JP2989982B2 - Fiber type optical isolator - Google Patents

Fiber type optical isolator

Info

Publication number
JP2989982B2
JP2989982B2 JP5025337A JP2533793A JP2989982B2 JP 2989982 B2 JP2989982 B2 JP 2989982B2 JP 5025337 A JP5025337 A JP 5025337A JP 2533793 A JP2533793 A JP 2533793A JP 2989982 B2 JP2989982 B2 JP 2989982B2
Authority
JP
Japan
Prior art keywords
optical
optical fiber
light
optical isolator
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5025337A
Other languages
Japanese (ja)
Other versions
JPH06242402A (en
Inventor
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5025337A priority Critical patent/JP2989982B2/en
Publication of JPH06242402A publication Critical patent/JPH06242402A/en
Application granted granted Critical
Publication of JP2989982B2 publication Critical patent/JP2989982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光計測の分野
において、半導体レーザーに戻る反射光を遮断する光ア
イソレータに関し、特に光ファイバアンプや任意の伝送
路間に組み込むことのできるインライン型のファイバ型
光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator for blocking reflected light returning to a semiconductor laser in the field of optical communication and optical measurement, and more particularly to an in-line type which can be incorporated between an optical fiber amplifier and an arbitrary transmission line. And a fiber type optical isolator.

【0002】[0002]

【従来の技術】半導体レーザー(レーザーダイオード、
以下LD)を光源とする光通信や光計測では、伝送経路
の途中で反射された光が光源であるLDの活性層まで戻
ると、発振波長や出力の変動を起こして正確な信号の伝
送や計測ができなくなる。この反射の原因は様々有り、
単に光ファイバや光学素子、あるいは接続される装置の
各入出射面で反射が生じるだけでなく、光ファイバの
傷、光ファイバへの応力、光ファイバの曲がりや屈折率
の不均一等の回避不可能な要因によるものもある。した
がって、光源にLDを用いた伝送経路には反射光を防ぐ
手段が不可欠である。光アイソレータは、この様なLD
への反射戻り光を防ぐデバイスである。
2. Description of the Related Art Semiconductor lasers (laser diodes,
In optical communication and optical measurement using an LD as a light source, when light reflected in the middle of a transmission path returns to the active layer of the LD as a light source, the oscillation wavelength and output fluctuate, and accurate signal transmission and the like occur. Measurement becomes impossible. There are various causes of this reflection,
In addition to reflection not only at the optical fiber, optical element, or each input / output surface of the connected device, it is not possible to avoid damage to the optical fiber, stress on the optical fiber, bending of the optical fiber, and uneven refractive index. Some are due to possible factors. Therefore, means for preventing reflected light is indispensable in a transmission path using an LD as a light source. An optical isolator is such an LD
This device prevents reflected light from returning to the device.

【0003】今まで光アイソレータとしては、バルク型
のファラデー回転子と偏光子を組み合わせたものが実用
されてきた。また、光ファイバアンプや伝送路中の任意
の箇所にアイソレータを組み込む場合はアイソレータの
入出射端にレンズ、光ファイバを取り付けたインライン
型あるいはピグテイル型と呼ばれるものが使われてい
る。
Hitherto, a combination of a bulk type Faraday rotator and a polarizer has been used as an optical isolator. When an isolator is incorporated in an optical fiber amplifier or an arbitrary portion in a transmission line, a so-called in-line type or pigtail type in which a lens and an optical fiber are attached to an input / output end of the isolator is used.

【0004】図5はインライン型光アイソレータの従来
例(特公昭60−51690)であり、光学軸が表面と
傾くように平行平板に形成した第1の複屈折板6と、そ
れぞれこの第1の複屈折板と同じ表面と光学軸の傾き角
を持つと共に、第1の複屈折板のルート2分の1の厚さ
を有し、第1の複屈折板6に対して入射光線方向を軸と
してそれぞれ45度の角度だけ回転して配置した第2の
複屈折板7および第3の複屈折板8と、第1および第2
の複屈折板間に挿入され、偏光面の回転を45度とした
ファラデー回転子9からなっている。入射光線10が第
1の複屈折板6に入射すると直交する2つの直線偏光
(常光、異常光)に分離され、平行な2本の光として直
進し、ファラデー回転子9で偏光面をそれぞれ45度回
転させる。ファラデー回転子9を出た光は、光学軸をフ
ァラデー効果による偏光面の回転方向と同じ向きに成す
ようにおかれた第2の複屈折板7に入る。この複屈折板
の光学軸と平行な偏光面を持つ光はずれた位置から出射
され、第3の複屈折板8で一本の光線に合成される。次
に右方から来た光は第3の複屈折板8を通り第2の複屈
折板7を出射されるまでは上記説明の逆を進むだけであ
るが、ファラデー回転子9で非相反な偏光面の回転を受
けるのでファラデー回転子9から出射された光は左方か
ら来た来た場合と90度異なる偏光面を持つことにな
る。したがって、第1の複屈折板6に右方から入射した
光は出射光11のように左方からの場合と違う位置に出
射されることになり遮断される。
FIG. 5 shows a conventional example of an in-line optical isolator (Japanese Patent Publication No. 60-51690), in which a first birefringent plate 6 formed in a parallel flat plate so that an optical axis is inclined with respect to the surface, and a first birefringent plate 6 respectively. It has the same surface and the inclination angle of the optical axis as the birefringent plate, has a thickness of one half of the route of the first birefringent plate, and has the axis of incident light with respect to the first birefringent plate A second birefringent plate 7 and a third birefringent plate 8, each of which is rotated by an angle of 45 degrees;
And a Faraday rotator 9 having a rotation of the polarization plane of 45 degrees. When the incident light beam 10 is incident on the first birefringent plate 6, it is separated into two orthogonal linearly polarized light beams (ordinary light and extraordinary light), travels straight as two parallel light beams, and the Faraday rotator 9 changes the polarization plane to 45 light. Rotate degrees. The light exiting the Faraday rotator 9 enters the second birefringent plate 7 whose optical axis is oriented in the same direction as the direction of rotation of the plane of polarization due to the Faraday effect. The light having a polarization plane parallel to the optical axis of the birefringent plate is emitted from a deviated position and is combined by the third birefringent plate 8 into one light beam. Next, the light coming from the right proceeds through the third birefringent plate 8 and exits the second birefringent plate 7 only in the reverse of the above description. Since the polarization plane is rotated, the light emitted from the Faraday rotator 9 has a polarization plane different from that of the light coming from the left by 90 degrees. Therefore, the light incident on the first birefringent plate 6 from the right is emitted to a position different from that from the left like the emitted light 11 and is blocked.

【0005】[0005]

【発明が解決しようとする課題】ところが図5の様な構
成の光アイソレータは、高価な複屈折板を多数使用する
ため安価な製品を提供することが困難であり、また、光
アイソレータ内を2本の光線が通過するため断面が大型
化してしまう。また、2本の光線の分離合成、それぞれ
の光学素子の光学軸と光線の偏光方向の調整が非常に困
難で作製時間がかかり、コストアップの原因にもなって
いる。さらに多数の光学素子による多くの入出射面があ
るため、反射や散乱損失が大きい。また、光アイソレー
タと光ファイバの結合にレンズ等の光学系を必要とし、
ここでも光パワーの損失を生じることになる。
However, the optical isolator having the structure shown in FIG. 5 uses a large number of expensive birefringent plates, so that it is difficult to provide an inexpensive product. The cross section becomes large because the light beam passes through the book. In addition, it is very difficult to separate and combine two light beams and to adjust the optical axis of each optical element and the polarization direction of the light beams, which takes a lot of time to manufacture, and causes an increase in cost. Further, since there are many entrance / exit surfaces by a large number of optical elements, reflection and scattering loss are large. Also, an optical system such as a lens is required for coupling the optical isolator and the optical fiber,
Again, a loss of optical power will occur.

【0006】[0006]

【課題を解決するための手段】本発明は、従来技術のこ
れらの問題点を解決し、光ファイバ自体に直接光アイソ
レータ機能を付加する方法を提供することを目的とし、
等方性物質を使った光ファイバであって、この光ファイ
バのクラッドの一部を除去し、その部分に磁気光学物質
を装荷し、前記磁気光学物質の形状を調整することによ
り付加的導波層とし、光ファイバコア中の光と非相反な
分布結合を生じさせるファイバ型光アイソレータを提供
する。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems of the prior art and to provide a method for directly adding an optical isolator function to an optical fiber itself.
An optical fiber using an isotropic material, wherein a part of a clad of the optical fiber is removed, a magneto-optical material is loaded on the portion, and an additional waveguide is formed by adjusting the shape of the magneto-optical material. Provided is a fiber-type optical isolator that is a layer and generates non-reciprocal distributed coupling with light in an optical fiber core.

【0007】すなわち、磁界を印加した磁気光学材料の
導波路で順方向と逆方向に伝搬する光の伝搬定数が異な
ることは知られている。これは非相反位相シフトと呼ば
れ、そのシフト量は、磁界を掛けない場合の伝搬定数を
βとすれば、例えば順方向はβ+Δβ、逆方向はβ−Δ
βとあらわせる。Δβの大きさは、磁気光学材料の特性
と導波路の構造で決まる。この性質を利用すれば順方向
と逆方向で結合効率の異なる分岐結合器を構成すること
ができる。
That is, it is known that the propagation constant of light propagating in a forward direction and a backward direction in a waveguide made of a magneto-optical material to which a magnetic field is applied is different. This is called a non-reciprocal phase shift. If the propagation constant is β when no magnetic field is applied, for example, β + Δβ in the forward direction and β−Δ in the reverse direction
Express as β. The magnitude of Δβ is determined by the characteristics of the magneto-optical material and the structure of the waveguide. By utilizing this property, it is possible to configure a branch coupler having different coupling efficiencies in the forward and reverse directions.

【0008】分布結合における2つの導波層間のパワー
の移り変わりは導波層Aの伝搬定数をβa、導波層Bの
伝搬定数をβb、結合長をL、2つの導波路の結合係数
をχとして、導波層AからBへ移るパワーの割合を初期
値を1として下記のPABの如く表せる。
[0008] The transition of the power between the two waveguide layers in the distributed coupling is represented by the propagation constant of the waveguide layer A being βa, the propagation constant of the waveguide layer B being βb, the coupling length being L, and the coupling coefficient of the two waveguides being χ. The ratio of the power transferred from the waveguide layer A to the waveguide layer B can be expressed as the following PAB with the initial value being 1.

【0009】[0009]

【数1】 (Equation 1)

【0010】この式から伝搬定数βa とβb の両方、あ
るいはどちらか一方を変えればパワーが移り変わる距離
と移り変わる割合を変える事が出来る事がわかり、適当
な磁気光学材料で導波路の構造(厚さ、幅、長さ)を調
整すれば順方向と逆方向でこの伝搬定数を変える事が出
来、順方向は0%、逆方向は100%結合する分岐結合
器も実現可能になる。すなわちこれはサーキュレータ、
およびアイソレータとなる。従来、光アイソレータは光
ファイバとは全く別の部品でコネクタやレンズ等を用い
て接続するものと考えられており、光ファイバ自体を光
アイソレータにするという発想はなかったが、磁気光学
効果によるこの非相反な導波路の結合の性質を伝送用の
光ファイバに直接付加するのが本発明である。図1を用
いて説明する。光ファイバ1のクラッド2の一部を除去
し、その部分に光ファイバコア3と平行に磁気光学材料
による導波層を形成する。これを付加導波層4と呼ぶこ
ととする。この付加導波層4には外部より永久磁石、電
磁石等により光の進行方向と垂直な方向Y方向に沿った
磁界が印加されている。
From this equation, it can be seen that by changing both or one of the propagation constants βa and βb, the distance at which the power changes and the rate at which the power changes can be changed. , Width, and length), the propagation constant can be changed in the forward and reverse directions, and a branch coupler that couples 0% in the forward direction and 100% in the reverse direction can be realized. That is, this is a circulator,
And an isolator. In the past, optical isolators were considered to be completely separate from optical fibers and connected using connectors, lenses, etc., and there was no idea to use optical fibers themselves as optical isolators. It is the present invention to add the non-reciprocal waveguide coupling properties directly to the transmission optical fiber. This will be described with reference to FIG. A part of the clad 2 of the optical fiber 1 is removed, and a waveguide layer made of a magneto-optical material is formed in that part in parallel with the optical fiber core 3. This will be referred to as an additional waveguide layer 4. A magnetic field is applied to the additional waveguide layer 4 from the outside by a permanent magnet, an electromagnet, or the like in a direction Y perpendicular to the light traveling direction.

【0011】[0011]

【作用】光ファイバのコア3を伝搬してきた光は、付加
導波層4のある部分でこの付加導波層4と分布結合を生
じ光パワーのやり取りをする。付加導波層4には図中Y
方向に磁界を印加してあるため順方向と逆方向で非相反
な伝搬定数差を生じる。順方向の伝搬定数はβb+Δβ
b、逆方向はβb−Δβbで、Δβbが磁界印加による
磁気光学効果に起因するものである。光ファイバコア3
の伝搬定数をβaとすれば、順方向はβaの導波路とβ
b+Δβbの導波路の分布結合、逆方向はβaの導波路
とβb−Δβbの導波路の分布結合と見做すことが出来
る。光ファイバのコア3から付加導波層4に移る光パワ
ーPABを結合長Lの関数として表したのが図2である。
The light propagating through the core 3 of the optical fiber undergoes distributed coupling with the additional waveguide layer 4 at a certain portion of the additional waveguide layer 4 to exchange optical power. The additional waveguide layer 4 has Y
Since a magnetic field is applied in the direction, a non-reciprocal propagation constant difference occurs between the forward direction and the reverse direction. The forward propagation constant is βb + Δβ
b, the reverse direction is βb−Δβb, where Δβb is due to the magneto-optical effect due to the application of the magnetic field. Optical fiber core 3
Is the propagation constant of βa, the forward direction is the waveguide of βa and β
The distribution coupling of the waveguide of b + Δβb can be regarded as the distribution coupling of the waveguide of βa and the waveguide of βb−Δβb in the opposite direction. FIG. 2 shows the optical power P AB transferred from the optical fiber core 3 to the additional waveguide layer 4 as a function of the coupling length L.

【0012】Fが順方向、Bが逆方向に対応する。この
図で結合長Lcの所を見れば、順方向はほぼ0%、逆方
向はほぼ100%の結合を生じている。したがって付加
導波層4の長さをLcとすれば、順方向の光はそのまま
光ファイバのコア3を進行し、逆方向の光はほぼ100
%付加導波層4に移ってしまうため、コア3を伝搬して
逆方向に戻ることは出来ない。即ち光アイソレータを形
成することがわかる。このようにして非常に単純な構成
でファイバインライン型光アイソレータを作ることが出
来る。光アイソレータ中に接続点が皆無で反射の心配が
ない。また面倒な光学素子のアライメントやレンズ系も
必要としない。
F corresponds to the forward direction and B corresponds to the reverse direction. Looking at the coupling length Lc in this figure, almost 0% coupling occurs in the forward direction and about 100% coupling occurs in the reverse direction. Therefore, assuming that the length of the additional waveguide layer 4 is Lc, the light in the forward direction travels through the core 3 of the optical fiber as it is, and the light in the reverse direction is almost 100.
Since it moves to the% additional waveguide layer 4, it cannot propagate through the core 3 and return in the opposite direction. That is, it is understood that an optical isolator is formed. In this manner, a fiber in-line optical isolator can be manufactured with a very simple configuration. There is no connection point in the optical isolator and there is no worry about reflection. Also, no complicated optical element alignment or lens system is required.

【0013】[0013]

【実施例】以下図面を用いて本発明の実施例を説明す
る。図1は本発明の実施例であり、伝送用シングルモー
ドの光ファイバ1の一部のクラッド2を除去し、そこに
磁気光学材料による付加導波層4を形成したものでであ
る。なお付加導波層4の終端に光吸収物質5を取り付け
ればここでの反射や散乱がなくなり特性が向上する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which a part of a cladding 2 of a transmission single mode optical fiber 1 is removed, and an additional waveguide layer 4 made of a magneto-optical material is formed thereon. If the light absorbing substance 5 is attached to the end of the additional waveguide layer 4, reflection and scattering here are eliminated, and the characteristics are improved.

【0014】図3は本発明の製造方法の説明図であり、
光ファイバの断面を示してある。まず光ファイバ1の任
意の部分のクラッド部2を除去し(図(A))、電子線
ビームエッチング等で溝部12を形成する(図
(B))。この溝部12の幅W、深さT、長さ(結合
長)Lは、光ファイバコア3中の光の伝搬定数と、装荷
する磁気光学材料の特性により調節する。石英系のシン
グルモードの光ファイバに磁性ガーネット等を装荷する
場合のWとTは、おおよそ0.1μm〜0.3μm程で
ある。またLは数mm〜30mm程である。次にガーネ
ット等の磁気光学材料13を装荷する(図(C))。こ
れは従来の薄膜形成プロセスでも良いが、1μm以下の
膜でよいためディップ法等で非常に安価に形成すること
もできる。最後に溝12にのみ磁気光学材料13が残る
ように研磨等で仕上げて付加導波層4を作る(図
(D))。クラッド2の除去、磁気光学材料13の形成
および仕上げの研磨は複数の光ファイバを並列にして同
時に行うことができ、生産性も非常に高い。
FIG. 3 is an explanatory view of the manufacturing method of the present invention.
The cross section of the optical fiber is shown. First, the clad portion 2 at an arbitrary portion of the optical fiber 1 is removed (FIG. (A)), and a groove portion 12 is formed by electron beam etching or the like (FIG. (B)). The width W, depth T, and length (coupling length) L of the groove 12 are adjusted according to the propagation constant of light in the optical fiber core 3 and the characteristics of the loaded magneto-optical material. When a magnetic garnet or the like is loaded on a silica-based single-mode optical fiber, W and T are about 0.1 μm to 0.3 μm. L is about several mm to 30 mm. Next, a magneto-optical material 13 such as garnet is loaded (FIG. (C)). This may be a conventional thin film forming process, but since it may be a film of 1 μm or less, it can be formed at very low cost by a dip method or the like. Finally, the additional waveguide layer 4 is formed by polishing or the like so that the magneto-optical material 13 remains only in the groove 12 (FIG. (D)). The removal of the clad 2, the formation of the magneto-optical material 13, and the polishing of the finish can be performed simultaneously with a plurality of optical fibers in parallel, and the productivity is very high.

【0015】図4は本発明の第2の実施例であり、光フ
ァイバアンプの途中に光アイソレータを形成したもので
ある。従来はインライン型の光アイソレータをコネクタ
を介して取り付ける必要があったが、本発明ではそのよ
うな接続部が不要で光ファイバに直接光アイソレータ機
能を付加できる。また、エルビウムドープ光ファイバ自
体に光アイソレータ部を形成することも可能である。
FIG. 4 shows a second embodiment of the present invention, in which an optical isolator is formed in the middle of an optical fiber amplifier. Conventionally, it has been necessary to attach an in-line optical isolator via a connector. However, in the present invention, such a connection portion is not required and an optical isolator function can be directly added to an optical fiber. It is also possible to form an optical isolator in the erbium-doped optical fiber itself.

【0016】[0016]

【発明の効果】以上説明したように本発明の構成ならび
に方法によれば、単純な構造でレンズや偏光子等がない
ため光学的アライメントが不要になり、高価な複屈折板
を全く必要とせず、さらに磁気光学材料も1μm以下の
厚みでよいため非常に安価に製造できる。また、部品点
数が少なく、光ファイバ自体を光アイソレータにするた
め小型になる。さらに、複数のファイバを同時に加工す
ることが可能なため生産性が高く、途中に入出射面が存
在しないため反射の心配が少なく、かつ、任意の伝送用
光ファイバに直接付加できるため、応用性が高く利用価
値が大きい。
As described above, according to the structure and method of the present invention, since there is no lens or polarizer in a simple structure, no optical alignment is required, and no expensive birefringent plate is required. Further, since the magneto-optical material may have a thickness of 1 μm or less, it can be manufactured at very low cost. Further, the number of components is small, and the optical fiber itself is used as an optical isolator, so that the size is reduced. Furthermore, since multiple fibers can be processed at the same time, productivity is high, and since there is no entrance / exit surface on the way, there is little fear of reflection, and it can be directly added to any transmission optical fiber, so that it can be applied to any fiber. Is high and the utility value is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す略図。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】本発明の非相反な分布結合を示すグラフ。FIG. 2 is a graph showing non-reciprocal distributed coupling of the present invention.

【図3】本発明の製造方法を示す略図。FIG. 3 is a schematic diagram showing a manufacturing method of the present invention.

【図4】本発明の第2の実施例を示す略図。FIG. 4 is a schematic diagram showing a second embodiment of the present invention.

【図5】従来のインライン型光アイソレータを示す略
図。
FIG. 5 is a schematic view showing a conventional in-line optical isolator.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 クラッド 3コア 4 付加導波層 5 光吸収物質 Reference Signs List 1 optical fiber 2 clad 3 core 4 additional waveguide layer 5 light absorbing material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】等方性物質を使った光ファイバにおいて、
前記光ファイバのクラッドの一部を除去し、その部分に
磁気光学物質を装荷し、前記磁気光学物質の形状を調整
することにより付加的導波層とし、光ファイバコア中の
光と非相反な分布結合を生じさせることを特徴とするフ
ァイバ型光アイソレータ。
1. An optical fiber using an isotropic substance,
A part of the cladding of the optical fiber is removed, a magneto-optical material is loaded on the part, and the shape of the magneto-optical material is adjusted to form an additional waveguide layer, which is non-reciprocal to light in the optical fiber core. A fiber type optical isolator characterized by generating distributed coupling.
JP5025337A 1993-02-15 1993-02-15 Fiber type optical isolator Expired - Fee Related JP2989982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025337A JP2989982B2 (en) 1993-02-15 1993-02-15 Fiber type optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025337A JP2989982B2 (en) 1993-02-15 1993-02-15 Fiber type optical isolator

Publications (2)

Publication Number Publication Date
JPH06242402A JPH06242402A (en) 1994-09-02
JP2989982B2 true JP2989982B2 (en) 1999-12-13

Family

ID=12163106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025337A Expired - Fee Related JP2989982B2 (en) 1993-02-15 1993-02-15 Fiber type optical isolator

Country Status (1)

Country Link
JP (1) JP2989982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764023A (en) * 1993-08-26 1995-03-10 Kyocera Corp Fiber type optical isolator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540826B2 (en) * 1993-12-27 2004-07-07 京セラ株式会社 Fiber type optical isolator
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764023A (en) * 1993-08-26 1995-03-10 Kyocera Corp Fiber type optical isolator

Also Published As

Publication number Publication date
JPH06242402A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
JPH03171103A (en) Hybrid optical isolator, circulator or switch and system using the same
US5428695A (en) Optical non-reciprocal circuit of waveguide type
EP0793130B1 (en) Polarization independent optical nonreciprocal circuit
JP2016042089A (en) Resonant fiber optic gyroscope with polarizing crystal waveguide coupler
JP3407046B1 (en) Interferometer type optical isolator and optical circulator
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
JP3457711B2 (en) Fiber type optical isolator
JP2989982B2 (en) Fiber type optical isolator
WO1993020475A1 (en) Improvements to optical phase shifting
JP3457710B2 (en) Optical fiber parts
JP3540826B2 (en) Fiber type optical isolator
JP3317999B2 (en) Optical isolator
JPH03134602A (en) Waveguide type optical circulator
JP2846382B2 (en) Optical isolator
JPH0886927A (en) Optical waveguide device
US5883991A (en) Optical waveguide circulator
JP2862630B2 (en) Waveguide type optical isolator
JP3690146B2 (en) Waveguide type optical circulator
JPH1123849A (en) Fiber type optical isolator and its manufacture
JP2659787B2 (en) Waveguide mode light selector
AU675424B2 (en) Improvements to optical phase shifting
JPH0561000A (en) Optical isolator
JP2001042263A (en) Faraday rotation mirror
JPH10239637A (en) Optical isolator and optical module using the isolator
Kersten Integrated Optical Sensors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees