JPH1123849A - Fiber type optical isolator and its manufacture - Google Patents

Fiber type optical isolator and its manufacture

Info

Publication number
JPH1123849A
JPH1123849A JP9181976A JP18197697A JPH1123849A JP H1123849 A JPH1123849 A JP H1123849A JP 9181976 A JP9181976 A JP 9181976A JP 18197697 A JP18197697 A JP 18197697A JP H1123849 A JPH1123849 A JP H1123849A
Authority
JP
Japan
Prior art keywords
core
optical
optical fiber
fiber
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9181976A
Other languages
Japanese (ja)
Other versions
JP3011140B2 (en
Inventor
Yoshinori Ota
義徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9181976A priority Critical patent/JP3011140B2/en
Publication of JPH1123849A publication Critical patent/JPH1123849A/en
Application granted granted Critical
Publication of JP3011140B2 publication Critical patent/JP3011140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To actualize the superior optical isolator which has simple constitution, good productivity, and small loss of connection with a fiber for transmission without specially using a material, a magnet, etc., having nonreciprocal optical effect such as magnetooptics effect. SOLUTION: A diffraction grating 12 is formed in the core 11 of an ordinary single-mode optical fiber 1 for communication by making use of fiber Bragg diffraction grating technologies, nearly a half area of the clad 13 is formed of resin 14 which has a smaller refractive index than it, and the angle θ of the diffraction grating 12 to the optical axis of a wave front vector is set as 0<θ<90 deg.. Light transmitted in the core of the optical fiber is not diffracted forward, but diffracted backward and emitted to the clad to have a large difference in the transmissivity of the optical fiber between the forward and backward directions, so that the optical fiber can be constituted as the optical isolator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバで構成し
た光アイソレータに関し、特に磁気光学材料のような光
学的に非相反な材料を使用することなく構成される光ア
イソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator formed of an optical fiber, and more particularly to an optical isolator formed without using an optically non-reciprocal material such as a magneto-optical material.

【0002】[0002]

【従来の技術】近年におけるインターネットの普及やマ
ルチメディア通信等、社会の通信需要の旺盛な拡大に伴
って、光ファイバ増幅器を使った一万キロを超えようと
する超長距離光ファイバ通信技術の開発や、HDTVを
含む広帯域のデジタルサービス統合システムを光ファイ
バ伝送技術を加入者端まで適用して実現する方式の検討
など、これまで以上に光通信システムの大容量化へ向け
た技術の開発が勢力的に行われている。このようなシス
テムを実現する上で必須の光部品の一つが光アイソレー
タ等の、光透過特性に強い方向性のある光素子である。
すなわち、この種の光アイソレータは、例えば、送信光
源である半導体レーザから出射されるレーザ光を光ファ
イバを通して伝送する場合に、光ファイバ接続点等から
の戻り光が前記半導体レーザに再入射することによって
起こるS/Nの低下や不安定動作を防止する部品として
用いられる。
2. Description of the Related Art With the spread of the Internet and multimedia communication in recent years, the demand for communication over the long distance has become greater than 10,000 km using optical fiber amplifiers in response to the vigorous expansion of communication demands in society. The development of technologies for increasing the capacity of optical communication systems has been more advanced than before, such as the development of a system to apply a broadband digital service integration system including HDTV by applying optical fiber transmission technology to the subscriber end. It is being carried out vigorously. One of the optical components indispensable for realizing such a system is an optical element such as an optical isolator having a directional characteristic having a strong light transmission characteristic.
That is, for example, when transmitting laser light emitted from a semiconductor laser as a transmission light source through an optical fiber, return light from an optical fiber connection point or the like re-enters the semiconductor laser. It is used as a component to prevent the reduction of S / N and unstable operation caused by the above.

【0003】このような光アイソレータとして従来から
知られている例として、非相反な備光回転効果であるフ
ァラデー効果を示す磁気光学結晶を45度偏光回転子と
し、この偏光回転子を、光透過の偏光方向が45度ずれ
た2つの偏光子で挟む構成があり、多く実用に供されて
いる。すなわち、一方の偏光子から入射されるレーザ光
は偏光子により偏光とされ、磁気光学結晶を透過する際
にその偏光方向が45度一方向に回転される。そして、
他方の偏光光を通して出射される。一方、逆方向に入射
される光は、他方の偏光子によって偏光とされ、磁気光
学結晶を透過する際に偏光方向が45度一方向に回転さ
れる。このため、一方の偏光子に対して直交する状態と
なり、この一方の偏光子を透過することができなくな
る。このため、この光アイソレータを半導体レーザの出
射側に配置することで、戻り光が半導体レーザに再入射
することが防止される。また、磁気光学材料を用いる他
の技術として特開平7−64023号公報に記載の技術
もある。
As an example of such an optical isolator conventionally known, a magneto-optical crystal exhibiting a Faraday effect, which is a non-reciprocal light-rotating effect, is used as a 45-degree polarization rotator, and this polarization rotator is used as a light transmission element. Are sandwiched between two polarizers whose polarization directions are shifted by 45 degrees, and are used in many practical applications. That is, the laser light incident from one of the polarizers is polarized by the polarizer, and its polarization direction is rotated by 45 degrees when transmitted through the magneto-optical crystal. And
The light is emitted through the other polarized light. On the other hand, light incident in the opposite direction is polarized by the other polarizer, and the polarization direction is rotated by 45 degrees in one direction when transmitting through the magneto-optical crystal. Therefore, the polarizer is orthogonal to one polarizer, and cannot pass through the one polarizer. Therefore, by arranging this optical isolator on the emission side of the semiconductor laser, return light is prevented from re-entering the semiconductor laser. Further, as another technique using a magneto-optical material, there is a technique described in JP-A-7-64023.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな磁気光学結晶や偏光子で構成される光アイソレータ
は、前記した部品の他に磁石を含めて最少でも4つの部
品が必要であり、したがって材料の加工や組立に多数の
工数を要し、信頼性や安定性に乏しいという問題があ
る。また、必ずしも透過時の偏光状態が定まっていない
光ファイバ途中に挿入して使用することを可能とするた
めには、素子特性が偏光に依存しない構成を築かなけれ
ばならず、更に多数の部品と複雑な光路構成が必要にな
る。
However, an optical isolator composed of such a magneto-optical crystal or polarizer requires a minimum of four components including a magnet in addition to the components described above. A large number of man-hours are required for processing and assembling, and there is a problem that reliability and stability are poor. In addition, in order to be able to insert and use the optical fiber in the middle of an optical fiber whose polarization state is not necessarily determined at the time of transmission, it is necessary to build a configuration in which element characteristics do not depend on polarization. A complicated optical path configuration is required.

【0005】本発明の目的は、磁気光学結晶のように特
珠な材料を用いることなく、構成並びに製作が簡便な光
アイソレータとその製造方法を提供することにある。
An object of the present invention is to provide an optical isolator which is simple in construction and manufacture without using a special material such as a magneto-optical crystal, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の光アイソレータ
は、コアの周囲をクラッドで包囲した構成の光ファイバ
の光軸を含む断面内において、前記コアに接近して引い
た直線を境にして、異なる屈折率の誘電体クラッドを有
し、前記コアには波数ベクトルがコアの光導波方向と前
記屈折率の異なる誘電体の境界面に立てた法線とが作る
面内にあって、かつ波数ベクトルの光軸となす角度θ
が、0°<θ<90°となる回折格子を有する。前記異
なる屈性率の誘電体クラッドは、前記光ファイバのクラ
ッドの一部を削除し、この削除した部分に前記クラッド
とは異なる屈折率の樹脂を接着して構成される。また、
前記クラッド、コア、屈折率の異なるクラッドの屈折率
をそれぞれn1,n2,n3としたとき、n1>n2>
n3の関係を有する。
An optical isolator according to the present invention has a cross section including an optical axis of an optical fiber having a configuration in which a core is surrounded by a cladding, with respect to a straight line drawn close to the core. Having a dielectric cladding having a different refractive index, wherein the core has a wave number vector in a plane formed by a light guide direction of the core and a normal established on a boundary surface of the dielectric having a different refractive index, and Angle θ with optical axis of wave number vector
Have a diffraction grating satisfying 0 ° <θ <90 °. The dielectric cladding having a different refractive index has a configuration in which a part of the cladding of the optical fiber is deleted, and a resin having a refractive index different from that of the cladding is bonded to the deleted part. Also,
When the refractive indices of the cladding, core, and cladding having different refractive indices are n1, n2, and n3, respectively, n1>n2>
n3.

【0007】また、本発明の光アイソレータの製造方法
は、コアの周囲をクラッドで包囲した光ファイバに対し
て、光軸に沿う側面から2光波干渉光を照射して前記コ
アに屈折率変化された位相格子からなる回折格子を形成
する工程と、前記クラッドを前記回折格子の波数ベクト
ルと光軸が作る面に直交した面を前記コアの側面近接領
域まで研磨により削除する工程と、前記クラッドおよび
コアよりも屈折率の小さい樹脂を前記削除した領域に接
着する工程とを含んでいる。
Further, according to the method of manufacturing an optical isolator of the present invention, an optical fiber whose core is surrounded by a cladding is irradiated with two-wave interference light from a side surface along an optical axis to change the refractive index of the core. Forming a diffraction grating comprising a phase grating, and removing the clad by polishing a surface perpendicular to the plane formed by the wave vector and the optical axis of the diffraction grating to a region close to the side surface of the core; and Bonding a resin having a lower refractive index than the core to the deleted region.

【0008】回折格子の波数ベクトルの光軸となす角度
θが0°<θ<90°に設定されることにより、光ファ
イバのコア内で伝送される光が、順方向では回折される
ことがなく、逆方向では回折されてクラッドへ放射され
ることになる。この結果、光ファイバの順方向と逆方向
とでは透過率が大幅に異なる特性を有し、光ファイバで
の光アイソレータ特性が得られる。
By setting the angle θ between the optical axis of the wave vector of the diffraction grating and 0 ° <θ <90 °, light transmitted in the core of the optical fiber can be diffracted in the forward direction. Instead, it is diffracted in the opposite direction and radiated to the cladding. As a result, the transmittance of the optical fiber differs greatly between the forward direction and the reverse direction, and the optical isolator characteristics of the optical fiber can be obtained.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1(a),(b)は本発明の光ア
イソレータの一実施形態の側面断面図と、端面断面図を
示している。以下、この光アイソレータをその製造工程
順に説明する。例えば、通常の光通信用石英系単一モー
ドの光ファイバ1を用意し、この光ファイバの側面にK
rFエキシマレーザ光の紫外光(〜240nm)を2光
束干渉させて照射すると、前記光ファイバ1のコア11
に、当該コア11に含まれるGeに起因する屈折率変化
が生じ、干渉縞に応じた位相格子、すなわち回折格子1
2が形成される。この回折格子12の形成方法として
は、ファイバブラッグ回折格子の形成方法を利用する。
このとき、前記回折格子12の波数ベクトルの方向と光
ファイバの光軸とに有限な角度θを持たせておく。図1
(a)の配置では紙面に向かって垂直に紫外光が照射さ
れ、その干渉縞による回折格子12が形成される。
Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are a side sectional view and an end sectional view of an optical isolator according to an embodiment of the present invention. Hereinafter, this optical isolator will be described in the order of its manufacturing process. For example, a silica-based single mode optical fiber 1 for ordinary optical communication is prepared, and K
When the ultraviolet light (up to 240 nm) of the rF excimer laser light is irradiated with two light beams interfering with each other, the core 11 of the optical fiber 1 is irradiated.
In addition, a change in the refractive index caused by Ge included in the core 11 occurs, and the phase grating corresponding to the interference fringes, that is, the diffraction grating 1
2 are formed. As a method for forming the diffraction grating 12, a method for forming a fiber Bragg diffraction grating is used.
At this time, the direction of the wave number vector of the diffraction grating 12 and the optical axis of the optical fiber have a finite angle θ. FIG.
In the arrangement of (a), ultraviolet light is irradiated vertically toward the paper surface, and the diffraction grating 12 is formed by the interference fringes.

【0010】前記回折格子12を形成した後、図1
(b)のように、光ファイバ1のクラツド13の上側の
領域を前記回折格子12の波数ベクトルと光軸とが作る
面に直行した面を研磨によって削除し、コア11の円筒
面近くまで光学研磨する。その後、この研塵面を、含フ
ッ素化樹脂のように光ファイバ1の石英クラツド13よ
り屈折率の小さい樹脂14によって覆い、樹脂クラッド
14を形成する。この実施形態では、前記樹脂14を細
幅の薄板状に形成し、この樹脂14を研磨削除した部分
に接着している。このとき、前記コア11、石英クラッ
ド13、樹脂クラッド14のそれぞれの屈折率をnl,
n2,n3とすると、これらは、nl>n2>n3に設
定される。
After forming the diffraction grating 12, FIG.
As shown in (b), the area above the clad 13 of the optical fiber 1 is removed by polishing a surface perpendicular to the surface formed by the wave vector of the diffraction grating 12 and the optical axis, and the optical region is brought close to the cylindrical surface of the core 11. Grind. Thereafter, the dusting surface is covered with a resin 14 having a smaller refractive index than the quartz clad 13 of the optical fiber 1 such as a fluorinated resin, and a resin clad 14 is formed. In this embodiment, the resin 14 is formed in a thin thin plate shape, and the resin 14 is adhered to a portion that has been polished and removed. At this time, the refractive indices of the core 11, the quartz clad 13, and the resin clad 14 are nl,
If n2 and n3 are set, these are set to nl>n2> n3.

【0011】このように構成された光ファイバ1は、例
えば、図2に示すように、光源としての半導体レーザ2
の出射側に図1の右側端面が対向され、この半導体レー
ザ2から出射されたレーザ光が光ファイバ1に入射さ
れ、この光ファイバ1内を伝送されるように構成され
る。このとき、光ファイバ1の右側端面RFから入射さ
れるレーザ光の透過損失と、これと反対側の左側端面L
Fから入射した時の透過損失が大幅に異なるため、いわ
ゆるアイソレータ特性が得られ、その結果として半導体
レーザ2から光ファイバ1に入射されて伝送されるレー
ザ光が、光ファイバ1内を逆方向に伝送されて前記半導
体レーザ2に再入射することが防止される。
The optical fiber 1 configured as described above is, for example, as shown in FIG.
The laser light emitted from the semiconductor laser 2 is made incident on the optical fiber 1 and transmitted through the optical fiber 1. At this time, the transmission loss of the laser light incident from the right end face RF of the optical fiber 1 and the left end face L on the opposite side.
Since the transmission loss at the time of incidence from F is significantly different, a so-called isolator characteristic is obtained. As a result, the laser light incident on the optical fiber 1 from the semiconductor laser 2 and transmitted is transmitted through the optical fiber 1 in the opposite direction. The transmitted light is prevented from re-entering the semiconductor laser 2.

【0012】この光アイソレータとしての振る舞いは以
下の動作原理によって理解される。図3は回折格子によ
るファイバ導波光の回折の条件を示す、入射波、格子、
クラツド放射光の波数ベクトル間の整合状態を表す図で
あり、20は導波光の波数ベクトル、21は石英クラツ
ド13ヘの放射光の波数のダイアグラム、22は石英よ
り屈折率の小さい樹脂クラツド14ヘの放射光のダイア
グラムをそれぞれ表している。図3(a)は前記光ファ
イバ1の左側端面LFから入射した導波光に対する回折
条件を表す。入射導波光(波数ベクトル20a)は回折
格子12によって石英クラッドの放射光24に回折され
る。これら3つの波数ベクトルが三角形を閉じて整合す
るように、回折格子12の波数ベクトル23の大きさ、
すなわち回折格子12のピッチ並びに角度βが予め設定
されている。回折格子12の屈折率変化と作用長を十分
に設定しておけば導波光から石英クラツド放射光への回
折効率はほほ100%とすることができる。一方、ひと
たびコア11からタラッド13へ放出された光はコアヘ
再結合することなく光ファイバ外へ放射される。光ファ
イバ左端面から入射した光は格子によって回折を受けそ
のエネルギーをすべてクラツドヘ放射し
The behavior of the optical isolator can be understood from the following operation principle. FIG. 3 shows the conditions of diffraction of fiber-guided light by a diffraction grating.
It is a figure showing the matching state between wave number vectors of cladding radiation light, 20 is a wave number vector of guided light, 21 is a diagram of wave number of radiation light to quartz clad 13, and 22 is a resin clad 14 having a smaller refractive index than quartz. Respectively show diagrams of the synchrotron radiation. FIG. 3A shows diffraction conditions for guided light incident from the left end face LF of the optical fiber 1. The incident guided light (wave number vector 20 a) is diffracted by the diffraction grating 12 into radiation 24 of quartz cladding. The size of the wave vector 23 of the diffraction grating 12 is adjusted so that these three wave vectors close and match the triangle.
That is, the pitch and the angle β of the diffraction grating 12 are set in advance. If the change in the refractive index and the working length of the diffraction grating 12 are sufficiently set, the diffraction efficiency from the guided light to the quartz clad radiation can be made approximately 100%. On the other hand, the light once emitted from the core 11 to the tarad 13 is radiated out of the optical fiber without being recombined into the core. Light incident from the left end of the optical fiber is diffracted by the grating and radiates all its energy to the cladding.

【0013】一方、図3(b)は前記光ファイバ1の右
側端面RFから入射した導波光に対する様子を表す。導
波光の波数ベクトル20bは回折格子12によって回折
を受けることなく導波光のまま回折格子を通過する。な
ぜならば、波数ベクトル20bと回折格子12のベクト
ル23とで三角形を閉じて整合条件を満たす放射光は存
在しえない。これは、コア11の上部は石英より屈折率
の小さい樹脂クラッド14、すなわち誘電体によって覆
われているからである。この結果、右側端面RFから入
射した光は損失を受けることなく導波される。
On the other hand, FIG. 3B shows the state of the optical fiber 1 with respect to the guided light incident from the right end face RF. The wave vector 20b of the guided light passes through the diffraction grating as it is without being diffracted by the diffraction grating 12. This is because there is no emitted light that closes the triangle between the wave number vector 20b and the vector 23 of the diffraction grating 12 and satisfies the matching condition. This is because the upper part of the core 11 is covered with the resin clad 14 having a smaller refractive index than quartz, that is, a dielectric. As a result, light incident from the right end face RF is guided without loss.

【0014】したがって、図2に示した構成の場合に
は、半導体レーザ2から出射されて光ファイバ1の右側
端面RFから入射した光は損失を受けることなく導波さ
れ、逆に、光ファイバ1に左側端面LFから入射される
レーザ光は回折格子12によって回折を受けそのエネル
ギがすべてクラツドヘ放射される。これにより、光ファ
イバの一部の構成を変更するのみで、透過特性の非可逆
な光アイソレータ機能が実現される。
Therefore, in the configuration shown in FIG. 2, light emitted from the semiconductor laser 2 and incident from the right end face RF of the optical fiber 1 is guided without loss, and conversely, the optical fiber 1 The laser beam incident from the left end face LF is diffracted by the diffraction grating 12 and all its energy is radiated to the clad. Thus, an irreversible optical isolator function of transmission characteristics is realized only by changing a part of the configuration of the optical fiber.

【0015】なお、本発明の光アイソレータの数値例と
して、グレーティングの周期をΛ、光波長をλとする
と、コア11の屈折率nlと石英クラッド13の屈折率
n2とは極く値が近いのでグレーティングの波数Kは近
似的に、 K=2π/Λ==2×2π×n2×cosθ/λ となる。
As a numerical example of the optical isolator of the present invention, if the grating period is Λ and the light wavelength is λ, the refractive index nl of the core 11 and the refractive index n2 of the quartz cladding 13 are extremely close to each other. The wave number K of the grating is approximately K = 2π / Λ == 2 × 2π × n2 × cos θ / λ.

【0016】例えば、光波長λ=1.3μm、石英の屈
折率n2=1.445、位相格子の角度θ=20度の場
合、周期Λ=0.45μm程度となる。この値は特定の
波長の光波を導波光として反射するいわゆる通常のファ
イバ回折格子(波長フィルタ)の場合より僅かに周期が
長く、このような格子は通常のファイバ型波長フィルタ
を作成すると同様に製造できる。また、回折格子の作製
長Lを1mm程度とすれば、古典的な光学理論でよく検
討されているように、前記の構成ではクライン=クック
パラメータ(Klein=Cook parameter Q=(2πLλ/
Λ2 )は極めて大きくなり、厚い格子によるいわゆるブ
ラッグ型の回折現象となる。このため、グレーティング
による回折効率は、πΔnL/Λ=2πとなるように、
導波光がグレーティングによって受ける屈折率変化Δn
を適切にすれば、回折効率は100%となる。
For example, when the light wavelength λ is 1.3 μm, the refractive index n2 of quartz is 1.445, and the angle θ of the phase grating is 20 degrees, the period Λ is about 0.45 μm. This value has a slightly longer period than that of a so-called ordinary fiber diffraction grating (wavelength filter) that reflects a light wave of a specific wavelength as guided light, and such a grating is manufactured in the same manner as when an ordinary fiber-type wavelength filter is made. it can. Further, if the production length L of the diffraction grating is about 1 mm, the Klein = Cook parameter Q = (2πLλ /
Λ 2 ) becomes extremely large, and becomes a so-called Bragg-type diffraction phenomenon due to a thick grating. For this reason, the diffraction efficiency by the grating becomes πΔnL / Λ = 2π,
Refractive index change Δn that guided light receives by the grating
Is appropriate, the diffraction efficiency will be 100%.

【0017】[0017]

【発明の効果】以上説明したように本発明は、通常の通
信用単一モード光ファイバ素線を用い、そのコアに回折
格子を形成し、かつクラツドのほぼ半分領域をそれより
も屈折率の小さい樹脂で形成し、しかも前記回折格子の
波数ベクトルの光軸となす角度θが0°<θ<90°に
設定することにより、光ファイバのコア内で伝送される
光が、順方向では回折されることがなく、逆方向では回
折されてクラッドへ放射されることになる。この結果、
光ファイバの順方向と逆方向とでは透過率が大幅に異な
る特性を有し、光ファイバを光アイソレータとして構成
することができる。これにより、従来の磁気光学効果等
の非相反光効果を有する材料や磁石等を特に用いること
なく構成簡便で生産性に優れ、しかもファイバ型である
ために伝送用ファイバとの接続損失の少ない、優れた光
アイソレータが実現できる。
As described above, according to the present invention, a normal single-mode optical fiber for communication is used, a diffraction grating is formed in the core thereof, and almost half of the cladding has a refractive index higher than that of the single-mode optical fiber. The light transmitted in the core of the optical fiber is diffracted in the forward direction by forming the angle θ between the optical axis of the wave vector of the diffraction grating and the optical axis by setting the angle θ to 0 ° <θ <90 °. It is diffracted in the opposite direction and emitted to the cladding. As a result,
The transmittance of the optical fiber differs greatly between the forward direction and the reverse direction, and the optical fiber can be configured as an optical isolator. Thereby, the configuration is simple and excellent in productivity without using a material or a magnet having a non-reciprocal light effect such as the conventional magneto-optical effect, and the connection loss with the transmission fiber is small because of the fiber type. An excellent optical isolator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の側面断面図と端面断面図
である。
FIG. 1 is a side sectional view and an end sectional view of an embodiment of the present invention.

【図2】図1の光アイソレータの使用形態を示す図であ
る。
FIG. 2 is a diagram showing a use form of the optical isolator of FIG.

【図3】本発明の光アイソレータのアイソレート特性を
説明するための図である。
FIG. 3 is a diagram for explaining an isolation characteristic of the optical isolator of the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 半導体レーザ 11 コア 12 回折格子 13 石英クラッド 14 樹脂クラッド 20a,20b 導波光の波数ベクトル 21 石英クラッドへの放射光のダイアグラム 22 樹脂クラッドへの放射光のダイアグラム 23 回折格子の波数ベクトル DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Semiconductor laser 11 Core 12 Diffraction grating 13 Quartz clad 14 Resin clad 20a, 20b Wave vector of guided light 21 Diagram of emitted light to quartz clad 22 Diagram of emitted light to resin clad 23 Wave vector of diffraction grating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コアの周囲をクラッドで包囲した構成の
光ファイバの光軸を含む断面内において、前記コアに接
近して引いた直線を境にして、異なる屈折率の誘電体ク
ラッドを有し、前記コアには波数ベクトルがコアの光導
波方向と前記屈折率の異なる誘電体の境界面に立てた法
線とが作る面内にあって、かつ波数ベクトルの光軸とな
す角度θが、0°<θ<90°となる回折格子を有する
ことを特徴とするファイバ型光アイソレータ
In a cross section including an optical axis of an optical fiber having a configuration in which a periphery of a core is surrounded by a cladding, a dielectric cladding having a different refractive index is provided at a boundary of a straight line drawn close to the core. The core has a wave number vector in a plane formed by the optical waveguide direction of the core and a normal set on the boundary surface of the dielectric having a different refractive index, and an angle θ between the wave axis and the optical axis of the wave vector, A fiber type optical isolator having a diffraction grating satisfying 0 ° <θ <90 °.
【請求項2】 前記異なる屈性率の誘電体クラッドは、
前記光ファイバのクラッドの一部を削除し、この削除し
た部分に前記クラッドとは異なる屈折率の樹脂を接着し
て構成されてなる請求項1に記載のファイバ型光アイソ
レータ。
2. The dielectric cladding having different refractive indices,
2. The fiber-type optical isolator according to claim 1, wherein a part of the clad of the optical fiber is deleted, and a resin having a refractive index different from that of the clad is adhered to the deleted part.
【請求項3】 前記クラッド、コア、屈折率の異なるク
ラッドの屈折率をそれぞれn1,n2,n3としたと
き、n1>n2>n3の関係を有する請求項1または2
に記載のファイバ型光アイソレータ。
3. The relationship of n1>n2> n3, where n1, n2 and n3 are the refractive indices of the cladding, core and cladding having different refractive indices, respectively.
The fiber-type optical isolator according to 1.
【請求項4】 コアの周囲をクラッドで包囲した光ファ
イバに対して、光軸に沿う側面から2光波干渉光を照射
して前記コアに屈折率変化された位相格子からなる回折
格子を形成する工程と、前記クラッドを前記回折格子の
波数ベクトルと光軸が作る面に直交した面を前記コアの
側面近接領域まで研磨により削除する工程と、前記クラ
ッドおよびコアよりも屈折率の小さい樹脂を前記削除し
た領域に接着する工程とを含むことを特徴とするファイ
バ型光アイソレータの製造方法。
4. A diffraction grating comprising a phase grating whose refractive index is changed is formed on the core by irradiating two-wave interference light from a side surface along an optical axis to an optical fiber having a core surrounded by a clad. And removing the clad by polishing a surface perpendicular to the plane formed by the wave vector and the optical axis of the diffraction grating to a region close to the side surface of the core, the resin having a smaller refractive index than the clad and the core. Adhering to the deleted region.
JP9181976A 1997-07-08 1997-07-08 Fiber type optical isolator and method of manufacturing the same Expired - Fee Related JP3011140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9181976A JP3011140B2 (en) 1997-07-08 1997-07-08 Fiber type optical isolator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9181976A JP3011140B2 (en) 1997-07-08 1997-07-08 Fiber type optical isolator and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1123849A true JPH1123849A (en) 1999-01-29
JP3011140B2 JP3011140B2 (en) 2000-02-21

Family

ID=16110163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9181976A Expired - Fee Related JP3011140B2 (en) 1997-07-08 1997-07-08 Fiber type optical isolator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3011140B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same
CN113589434A (en) * 2021-08-04 2021-11-02 南京科天光电工程研究院有限公司 Novel polarization-independent optical isolator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817557B (en) * 2017-12-17 2019-06-28 华中科技大学 A kind of non-reciprocal device of all -fiber and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129453A1 (en) * 2005-05-30 2006-12-07 Japan Science And Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same
JPWO2006129453A1 (en) * 2005-05-30 2008-12-25 独立行政法人科学技術振興機構 Optical fiber element and method for imparting non-reciprocity of light using the same
US7715094B2 (en) 2005-05-30 2010-05-11 Japan Science Of Technology Agency Optical fiber element and method for imparting non-reciprocity of light using the same
JP4706079B2 (en) * 2005-05-30 2011-06-22 独立行政法人科学技術振興機構 Optical fiber element and method for imparting non-reciprocity of light using the same
CN113589434A (en) * 2021-08-04 2021-11-02 南京科天光电工程研究院有限公司 Novel polarization-independent optical isolator

Also Published As

Publication number Publication date
JP3011140B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JP4740994B2 (en) Light modulator
NZ196073A (en) Optical fibre coupler:multilayer dichroic mirror beam splitter
JP2020534566A (en) Methods and equipment for self-aligned connections of optical fibers to waveguides in photonic integrated circuits
JP2565099B2 (en) Optical non-reciprocal circuit
JP3285166B2 (en) Optical fiber functional component and method of manufacturing the same
JPH0321905A (en) Polarization coupler
JPS59208509A (en) Optical multiplexer for single mode
JP3011140B2 (en) Fiber type optical isolator and method of manufacturing the same
JPH0634837A (en) Optical component
JP3457711B2 (en) Fiber type optical isolator
JP2989982B2 (en) Fiber type optical isolator
JPH0133802B2 (en)
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
JPH0886927A (en) Optical waveguide device
JP3789334B2 (en) Waveguide type optical isolator and manufacturing method thereof
JPH0677570A (en) Optical fiber amplifier
JPS6283731A (en) Optical switch
JP2001042263A (en) Faraday rotation mirror
JPS60113214A (en) Fiber type optical switch
JPH11133262A (en) Phased array spatial light filter
JPH0634916A (en) Optical isolator
JP2003057599A (en) Composite optical element
JP2004233593A (en) Faraday rotation mirror
CN118465916A (en) Optical mode filter
JPH09325298A (en) Waveguide type optical circulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees