JPS6283731A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS6283731A
JPS6283731A JP22527185A JP22527185A JPS6283731A JP S6283731 A JPS6283731 A JP S6283731A JP 22527185 A JP22527185 A JP 22527185A JP 22527185 A JP22527185 A JP 22527185A JP S6283731 A JPS6283731 A JP S6283731A
Authority
JP
Japan
Prior art keywords
optical
substrate
switch
waveguides
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22527185A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22527185A priority Critical patent/JPS6283731A/en
Publication of JPS6283731A publication Critical patent/JPS6283731A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the dependency on the polarization state of incident light by installing a crystal substrate by placing the optical axis thereof within the plane approximately perpendicular to the light transmission direction of optical waveguides and inclining the same with respect to the direction perpendicular to the surface of the crystal substrate. CONSTITUTION:The optical waveguides 12, 13 formed by thermally diffusing a Ti film pattern to several hundreds - thousands Angstrom thickness and several - several tens mum width on the LiNbO3 substrate 11 to constitute an optical directional coupler 14. The LiNbO3 substrate 11 is so cut out and shaped that the optical axis (z) of the crystal is approximately perpendicular to the light transmission direction (y) of the waveguides 12, 13 and is inclined by theta deg. with respect to the normal z' of the substrate surface. The inclination is enough with 5 deg.<=theta<=85 deg.. A buffer layer consisting of an SiO2 having 1000-3000Angstrom thickness is coated on the waveguides 12, 13. Control electrodes 15 consisting of Au, Al, etc., are installed thereon. The dependency on the polarization state of the incident light is thereby eliminated and the optical switch which has a low switching voltage and permits easy formation is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信等において、光波の変調、光路の切替え
等を行なう光スイッチに関し、特に基板中に設けた光導
波路を用いた導波形の光スイッチに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical switch that modulates light waves, switches optical paths, etc. in optical communications, and particularly relates to a waveguide type switch using an optical waveguide provided in a substrate. Regarding optical switches.

(従来技術とその問題点) 光通信システムの実用化が進み、大容量や多機能をもつ
さらに高度のシステムへと開発が進められている。光伝
送路網の交換機能、光データバスにおける端末間の高速
接続、切換え等の新たな機能が求められており、それら
を可能にする光スイツチングネットワークの必要性が高
まっている。現在実用されている。現在実用されている
光スイッチは、プリズム、ミラー、ファイバー等を機械
的に移動させるものであり、低速であること、信頼性が
不十分、形状が大きくマ) IJクス化に不適等の欠点
がある。これを解決する手段として開発が進められてい
るものは基板上に設置した光導波路を用いた導波形の光
スイッチであり、高速、多素子の集積化が可能、高信頼
等の特長がある。特にLiNbO3結晶等の強X!電体
材料を用いたものは、光吸収が小さく低損失であること
、大きな電気光学効果を有しているため高効率である等
の特長がある。
(Prior art and its problems) Optical communication systems are being put into practical use, and more advanced systems with large capacity and multiple functions are being developed. New functions such as switching functions of optical transmission networks and high-speed connections and switching between terminals in optical data buses are required, and the need for optical switching networks that enable these functions is increasing. It is currently in use. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size. be. A waveguide type optical switch that uses an optical waveguide installed on a substrate is being developed as a means to solve this problem, and has features such as high speed, ability to integrate multiple elements, and high reliability. Especially strong X such as LiNbO3 crystal! Those using electric materials have features such as low light absorption and low loss, and high efficiency because they have a large electro-optical effect.

一般に光スイッチは光伝送路中に挿入され、光フアイバ
中を伝搬した光信号の光路を切換えのために使用される
場合が多い。高速、大容量の光通信システムでは光ファ
イバとして単一モード光ファイバが使用され、光源には
半導体レーザが使われる。半導体レーザ光は直線偏光を
出射するが、単一モード光ファイバ中を伝搬された光波
は、一般に楕円偏光となり、また、その偏光状態も時間
的に変動する。一方、前述の導波形の光スイッチでは、
通常の構成の場合、スイッチ電圧、クロストーク等の特
性は、入射光の偏光状態に大きく依存するという欠点が
ある。第3図は従来の導波形光スイッチの一例である方
向性結合形光スイッチを示す。光学軸すなわちZ軸方向
に垂直に切り出して整形したLiNbO3基板31上に
Ti等の金属を拡散して光導波路32.33が形成され
ている。光導波路32.33は数pm程度の間隔で近接
して設置されることにより光方向性結合器34を構成し
ており、光導波路32.33上にバッファ層である5i
02膜(図3では省略)を介して制御電極35が設置さ
れている。この光スイッチの基本的な動作原理は、先ず
、片方の光導波路例えば32の端面から入射した光波3
6は光導波路32中を伝搬し、光方向性結合器34の部
分で近   接した光導波路33にエネルギーが移行し
、光方向性結合器34の長さを完全結合長Lcに一致さ
せた場合は、はぼ100%のエネルギーが光導波路33
に移って出射光37となる。一方、制御電極に電圧を印
加した場合、電気光学効果によって光導波路32.33
の屈折率が変化して両者の屈折率が非対称となり、両者
を伝搬する光波の間で位相不整合が生じて結合状態が変
化し、適当な印加電圧の下ではもとの光導波路32ヘエ
ネルギーが移り出射光38となる。
Generally, an optical switch is inserted into an optical transmission line and is often used to switch the optical path of an optical signal propagated through an optical fiber. In high-speed, large-capacity optical communication systems, single-mode optical fibers are used as optical fibers, and semiconductor lasers are used as light sources. Although a semiconductor laser beam emits linearly polarized light, a light wave propagated through a single mode optical fiber generally becomes elliptically polarized light, and its polarization state also changes over time. On the other hand, in the waveguide optical switch mentioned above,
Conventional configurations have the disadvantage that characteristics such as switch voltage and crosstalk are highly dependent on the polarization state of the incident light. FIG. 3 shows a directional coupling type optical switch, which is an example of a conventional waveguide type optical switch. Optical waveguides 32 and 33 are formed by diffusing metal such as Ti on a LiNbO3 substrate 31 cut out and shaped perpendicularly to the optical axis, that is, the Z-axis direction. The optical waveguides 32 and 33 constitute an optical directional coupler 34 by being installed close to each other at intervals of about several pm, and a buffer layer 5i is placed on the optical waveguides 32 and 33.
A control electrode 35 is installed through the 02 membrane (omitted in FIG. 3). The basic operating principle of this optical switch is that first, a light wave 3 enters from the end face of one of the optical waveguides, for example 32.
6 is a case in which the energy propagates through the optical waveguide 32 and transfers to the optical waveguide 33 adjacent to the optical directional coupler 34, and the length of the optical directional coupler 34 is made to match the perfect coupling length Lc. , almost 100% of the energy is in the optical waveguide 33
Then, the output light 37 is generated. On the other hand, when a voltage is applied to the control electrode, the optical waveguide 32, 33
The refractive index of the optical waveguide changes and the refractive index of the two becomes asymmetrical, causing a phase mismatch between the light waves propagating between the two and changing the coupling state. Under an appropriate applied voltage, energy is transferred to the original optical waveguide 32. is shifted and becomes the emitted light 38.

ここで、基板上に形成された光導波路の伝搬光は一般に
独立な2つのモード即ち、偏光方向が基板表面に垂直な
TMモードとそれに直交する偏光成分をもつTEモード
に分離され、光方向性結合器を構成した場合、両モード
間では通常、結合状態が異なり、それに対応して完全結
合長も異なってしまう。さらに通常、電気光学効果によ
って変化する屈折率変化量も偏光方向によって異なり、
その結果スイッチ電圧も偏光方向によって大きく異なる
。例えば、第3図の場合、TMモード、TEモードに対
して得られる屈折率変化はそれぞれδnTM=+r33
ne3Ez、δnT、=4r13noEzとなる。ここ
で、r33.r13はそれぞれ電気光学定数、ne、n
oはそれぞれ異常光、常光に対する屈折率、Ezは2方
向に印加される電界強度である。LiNbO3結晶の場
合、r33〉3r13であるので、δnTM〉3δnT
Eとなり、TEモードのスイッチ電圧はTMモードのス
イッチ電圧の3倍以上の値となる。そこで通常は入射光
をTM又はTEモードのいずれか一方の偏光状態に一致
させる必要が生じ、第3図の構成の光スイッチは単一モ
ード光ファイバ伝送路中に挿入して使用することはでき
ない。
Here, the propagating light of the optical waveguide formed on the substrate is generally separated into two independent modes, namely, the TM mode whose polarization direction is perpendicular to the substrate surface and the TE mode whose polarization direction is perpendicular to the TE mode, and the optical direction is When a coupler is constructed, the coupling states are usually different between the two modes, and the complete coupling lengths are also correspondingly different. Furthermore, the amount of change in the refractive index caused by the electro-optic effect also differs depending on the polarization direction.
As a result, the switch voltage also varies greatly depending on the polarization direction. For example, in the case of FIG. 3, the refractive index changes obtained for TM mode and TE mode are δnTM=+r33, respectively.
ne3Ez, δnT, = 4r13noEz. Here, r33. r13 are electro-optical constants, ne, n
o is the refractive index for extraordinary light and ordinary light, respectively, and Ez is the electric field strength applied in two directions. In the case of LiNbO3 crystal, r33>3r13, so δnTM>3δnT
E, and the switch voltage in the TE mode is three times or more the switch voltage in the TM mode. Therefore, it is usually necessary to make the incident light match the polarization state of either TM or TE mode, and the optical switch with the configuration shown in Figure 3 cannot be used by inserting it into a single mode optical fiber transmission line. .

上述のような偏光依存性゛を改善するために、光方向性
結合器の2つの光導波路の間隔をテーパ状に変化させ、
TM、TEモードに対して冗長性をもたせてスイッチす
る方向性結合形光スイッチがレオン・マツコーハン(L
EONMCCAUGHAN)によりアイ・イー・イー・
イー、ジャーナル・オブ・ライトウェーブ・テ  り 
 ノ  ロ  ジー(IEEE、Journal of
 LightwaveTechnology)、LT−
2巻、1号、51〜55ページに述べられている。
In order to improve the polarization dependence as described above, the distance between the two optical waveguides of the optical directional coupler is changed in a tapered manner.
A directional coupling optical switch that switches with redundancy for TM and TE modes was developed by Leon Matsukouhan (L.
EONMCCAUGHAN)
E, Journal of Lightwave Teri
IEEE, Journal of
Lightwave Technology), LT-
2, No. 1, pages 51-55.

しかし、このようなテーパ状の結合部を持たせた光スイ
ッチでも第3図と同様な結晶基板を用いた場合、TMモ
ードに対してはr33.TEモードに対してはr13の
電気光学定数を用いるため、スイッチ電圧は原理的にT
Mモードだけをスイッチする場合の3倍以上必要であり
、また、テーパ状構造にすることによってもスイッチ電
圧はさらに増加する。そこで従来の偏光依存性のない光
スイッチは、スイッチ電圧が非常に大きいという欠点が
あった。
However, even with such an optical switch having a tapered coupling part, when a crystal substrate similar to that shown in FIG. 3 is used, the r33. Since the electro-optic constant r13 is used for the TE mode, the switch voltage is theoretically T
More than three times as much is required as in the case of switching only the M mode, and the switching voltage is further increased by creating a tapered structure. Conventional optical switches with no polarization dependence have had the disadvantage that the switch voltage is extremely large.

また、通常、光導波路部分の基板に対する屈折率差Δn
は常光と異常光では異なるので電圧Oの状態でTE、T
M両モードの完全結合長を一致させるためには光導波路
構造をある限定された特別の条件に合わせる必要があり
製作プロセスの制御が非常に難しいという問題もあった
Also, usually, the refractive index difference Δn of the optical waveguide portion with respect to the substrate is
is different between ordinary light and extraordinary light, so TE and T in the state of voltage O
In order to match the complete coupling lengths of both M modes, it is necessary to adjust the optical waveguide structure to certain limited special conditions, and there is also the problem that control of the manufacturing process is extremely difficult.

なお、導波形光スイッチにはここで示した方向性結合形
の他に全反射形、バランスドブリッヂ形、Y分岐形等の
方式があるが、光スイッチにとって重要なスイッチ電圧
やクロストークを比較的容易に低くでき、構成が簡単な
ものは、方向性結合形であり、また、偏光状態に対する
依存性は他方式でも同様に存在する。
In addition to the directional coupling type shown here, waveguide optical switches include total reflection type, balanced bridge type, Y-branch type, etc., but we will compare switch voltage and crosstalk, which are important for optical switches. The directional coupling type is the one that can easily lower the optical density and has a simple configuration, and the dependence on the polarization state exists in other types as well.

(本発明の目的) 本発明の目的は上述の従来の導波形光スイッチの欠点を
除き、入射光の偏光状態に対する依存性がなく、スイッ
チ電圧が低く、製作の容易な光スイッチを提供すること
にある。
(Object of the present invention) An object of the present invention is to provide an optical switch that eliminates the drawbacks of the conventional waveguide optical switch described above, has no dependence on the polarization state of incident light, has a low switch voltage, and is easy to manufacture. It is in.

(少発明の構成) 一本発明の光スイッチは、光学的異方性を有する結晶基
板上に形成された互いに近接した2本の光導波路からな
る光方向性結合器と該光方向性結合器の近傍に設置され
た制御電極よりなり、前記結晶基板の光軸は前記光導波
路の光透過方向に対してほぼ垂直で、かつ、該結晶基板
の表面に対して傾むけて設定している。
(Structure of the Less Invention) An optical switch of the present invention includes an optical directional coupler formed on a crystal substrate having optical anisotropy and comprising two optical waveguides close to each other, and the optical directional coupler The optical axis of the crystal substrate is set substantially perpendicular to the light transmission direction of the optical waveguide and inclined with respect to the surface of the crystal substrate.

(作用・効果) 従来の導波形光スイッチでは光軸に対して垂直又は平行
に切出した結晶基板が使われ、通常その結晶基板方位の
光学軸からのずれは±1〜2°以下である。一方、本発
明では上述のように光学軸が結晶基板の方位に対して大
きく傾いている。本発明の光スイッチでは光導波路を伝
搬するTMモード、即ち、基板表面に垂直な偏光成分を
もつ伝搬モード、とそれに直交する偏光成分をもつTE
モードは、両者とも異常光屈折率と常光屈折率の両方の
影響をうける。そこで光導波路近傍に設けた電極に電圧
が印加された場合、光学軸(LiNbOa結晶の場合2
軸)方向の電界成分により、電気光学定数r33゜r1
3の両方を介して屈折率変化が与えられる。この結果、
従来のように単にr13を介した電気光学効果でTEモ
ードがスイッチされる場合に比べてスイッチ電圧を大幅
に低くできる。結晶方位の選び方によっては他の電気光
学効果(例えばLiNbO3結晶の場合光透過方向をX
軸とすると電気光学定数r22を介した電気光学効果)
も利用することができる。さらに、TM及びTEモード
は両者とも基板との間の等測的な屈折率差が常光及び異
常光に対する屈折率差の両方に依存しているので、従来
よりも両モード間の完全結合長の違いは小さくなる。ま
た、光導波路構造及び基板方位の光学軸とのなす角を適
当に選ぶと、導波光モードをTM、TEモードが光透過
方向に周期に結合したハイブリッドモードとすることが
できる。その場合、TM−TEモード間結合の周期は、
結晶の複屈折により決定され、通常完全結合長に比べて
非常に小さくなる。
(Function/Effect) A conventional waveguide optical switch uses a crystal substrate cut perpendicularly or parallel to the optical axis, and the deviation of the orientation of the crystal substrate from the optical axis is usually ±1 to 2 degrees or less. On the other hand, in the present invention, the optical axis is largely tilted with respect to the orientation of the crystal substrate, as described above. In the optical switch of the present invention, there is a TM mode propagating in the optical waveguide, that is, a propagation mode with a polarization component perpendicular to the substrate surface, and a TE mode with a polarization component perpendicular to the TM mode.
Both modes are affected by both the extraordinary and ordinary refractive indices. Therefore, when a voltage is applied to the electrode provided near the optical waveguide, the optical axis (2 in the case of LiNbOa crystal)
Due to the electric field component in the axial direction, the electro-optical constant r33°r1
A refractive index change is provided through both of 3 and 3. As a result,
The switching voltage can be significantly lowered compared to the conventional case where the TE mode is switched simply by the electro-optic effect via r13. Depending on how the crystal orientation is selected, other electro-optic effects (for example, in the case of LiNbO3 crystal, the light transmission direction is
If the axis is the electro-optic effect via the electro-optic constant r22)
can also be used. Furthermore, in both TM and TE modes, the isometric refractive index difference with the substrate depends on both the refractive index difference for ordinary light and extraordinary light, so the complete coupling length between both modes is shorter than in the conventional case. The difference becomes smaller. Furthermore, by appropriately selecting the angle between the optical waveguide structure and the substrate orientation with the optical axis, the guided optical mode can be made into a hybrid mode in which the TM and TE modes are periodically coupled in the light transmission direction. In that case, the period of coupling between TM-TE modes is
It is determined by the birefringence of the crystal and is usually very small compared to the complete bond length.

一方、光方向性結合器での2つの光導波路間の空間的結
合はTM、TE両モード間の結合とは独立に生ずるので
、上記のようなハイブリッドモードとなった場合には、
入射時の偏光状態によらず、常にTM、TEモード両者
が混在した状態で光導波路間の結合が生ずる。すなわち
、従来の光スイッチのようなテーパ状の結合は不要とな
り、低電圧で動作する偏光依存性のない光スイッチが得
られる。
On the other hand, since the spatial coupling between the two optical waveguides in the optical directional coupler occurs independently of the coupling between the TM and TE modes, in the case of the above hybrid mode,
Regardless of the polarization state at the time of incidence, coupling between optical waveguides always occurs in a state in which both the TM and TE modes coexist. That is, there is no need for a tapered coupling as in conventional optical switches, and an optical switch that operates at low voltage and has no polarization dependence can be obtained.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明による光スイッチの一実施例である偏光
依存性のない方向性結合形光スイッチを示す斜視図であ
る。第3図に示した従来の方向性結合形光スイッチと同
様の形状のLiNbO3基板11上に厚さ数百〜千人で
幅が数〜十数μmのTi膜パターンを熱拡散して形成し
た光導波路12,13が設置され、光方向性結合器14
を構成している。但し、本実施例では第3図と異なり、
LiNbO3基板11は、結晶の光学軸(Z)が光導波
路12,13の光透過方向yに対してほぼ垂直でかつ、
基板表面の法線2′ に対してθ0だけ傾むけて切り出
され整形されている。尚、この傾きは5°≦θ≦85°
であれば充分である。光導波路12.13上には厚さ1
000〜aoooAの5i02膜のバッファ層(第1図
では省略)がコーティングされ、その上にAu、Al膜
等からなる制御電極15が設置される。光方向性結合器
14の長さはTM、TEモード両者に対してほぼ完全結
合長(通常数mm〜数十mm)に等しくなるように設定
されている。基本的な動作原理は第3図の例と同様に制
御電極15に電圧を印加することによって2つの光導波
路12.13を伝搬する光波間に位相不整合を生じさせ
て結合状態を制御するものである。第2図は第1図の光
スイッチの光方向性結合器14の部分をy軸方向からみ
た断面図である。光導波路12.13の部分の異常光、
常光に対する屈折率をそれぞれneg。
FIG. 1 is a perspective view showing a directional coupling type optical switch without polarization dependence, which is an embodiment of the optical switch according to the present invention. A Ti film pattern with a thickness of several hundreds to thousands of micrometers and a width of several to tens of micrometers was formed by thermal diffusion on a LiNbO3 substrate 11 having a shape similar to that of the conventional directional coupling type optical switch shown in FIG. Optical waveguides 12 and 13 are installed, and an optical directional coupler 14
It consists of However, in this example, unlike FIG. 3,
The LiNbO3 substrate 11 has an optical axis (Z) of the crystal substantially perpendicular to the light transmission direction y of the optical waveguides 12 and 13, and
It is cut out and shaped at an angle of θ0 with respect to the normal 2' to the substrate surface. In addition, this inclination is 5°≦θ≦85°
If so, it is sufficient. There is a thickness of 1 on the optical waveguide 12.13.
A buffer layer (omitted in FIG. 1) of 5i02 film of 000 to aoooA is coated, and a control electrode 15 made of Au, Al film, etc. is placed thereon. The length of the optical directional coupler 14 is set to be approximately equal to the perfect coupling length (usually several mm to several tens of mm) for both the TM and TE modes. The basic operating principle is to control the coupling state by applying a voltage to the control electrode 15 to create a phase mismatch between the light waves propagating through the two optical waveguides 12 and 13, similar to the example shown in Figure 3. It is. FIG. 2 is a sectional view of the optical directional coupler 14 of the optical switch shown in FIG. 1, viewed from the y-axis direction. Extraordinary light in the optical waveguide 12 and 13 portion,
The refractive index for ordinary light is neg.

nogとすると、TE、TMモードに対する等測的な屈
折率nTM、nTEはそれぞれ近似的に下式で表わされ
る。
When set to nog, the isometric refractive indexes nTM and nTE for the TE and TM modes are approximately expressed by the following formulas, respectively.

まだ電圧を印加した場合には、2方向及びy方向の電界
成分が生ずるので、異常光及び室光に対してそれぞれ下
式に示すδne、δnoの屈折率変化が生ずる。すなわ
ちnog、negはそれぞれ、nog+δno。
If a voltage is still applied, electric field components in two directions and in the y direction are generated, so that changes in the refractive index of δne and δno shown in the following equations occur for extraordinary light and room light, respectively. That is, nog and neg are each nog+δno.

neg+δneとなる。neg+δne.

本光スイッチのスイッチ電圧はTMモードに対してはn
TM、TEモードに対してはnTEの印加電圧に対する
依存性から決定される。Ezの大きさが第3図に示した
従来の光スイッチと同程度であるとするとTM、TEモ
ードに対するスイッチ電圧は両方とも第3図に示した従
来の光スイッチのTM、TEモードに対するスイッチ電
圧の中間の値となる。よって本実施例ではTM、TE両
モードとも必要なスイッチ電圧は従来の光スイッチのT
Eモードに対するスイッチ電圧よりも小さくできる。ち
なみに、この実施例では従来の2/3のスイッチ電圧で
あった。また、両モード間のスイッチ電圧の違いも従来
よりも小さくできるので偏光依存性を除去するために必
要なテーバ結合等の手段による冗長性は従来よりも小さ
くて良い。
The switch voltage of this optical switch is n for TM mode.
The TM and TE modes are determined from the dependence of nTE on the applied voltage. Assuming that the magnitude of Ez is similar to that of the conventional optical switch shown in Fig. 3, the switch voltages for TM and TE modes are both the switch voltages for the TM and TE modes of the conventional optical switch shown in Fig. 3. The value is between . Therefore, in this example, the required switch voltage for both TM and TE modes is T of the conventional optical switch.
It can be made smaller than the switch voltage for E mode. Incidentally, in this example, the switch voltage was 2/3 that of the conventional one. Furthermore, since the difference in switch voltage between both modes can be made smaller than in the past, redundancy by means such as Taber coupling, which is necessary to eliminate polarization dependence, can be smaller than in the past.

特に、θユ45°付近としたときは印加電圧に対するn
TM、nTEの変化量がほぼ一致する。またハイブリッ
ドモードが伝搬するような構造を選んだときはTE、T
Mモード間の結合が非常に微小な周期、例えば波長1.
3pmの場合10〜20pm程度の周期で生ずるので光
方向性結合器14の通常の長さ数〜数十mmにわたって
みると、入射光の偏光状態によらず常にTM、TEモー
ドが約50%ずつ混在していると見ることが出来る。そ
こでこれらの場合、テーパ状の結合を用いないでもほぼ
同一の電圧でTM、TEモードをスイッチすることが出
来るので、電圧を大幅に低減できる。
In particular, when θ is around 45°, n with respect to the applied voltage
The amounts of change in TM and nTE are almost the same. Also, when choosing a structure in which the hybrid mode propagates, TE, T
The coupling between M modes has a very small period, for example, wavelength 1.
In the case of 3 pm, it occurs at a period of about 10 to 20 pm, so if you look over the normal length of the optical directional coupler 14 from several to several tens of mm, the TM and TE modes will always account for about 50% each, regardless of the polarization state of the incident light. It can be seen that they are mixed. Therefore, in these cases, the TM and TE modes can be switched with almost the same voltage without using a tapered coupling, so the voltage can be significantly reduced.

なお、本実施例の光スイッチにおいて、光軸(2軸)の
角度eに応じて制御電極の位置を光導波路に対してy′
方向にずらすことにより、光導波路中に有効に2軸方向
の電界を生じさせることができる。
In addition, in the optical switch of this example, the position of the control electrode is set at y' with respect to the optical waveguide depending on the angle e of the optical axis (two axes).
By shifting in the directions, electric fields in two axial directions can be effectively generated in the optical waveguide.

電圧0の状態での完全結合長のTM、TEモード間の違
いは前述のように従来よりも小さいので、そのプロセス
上の制御や製作も従来よりも容易である。
As mentioned above, the difference in the complete bond length between the TM and TE modes in the state of zero voltage is smaller than that of the conventional method, so that process control and manufacturing are easier than the conventional method.

(発明の効果) 以上述べたように本発明゛によれば入射光の偏光状態に
対する依存性がなく、従来よりもスイッチ電圧が低く、
製作の容易な光スイッチが得られる。
(Effects of the Invention) As described above, according to the present invention, there is no dependence on the polarization state of incident light, and the switch voltage is lower than that of the conventional one.
An optical switch that is easy to manufacture can be obtained.

なお、本発明において使用する結晶基板は上述の実施例
にとられれるものではなく LiTaO3結晶等も用い
ることができる。。
Note that the crystal substrate used in the present invention is not limited to the above-described embodiments, and LiTaO3 crystal or the like may also be used. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光スイッチの実施例を示す斜視図
、第2図は本発明による光スイッチの原理を説明するた
めの図、第3図は従来の先スイッチを示す斜視図である
。 図におイテ、11,311t、LiNbO3結晶基板、
12,13,32゜33は光導波路、14.34は光方
向性結合器、15.35は制御電極である。 代理人弁理士 内 原   晋  隻 、−′ 7 オ l 図 第2図 TEモード 第3図
FIG. 1 is a perspective view showing an embodiment of the optical switch according to the present invention, FIG. 2 is a diagram for explaining the principle of the optical switch according to the invention, and FIG. 3 is a perspective view showing a conventional first switch. In the figure, 11,311t, LiNbO3 crystal substrate,
12, 13, 32° 33 are optical waveguides, 14.34 is an optical directional coupler, and 15.35 is a control electrode. Representative patent attorney Susumu Uchihara, -' 7 O l Figure 2 TE mode Figure 3

Claims (1)

【特許請求の範囲】[Claims] 光学的異方性を有する結晶基板上に形成された互いに近
接した2本の光導波路からなる光方向性結合器と該光方
向性結合器近傍に設置された制御電極よりなり、前記結
晶基板の光学軸は前記光導波路の光透過方向に対してほ
ぼ垂直な面内にあり、かつ、該結晶基板の表面に垂直な
方向に対して傾いて設置されていることを特徴とする光
スイッチ。
An optical directional coupler consisting of two optical waveguides close to each other formed on a crystal substrate having optical anisotropy, and a control electrode installed near the optical directional coupler, An optical switch characterized in that the optical axis is in a plane substantially perpendicular to the light transmission direction of the optical waveguide and is installed at an angle with respect to the direction perpendicular to the surface of the crystal substrate.
JP22527185A 1985-10-08 1985-10-08 Optical switch Pending JPS6283731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22527185A JPS6283731A (en) 1985-10-08 1985-10-08 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22527185A JPS6283731A (en) 1985-10-08 1985-10-08 Optical switch

Publications (1)

Publication Number Publication Date
JPS6283731A true JPS6283731A (en) 1987-04-17

Family

ID=16826706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22527185A Pending JPS6283731A (en) 1985-10-08 1985-10-08 Optical switch

Country Status (1)

Country Link
JP (1) JPS6283731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226232A (en) * 1989-02-28 1990-09-07 Nec Corp Directional coupler type optical switch
JPH07168213A (en) * 1991-01-30 1995-07-04 Nec Corp Light control device
CN108802908A (en) * 2018-05-03 2018-11-13 西北大学 Two-output impulse generator optical switch based on the sublattice of nonlinear optical containing defect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226232A (en) * 1989-02-28 1990-09-07 Nec Corp Directional coupler type optical switch
JPH07168213A (en) * 1991-01-30 1995-07-04 Nec Corp Light control device
CN108802908A (en) * 2018-05-03 2018-11-13 西北大学 Two-output impulse generator optical switch based on the sublattice of nonlinear optical containing defect
CN108802908B (en) * 2018-05-03 2019-08-06 西北大学 Two-output impulse generator optical switch based on the sublattice of nonlinear optical containing defect

Similar Documents

Publication Publication Date Title
US7272279B2 (en) Waveguide type optical branching device
EP1560048B9 (en) Optical isolator utilizing a micro-resonator
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
JP2679570B2 (en) Polarization separation element
US4953935A (en) Integrated optic star coupler
US8953913B2 (en) Integrated optical circuit with an off-center groove
Ramer et al. Experimental integrated optic circuit losses and fiber pigtailing of chips
EP0877284B1 (en) Acousto-optic silica optical circuit switch
US9081136B2 (en) Attenuated primary reflection integrated optical circuit
US5625726A (en) Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers
US5923795A (en) Optical waveguide device having a double-refractor at an input thereof
JPS6283731A (en) Optical switch
JPH05224044A (en) Waveguide type optical device with monitor
JP2635986B2 (en) Optical waveguide switch
JPS6283730A (en) Light switch
JPH0480362B2 (en)
JPS63163432A (en) Optical switch
JPH0820651B2 (en) Optical waveguide switch
JPH01201628A (en) Optical switch
JP2659786B2 (en) Mode light separator
JP2788762B2 (en) Optical circuit
JP2898066B2 (en) Optical device
JP3665871B2 (en) Optical parts
JPH0750285B2 (en) Optical switching method
JP3379658B2 (en) Light switch