JPH07104227A - Optical fiber type non-reciprocity device - Google Patents

Optical fiber type non-reciprocity device

Info

Publication number
JPH07104227A
JPH07104227A JP25164993A JP25164993A JPH07104227A JP H07104227 A JPH07104227 A JP H07104227A JP 25164993 A JP25164993 A JP 25164993A JP 25164993 A JP25164993 A JP 25164993A JP H07104227 A JPH07104227 A JP H07104227A
Authority
JP
Japan
Prior art keywords
optical
magneto
fiber
core
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25164993A
Other languages
Japanese (ja)
Other versions
JP3495066B2 (en
Inventor
Yasushi Sato
恭史 佐藤
Masanori Koshiba
正則 小柴
Shiyuuhei Shiyou
秀萍 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25164993A priority Critical patent/JP3495066B2/en
Publication of JPH07104227A publication Critical patent/JPH07104227A/en
Application granted granted Critical
Publication of JP3495066B2 publication Critical patent/JP3495066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce light reflection and loss while connecting to another optical system with a simple constitution by removing a portion of an optical fiber for transmission and putting a magneto-optical material into that portion. CONSTITUTION:A portion of a clad 3 of a qualtz single mode optical fiber is removed and a magneto-optical material 4 is put into that portion. Even though a core 2 is an isotropic material, a non-reciprocity phase shift is made by making the core 2 and the material 4 closer to a transmission light beam and actuating. Since a non-reciprocity characteristic is yielded even though the core 2 is isotropic material, no need is required for the fiber 1 itself or the material of the core 2 to be the material 4, a non-reciprocity characteristic is added at an arbitrary position by machining the arbitrary isotropic fiber 1. Thus, an optical isolator, an optical circulator and a modulator are very easily and inexpensively constituted employing this technique.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信や光計測の分野に
おいて用いられる光アイソレータ、光サーキュレータ、
光スイッチ等に応用される非相反デバイスに関し、特に
全体をファイバ型に構成した光ファイバ型非相反デバイ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator, an optical circulator, and an optical isolator used in the fields of optical communication and optical measurement.
The present invention relates to a non-reciprocal device applied to an optical switch or the like, and particularly to an optical fiber type non-reciprocal device which is entirely configured in a fiber type.

【0002】[0002]

【従来技術】磁気光学効果による非相反な作用を利用
し、光アイソレータや光サーキュレータが作られてい
る。磁性ガーネット等で導波路を形成し、導波層に磁気
光学効果を持たせたものを特に磁気光学導波路という。
磁気光学効果のうち特に非相反な作用を利用するものを
非相反導波路という場合もある。非相反導波路は導波路
型アイソレータや変調器等に用いられ、非相反位相シフ
トや非相反な偏光面の回転(ファラデー回転)をする。
従来の非相反導波路は、基板6の上に導波層5を形成し
たリブ型(図4(A))と呼ばれるものや、クラッド3
内に導波層5を埋め込んだ埋め込み型(図4(B))と
いうような矩形のものが主流であった。これは、液相エ
ピタキシャル(LPE)法や、スパッタリング法等で形
成されるものである。またファイバセンサー用として磁
気光学材料をファイバ型に成型したファラデー回転ファ
イバや、ファイバ型デバイスとして磁気光学材料4(フ
ァラデー回転子)を光ファイバ1で挟み込んだ構成(図
5)のファイバ型ファラデー回転子等も提案されてい
る。
2. Description of the Related Art Optical isolators and optical circulators have been manufactured by utilizing the nonreciprocal action due to the magneto-optical effect. A waveguide formed of magnetic garnet or the like and a waveguide layer having a magneto-optical effect is called a magneto-optical waveguide.
Of the magneto-optical effects, the one that utilizes non-reciprocal action may be called a non-reciprocal waveguide. The non-reciprocal waveguide is used for a waveguide type isolator, a modulator, etc., and performs non-reciprocal phase shift and non-reciprocal polarization plane rotation (Faraday rotation).
The conventional non-reciprocal waveguide is a rib type (FIG. 4A) in which the waveguide layer 5 is formed on the substrate 6, and the cladding 3.
A rectangular type such as an embedded type (FIG. 4B) in which the waveguide layer 5 is embedded is the mainstream. This is formed by a liquid phase epitaxial (LPE) method, a sputtering method, or the like. Further, a Faraday rotating fiber in which a magneto-optical material is molded into a fiber type for a fiber sensor, or a fiber type Faraday rotator having a configuration in which a magneto-optical material 4 (Faraday rotator) is sandwiched between optical fibers 1 as a fiber type device (FIG. 5) Etc. are also proposed.

【0003】磁気光学導波路の非相反な作用について図
4(A)を用いて簡単に説明する。このような3次元導
波路における光の導波モードは、電磁界の主成分がEx
とHy であるEx モードと、電磁界の主成分がEy とH
x であるEy モードに大別される。これらのモードはハ
イブリッドモードになっているが、簡単のためにEx
ードはEy =0とおいてTEモードに、Ey モードはH
y =0とおいてTMモードにそれぞれ近似することがで
きる。なおE(Ex 、Ey 、Ez )を電界ベクトル、H
(Hx 、Hy 、Hz )を磁界ベクトルとする。導波層5
を磁気光学材料で形成した従来の非相反導波路では、導
波路のX方向に磁界を印加することによってTMモード
に非相反位相シフトが生じる。これは+Z方向に伝搬す
る光と−Z方向に伝搬する光の伝搬定数が異なる現象
で、磁界を印加しない場合のTMモードの伝搬定数をβ
TMとすれば、磁界印加時の伝搬定数はβTM±△βとなる
(複号±はZ方向に対応する)。この△βが非相反位相
シフトの量で非相反位相量といわれる。これらは「信学
論VOL.J71−C pp702〜708 犬塚、岡
村、山本 1988」等の文献に詳しく記載されてい
る。また、Z方向に磁界を印加することにより伝搬光は
ファラデー回転を生じる。これは非相反な偏光面の回転
(TE−TMモード変換)であり、+Z方向に伝搬する
光も−Z方向に伝搬する光も磁界の方向を軸に同方向及
び同角度に、光の伝搬方向を基準にすれば逆方向に回転
する。
The non-reciprocal action of the magneto-optical waveguide will be briefly described with reference to FIG. In the waveguide mode of light in such a three-dimensional waveguide, the main component of the electromagnetic field is Ex
And the E x mode, which is a Hy, and the main component of the electromagnetic field Ey H
It is roughly divided into E y modes that are x. These modes have become hybrid mode, E x mode for simplicity the TE mode at the Ey = 0, E y mode H
Each can be approximated to the TM mode by setting y = 0. Note that E (Ex, Ey, Ez) is the electric field vector, H
Let (Hx, Hy, Hz) be the magnetic field vector. Waveguide layer 5
In the conventional non-reciprocal waveguide formed of a magneto-optical material, non-reciprocal phase shift occurs in the TM mode by applying a magnetic field in the X direction of the waveguide. This is a phenomenon in which the propagation constants of light propagating in the + Z direction and light propagating in the −Z direction are different, and the propagation constant of the TM mode when no magnetic field is applied is β
If TM, the propagation constant when a magnetic field is applied is βTM ± Δβ (the double sign ± corresponds to the Z direction). This Δβ is the amount of non-reciprocal phase shift and is called the non-reciprocal phase amount. These are described in detail in the literature such as "Shingakuron VOL. J71-C pp702-708 Inuzuka, Okamura, Yamamoto 1988". Further, by applying a magnetic field in the Z direction, the propagated light undergoes Faraday rotation. This is non-reciprocal rotation of the plane of polarization (TE-TM mode conversion), and both the light propagating in the + Z direction and the light propagating in the −Z direction propagate in the same direction and at the same angle about the magnetic field direction. It rotates in the opposite direction based on the direction.

【0004】[0004]

【発明が解決しようとする課題】ところが図4(A)、
(B)のような矩形の非相反導波路はスパッタリング等
の薄膜作製技術を用いて作られるが、非常に手間がかか
り高価なものになる。また、実際は導波路のみではデバ
イスとして使えず、光ファイバやLDとつなげて使用し
なければならないためレンズ等の結合光学系が必要にな
る。光の入出射部では必ず結合損失が生じ、レンズ等の
部品点数が増加し調整の手間も増える。
However, as shown in FIG. 4 (A),
The rectangular non-reciprocal waveguide as shown in (B) is manufactured by using a thin film manufacturing technique such as sputtering, but it is very time-consuming and expensive. Further, in reality, the waveguide alone cannot be used as a device, and must be used by connecting it to an optical fiber or LD, so that a coupling optical system such as a lens is required. Coupling loss always occurs at the light input / output section, the number of parts such as lenses increases, and the time and effort for adjustment increase.

【0005】また磁気光学材料をファイバ状に成形した
ものもあったが、元来センサー用等で、矩形導波路の接
続の問題を解決するために考案されたものでなかった。
ガーネット等の磁気光学材料をファイバ状に成形するこ
とがまず困難であり、高価になる。またコネクタ等で他
のファイバとの結合は比較的容易だが、通常のファイバ
の材料である石英と磁気光学材料の屈折率が大きく異な
るため接続点で反射が生じるという問題点があった。
Although there is a fiber-shaped magneto-optical material, it was originally designed for a sensor or the like and was not devised to solve the problem of connecting rectangular waveguides.
It is difficult and expensive to form a magneto-optical material such as garnet into a fiber. In addition, although it is relatively easy to connect other fibers with a connector or the like, there is a problem that reflection occurs at the connection point because the refractive index of quartz, which is a material of a normal fiber, is greatly different from that of the magneto-optical material.

【0006】さらに図5のような光ファイバ1に磁気光
学材料4を挟む構造でも、光ファイバ1と磁気光学材料
4の境界で反射が生じ、レンズがないためさらに結合効
率が悪くなってしまっていた。
Further, even in the structure in which the magneto-optical material 4 is sandwiched between the optical fibers 1 as shown in FIG. 5, reflection occurs at the boundary between the optical fiber 1 and the magneto-optical material 4, and since there is no lens, the coupling efficiency is further deteriorated. It was

【0007】本発明の目的は、上述の課題を解決するた
めに、磁気光学効果を用いた非相反な導波路において、
簡単な構成で、他の光学系との接続における光の反射や
損失の少ない光ファイバ型非相反デバイスを提供するこ
とである。
In order to solve the above problems, an object of the present invention is to provide a non-reciprocal waveguide using the magneto-optical effect,
An object of the present invention is to provide an optical fiber type nonreciprocal device which has a simple structure and has less reflection and loss of light in connection with other optical systems.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の問題点
を解決するため、伝送用の通常の光ファイバ自体に直接
非相反特性を付加する方法を提供するものである。具体
的には、伝送用の光ファイバのクラッドの一部を除去
し、その部分に磁気光学物質を装荷することによって、
本来等方性であるファイバに非相反性を生じさせる。
In order to solve the above-mentioned problems, the present invention provides a method for directly adding non-reciprocal characteristics to an ordinary optical fiber for transmission. Specifically, by removing a part of the cladding of the optical fiber for transmission and loading the part with a magneto-optical material,
It causes non-reciprocity in a fiber that is isotropic in nature.

【0009】[0009]

【作用】従来、磁気光学効果を生じさせるためには、光
が主として存在する導波層やコアそのものを磁気光学材
料で形成していた。ここに形成に伴う困難や、屈折率
差、結合の問題が生じる原因があった。ところが、光が
閉じ込められているといっても伝搬する光の電磁界は導
波層の外部にまで浸み出している。この外部に浸み出し
た電磁界に磁気光学材料を作用させることにより、本来
等方性であった光ファイバのコアに磁気光学効果を生じ
させることが可能か否か検討を行った結果、それが可能
であり、また磁気光学効果の大きさも実用レベルである
ことが見出された。
In the past, in order to produce the magneto-optical effect, the waveguiding layer in which light is mainly present and the core itself are formed of a magneto-optical material. Here, there are causes of difficulty in formation, a difference in refractive index, and a problem of bonding. However, even if the light is confined, the electromagnetic field of the propagating light leaks to the outside of the waveguide layer. As a result of the examination as to whether or not it is possible to generate the magneto-optical effect in the core of the optical fiber which was originally isotropic by applying the magneto-optical material to the electromagnetic field leaching to the outside, It was also found that the magnitude of the magneto-optical effect was at a practical level.

【0010】[0010]

【実施例】図1は本発明の実施例を示す。石英系のシン
グルモード光ファイバ1のクラッド3の一部を除去しそ
の部分に磁気光学材料4を装荷する。ここではCe置換
YIG単結晶を装荷している。
FIG. 1 shows an embodiment of the present invention. A part of the cladding 3 of the quartz single mode optical fiber 1 is removed, and the magneto-optical material 4 is loaded on the part. Here, a Ce-substituted YIG single crystal is loaded.

【0011】図2は、図1の構造を解析の為に模式化し
たものであり、光の伝搬方向に垂直な断面を示してい
る。光ファイバ1のコア2は本来円形だが、正方形に近
似してある。磁界はX方向に印加する。図3は図2の構
造においてコア2と磁気光学材料4の距離Hを変化させ
て非相反位相シフト量を有限要素法で計算したものであ
る。磁気光学材料4の厚さd=0.4μm、コア径を6
μmとして、光ファイバ1は石英を材料としコア2の屈
折率は1.5045、クラッド3の屈折率は1.5、C
e置換YIGの屈折率は2.23、磁気光学定数γは
7.7×10-3、としている。非相反位相シフト量はH
により変化しているが0μmから3μmで約16.5r
ad/cmを示している。参考のため先に挙げた文献を
見れば、矩形の非相反導波路の非相反位相シフトは約
1.0から2.2rad/cmの値であり、同等以上の
非相反位相シフト量が生じており実用的なデバイスを形
成できることが分かる。このようにコア2が等方性の物
質であっても、コア2と磁気光学材料4を接近させ伝搬
光に作用させることにより、非相反位相シフトを生じせ
しめることが可能なのである。
FIG. 2 is a schematic view of the structure of FIG. 1 for analysis and shows a cross section perpendicular to the light propagation direction. The core 2 of the optical fiber 1 is originally circular, but approximates a square. The magnetic field is applied in the X direction. FIG. 3 shows the non-reciprocal phase shift amount calculated by the finite element method by changing the distance H between the core 2 and the magneto-optical material 4 in the structure of FIG. The magneto-optical material 4 has a thickness d = 0.4 μm and a core diameter of 6
μm, the optical fiber 1 is made of quartz, and the core 2 has a refractive index of 1.504, the cladding 3 has a refractive index of 1.5, and C.
The e-substituted YIG has a refractive index of 2.23 and a magneto-optical constant γ of 7.7 × 10 −3 . Non-reciprocal phase shift amount is H
Change from 0 μm to 3 μm, about 16.5r
It shows ad / cm. Looking at the above-mentioned documents for reference, the non-reciprocal phase shift of the rectangular non-reciprocal waveguide is a value of about 1.0 to 2.2 rad / cm, and the same or more non-reciprocal phase shift amount occurs. It can be seen that a practical device can be formed. Thus, even if the core 2 is an isotropic substance, it is possible to cause a non-reciprocal phase shift by bringing the core 2 and the magneto-optical material 4 close to each other and acting on the propagating light.

【0012】したがって、コアが等方性の物質であって
もより非相反性が生じるために、光ファイバ自体、或い
はコアの材料が磁気光学材料である必要はなく、任意の
等方性のファイバを加工する事により任意の箇所に非相
反性を付加する事ができる。これにより、非常に容易に
安価に光アイソレータや光サーキュレータ、変調器等を
構成することができる。
Therefore, even if the core is an isotropic substance, more non-reciprocity occurs. Therefore, the optical fiber itself or the material of the core does not need to be a magneto-optical material, and an arbitrary isotropic fiber can be used. By processing the, non-reciprocity can be added to any place. This makes it possible to construct an optical isolator, an optical circulator, a modulator, etc. very easily and inexpensively.

【0013】[0013]

【効果】本発明は、単純な構造であり、レンズがないた
め光学的アライメントが不要になる。また、部品点数が
少なく小型になる。また、伝送用ファイバと同一のファ
イバを使うことにより他の光ファイバと接続する場合
に、接続点での屈折率の差が生じず反射が少なく結合効
率も上がる。さらに、光ファイバの任意の箇所に非相反
性を生じさせることができる。このように、任意の伝送
用ファイバに直接非相反特性を付加できるため、応用性
が高く、利用価値が大きい。
[Effect] The present invention has a simple structure and does not need any optical alignment because it has no lens. In addition, the number of parts is small and the size is small. In addition, when the same fiber as the transmission fiber is used to connect to another optical fiber, there is no difference in the refractive index at the connection point, reflection is small, and coupling efficiency is improved. Further, non-reciprocity can be generated at any place of the optical fiber. As described above, since the nonreciprocal characteristic can be directly added to any transmission fiber, it has high applicability and great utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光ファイバ型非相反デ
バイスの斜視図。
FIG. 1 is a perspective view of an optical fiber type nonreciprocal device showing an embodiment of the present invention.

【図2】本発明の断面模式図。FIG. 2 is a schematic sectional view of the present invention.

【図3】本発明における非相反位相シフト量を示すグラ
フ。
FIG. 3 is a graph showing a non-reciprocal phase shift amount in the present invention.

【図4】非相反導波路の従来例を示す図。FIG. 4 is a diagram showing a conventional example of a non-reciprocal waveguide.

【図5】ファイバ型ファラデー回転子の従来例を示す
図。
FIG. 5 is a view showing a conventional example of a fiber type Faraday rotator.

【符号の説明】[Explanation of symbols]

1:光ファイバ、2:コア、3:クラッド、4:磁気光
学材料、5:導波層、6:基板
1: optical fiber, 2: core, 3: clad, 4: magneto-optical material, 5: waveguiding layer, 6: substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光ファイバのクラッドの一部を除去し、前
記除去部に磁気光学材料を装荷することによって、光フ
ァイバのコアに磁気光学効果を生じさせることを特徴と
する光ファイバ型非相反デバイス。
1. A non-reciprocal optical fiber type non-reciprocal type, characterized in that a magneto-optical effect is produced in a core of an optical fiber by removing a part of a clad of the optical fiber and loading a magneto-optical material in the removed portion. device.
JP25164993A 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device Expired - Fee Related JP3495066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25164993A JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25164993A JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Publications (2)

Publication Number Publication Date
JPH07104227A true JPH07104227A (en) 1995-04-21
JP3495066B2 JP3495066B2 (en) 2004-02-09

Family

ID=17225965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25164993A Expired - Fee Related JP3495066B2 (en) 1993-10-07 1993-10-07 Optical fiber type non-reciprocal device

Country Status (1)

Country Link
JP (1) JP3495066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208795B1 (en) 1999-03-19 2001-03-27 Sugimura International Patent & Trademark Agency Bureau Optical waveguide isolator
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208795B1 (en) 1999-03-19 2001-03-27 Sugimura International Patent & Trademark Agency Bureau Optical waveguide isolator
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same
JPWO2006129453A1 (en) * 2005-05-30 2008-12-25 独立行政法人科学技術振興機構 Optical fiber element and method for imparting non-reciprocity of light using the same
US7715094B2 (en) 2005-05-30 2010-05-11 Japan Science Of Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same
JP4706079B2 (en) * 2005-05-30 2011-06-22 独立行政法人科学技術振興機構 Optical fiber element and method for imparting non-reciprocity of light using the same

Also Published As

Publication number Publication date
JP3495066B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
US8306371B2 (en) Method for manufacturing optical nonreciprocal element, and optical nonreciprocal element
Takei et al. Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift
US3923373A (en) Coupling to graded index waveguide
US5479551A (en) Optical fiber non-reciprocal phase shifters and optical isolators using them
JP2020531910A (en) Integrated Faraday Rotator
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
US3830555A (en) Nonreciprocal waveguide mode converter
JPH01319706A (en) Optical isolator
JPH03288104A (en) Unidirectional mode converter and optical isolator using the same
JP3495066B2 (en) Optical fiber type non-reciprocal device
JP2758457B2 (en) Waveguide type optical circulator
JP3540826B2 (en) Fiber type optical isolator
JP3457711B2 (en) Fiber type optical isolator
Okamura et al. A design for a nonreciprocal phase shifter
Li et al. Design of a broadband and low loss TM magneto-optical waveguide isolator based on lithium niobate on insulator
Firby et al. Design of integrated YIG-based isolators and high-speed modulators
JP2989982B2 (en) Fiber type optical isolator
JP3441769B2 (en) Magneto-optical rib waveguide
JPS59101604A (en) Optical isolator
JP3457710B2 (en) Optical fiber parts
Pintus et al. Novel nonreciprocal devices with integrated electromagnet for silicon photonics
JPS6294823A (en) Waveguide type optical modulator
JP2784496B2 (en) Waveguide type optical isolator
Takei et al. Silicon waveguide optical circulator employing nonreciprocal phase shift
Nakajima et al. Crosstalk Characteristics of Ti-LiNbO/sub 3/Intersecting Waveguides and Their Application as TE/TM Mode Splitters

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121121

LAPS Cancellation because of no payment of annual fees