguide type optical circulator
JP3457711B2 (en) Fiber type optical isolator
Okamura et al. Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlays
Li et al. Design of a broadband and low loss TM magneto-optical waveguide isolator based on lithium niobate on insulator
Fujita et al. Hybrid-integrated optical isolators and circulators
JP2989982B2 (en) Fiber type optical isolator
Petrov et al. Nonreciprocal silicon waveguides and ring resonators with gyrotropic cladding
JPS59101604A (en) Optical isolator
JP3441769B2 (en) Magneto-optical rib waveguide
JP3457710B2 (en) Optical fiber parts
Pintus et al. Novel nonreciprocal devices with integrated electromagnet for silicon photonics
JPH06100732B2 (en) Fiber type isolator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees