JPS59224819A - Faraday rotator - Google Patents

Faraday rotator

Info

Publication number
JPS59224819A
JPS59224819A JP9934783A JP9934783A JPS59224819A JP S59224819 A JPS59224819 A JP S59224819A JP 9934783 A JP9934783 A JP 9934783A JP 9934783 A JP9934783 A JP 9934783A JP S59224819 A JPS59224819 A JP S59224819A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
refractive index
light guide
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9934783A
Other languages
Japanese (ja)
Inventor
Shinji Sakano
伸治 坂野
Hiroyoshi Matsumura
宏善 松村
Koji Ishida
宏司 石田
Takeyuki Hiruma
健之 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9934783A priority Critical patent/JPS59224819A/en
Publication of JPS59224819A publication Critical patent/JPS59224819A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure

Abstract

PURPOSE:To obtain a light guide layer shape which has a high extinction ratio by removing the difference of propagation constants between TE mode and TM made originating from the structure of the light guide layer by determining refractive index differences between an intermediate and a gap layer contacting the light guide layer, and the light guide layer below specific values. CONSTITUTION:The light guide layer 2 made of, for example, substitution type YIG of magnetic garnet is laminated on a non-magnetic garnet substrate 4 of GGG, etc., with the interposing intermediate layer 3 of substitution type YIG, and the gap layer 1 made of substitution type YIG is stacked on the light guide layer. The refractive indexes of the respective layers and the thickness of the light guide layer 2 satisfy single-mode condition. The refractive indexes of the intermediate layer and gap layer need not be equal completely at any time, and when the refractive index difference from the light guide layer is <=0.3%, a >=20dB quenching ratio is obtained by a Faraday rotator with the light guide layer which is 1-5mum thick.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、薄膜型光アイソレータや光サーキュレーメ用
の光導波層形状をしたファラデー回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a Faraday rotator in the shape of an optical waveguide layer for thin-film optical isolators and optical circulators.

〔発明の背景〕[Background of the invention]

ファラデー効果を持つ光導波層の開発は、多くの研究機
関で研究が進めらnている。例えば、A。
The development of optical waveguide layers having the Faraday effect is being researched at many research institutions. For example, A.

shi l)ukawaらによりX GGG(Gd3G
@5012の略)基板上に置換型Y I G (Ys 
F −Q Oatの略)からなる中間層を介して、置換
型YIG全槓層し、この中間層と光導波層の格子定数に
不整合を生じさせ故意に結晶自体に屈折率異方性を持た
せることにより、光導波層の構造から生じるTEモード
X GGG (Gd3G
@5012) substitution type Y I G (Ys
A full substitutional YIG layer is formed via an intermediate layer consisting of F-Q Oat (abbreviation for F-Q Oat), and a mismatch is created in the lattice constants of this intermediate layer and the optical waveguide layer to intentionally create refractive index anisotropy in the crystal itself. The TE mode is generated from the structure of the optical waveguide layer.

1Mモードの伝搬定数の差を補償する方式を取っている
( Appl 、 Opt、 vot201981. 
P2444)。
A method is used to compensate for the difference in the propagation constant of the 1M mode (Appl, Opt, vot201981.
P2444).

この方式によりTEモードと1Mモードのパワ伝達率最
大96%ケ得ているが、しかし、これでは、光通信にお
いて、光アイソレータに要求される最低の消光比20 
dB以上を達成できない。消光比が上がらない要因とし
て、光導波層の構造の上から生じるTEモードと1Mモ
ードの伝搬定数の差を予測して、光導波層と中間層の格
子定数の不整合を調節する手法を取っている。この方式
では光導波層が空気と接しているために、TEモードと
1Mモードの間に生じる伝搬定数差が非常に大きくなっ
て、光導波層と中間層の格子定数を20dBの消光比を
得るまで充分に精度良く調節することができないという
欠点があった。又、光導波層が直接に屈折率差の大きい
空気と接しているために、TEモードと1Mモードの伝
搬定数差の光導波層膜厚依存性が大きく、再現性に欠け
、これ會安ボに制御できないという欠点もめった。
This method achieves a power transfer rate of up to 96% in TE mode and 1M mode, but this method does not meet the minimum extinction ratio of 20, which is the minimum extinction ratio required for optical isolators in optical communications.
It is not possible to achieve more than dB. As the reason why the extinction ratio does not increase, a method is used to predict the difference in propagation constant between the TE mode and 1M mode that occurs from above the structure of the optical waveguide layer, and adjust the mismatch between the lattice constants between the optical waveguide layer and the intermediate layer. ing. In this method, since the optical waveguide layer is in contact with air, the difference in propagation constant between the TE mode and the 1M mode becomes very large, resulting in an extinction ratio of 20 dB for the lattice constant of the optical waveguide layer and the intermediate layer. The disadvantage is that it cannot be adjusted with sufficient precision. In addition, since the optical waveguide layer is in direct contact with air, which has a large refractive index difference, the difference in propagation constant between the TE mode and the 1M mode has a large dependence on the optical waveguide layer thickness, resulting in a lack of reproducibility and The drawback is that it cannot be controlled.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光導波層の構造から生じるTEモード
と1Mモードの伝搬定数差を除去して、高い消光比ケ示
す、光導波層形状を取るファラデー回転子を提供するこ
とKある。
An object of the present invention is to provide a Faraday rotator having an optical waveguide layer shape that eliminates the difference in propagation constant between the TE mode and the 1M mode resulting from the structure of the optical waveguide layer, and exhibits a high extinction ratio.

〔発明の概要〕[Summary of the invention]

光導波層全伝搬する光にはTEモードとTR+モードの
2つがある。光導波層とこれを挾む誘電体層が等方媒俸
である場合、TEモードとTMモモ−□ドの伝搬定数(
伝搬速度)が異なり、あたかもTI・〕モードと’IN
モードは、屈折率が異なる媒体中全伝搬しているかのよ
うに掘舞う。この各モードが感じる見掛は上の屈折率を
実効屈折率と叶ぷがこの実効屈折率の異なりは、ファラ
デー効果のようにT Eモード、’:TMモードのパワ
伝達全行なうときに、次式に示すような最大のパワ伝達
の低下の因子となる。
There are two modes of light that propagate throughout the optical waveguide layer: TE mode and TR+ mode. When the optical waveguide layer and the dielectric layer sandwiching it are isotropic, the propagation constants of the TE mode and TM mode (
The propagation speed) is different, as if the TI mode and the 'IN
The mode moves as if it were entirely propagating through a medium with a different refractive index. The apparent refractive index felt by each mode is the upper refractive index and the effective refractive index, but this difference in effective refractive index is caused by the Faraday effect, when the power transmission of the TE mode and ':TM mode is performed as follows: This is the factor that causes the maximum power transfer reduction as shown in Eq.

ここで、Fは最大のパワ伝達で、θFはファラデー回転
能、Δβは、TEモードと1Mモードの実効屈折率差に
波数(2π/λ。)を掛けたものである。
Here, F is the maximum power transfer, θF is the Faraday rotation power, and Δβ is the effective refractive index difference between the TE mode and the 1M mode multiplied by the wave number (2π/λ.).

その結果、直線偏光は橢円偏光となり消光比の低下音引
き起す。第1図に、波長が1.3μmの光を用いファラ
デー回転能を200度/Crnとしたときの、実効屈折
率差と消光比の関係を示す。消光比20dB以上を得る
ためには、TEモードと1Mモードの実効屈折率差’t
1.5X10=以下に押える必要があることが示されて
いる。
As a result, linearly polarized light becomes circularly polarized light, causing a decrease in extinction ratio. FIG. 1 shows the relationship between the effective refractive index difference and the extinction ratio when using light with a wavelength of 1.3 μm and setting the Faraday rotation power to 200 degrees/Crn. In order to obtain an extinction ratio of 20 dB or more, the effective refractive index difference between TE mode and 1M mode must be
It is shown that it is necessary to keep the value below 1.5×10.

これまでは、等方媒体を用いると実効屈折率に差を生じ
るため、差金補償する格好で例えば光導波層と基板の間
に格子定数の不整合を故意に生じさせ、媒体自体に屈折
率異方性を持たせる工夫がとられていた。しかし、両名
−を喪求特性壕で、すなわち1.5 X l (1−B
以下に打消すことは非常に難かしい技術であった。これ
に対し、今回以下に示す有効な方法でこの問題を解決し
た。
Until now, when an isotropic medium is used, a difference occurs in the effective refractive index, so in order to compensate for this difference, for example, a mismatch in lattice constant is intentionally created between the optical waveguide layer and the substrate, and the refractive index difference is created in the medium itself. Efforts were taken to provide directionality. However, both of them have a mourning characteristic, i.e. 1.5 X l (1-B
It was a very difficult technique to counteract the following. We have now solved this problem using the effective method shown below.

第2図に、今回発明した光導波層形状を取るファラデー
回転子を示す。GGGのごとき非磁性ガーネット基板4
上に、置換型YIGからなる中間l輌3を介して、磁性
ガーネットから成る例えば置換型YIGからなる光導波
層2を積層し、さらに、この光導波層上に置換型YIG
からなるキャップ層1を積層した構造を取る。各層の屈
折率と光導波層2の厚さは、シングルモード条件を満た
している。第2図の構造で、中間層3とキャップ層1の
屈折率が等しいとした場合の、光導波層2とこれらの層
の屈折率差に対する、TEモードと1Mモードの実効屈
折率差を光導波層厚をパラメータにして第3図に示す。
FIG. 2 shows the Faraday rotator that takes the shape of the optical waveguide layer invented this time. Non-magnetic garnet substrate like GGG 4
An optical waveguide layer 2 made of magnetic garnet, for example, substitutional YIG, is laminated thereon via an intermediate layer 3 made of substitutional YIG, and further, on this optical waveguide layer, substitutional YIG
It has a structure in which a cap layer 1 consisting of the following is laminated. The refractive index of each layer and the thickness of the optical waveguide layer 2 satisfy single mode conditions. In the structure shown in Figure 2, assuming that the intermediate layer 3 and the cap layer 1 have the same refractive index, the effective refractive index difference between the TE mode and the 1M mode is calculated as the difference in the effective refractive index between the optical waveguide layer 2 and these layers. Figure 3 shows the wave layer thickness as a parameter.

第3図は中間層とキャップ層が充分厚いとして、波長λ
=1.3μmの光を屈折率2,21の光導波層に入射し
たときのTEモードと1Mモードの実効屈折率差のi¥
を算結果であるが、光導波層と中間層(キャンプ層)の
屈折率差を6X10−s(夕0.3係)以下に押えるこ
とで、光導波増厚3μmの場合消光比20dEi与える
TEモードと1Mモードの実効屈折率差1.5 X l
 O−5以下が達成できることを示している。又、パラ
メータである光導波層厚に注目すると、この屈折率差に
おいては、非常に隣接しており厳しい光導波層厚の制御
は不要であることを示している。
Figure 3 shows the wavelength λ assuming that the intermediate layer and cap layer are sufficiently thick.
= Effective refractive index difference i¥ between TE mode and 1M mode when light of 1.3 μm is incident on an optical waveguide layer with a refractive index of 2.21
The calculation results show that by keeping the refractive index difference between the optical waveguide layer and the intermediate layer (camp layer) below 6X10-s (0.3 factor), a TE that provides an extinction ratio of 20 dEi when the optical waveguide thickness is 3 μm is obtained. Effective refractive index difference between mode and 1M mode 1.5 X l
This shows that a value of O-5 or lower can be achieved. Moreover, when paying attention to the optical waveguide layer thickness, which is a parameter, this refractive index difference shows that they are very close to each other, and that strict control of the optical waveguide layer thickness is unnecessary.

第3図には、中間層とキャップ層の屈折率が完全に一致
した場合全示したが、この両者ケ必すしも完全に一致さ
せる必要はなく、光導波層との屈折率差が0.3%以下
であれは、光導波層厚が1〜5μmの光導波層形状を持
つファラデー回転子で消光比20 dB以上が得られる
Although FIG. 3 shows the case where the refractive indexes of the intermediate layer and the cap layer completely match, it is not necessary that they match completely, and the refractive index difference between the intermediate layer and the optical waveguide layer is 0. If it is 3% or less, an extinction ratio of 20 dB or more can be obtained with a Faraday rotator having an optical waveguide layer shape with an optical waveguide layer thickness of 1 to 5 μm.

次に問題となるのは、格子定数の不整合に伴ない生じる
光導波層自体が持つ屈折率異方性(複屈折)であるが、
これ’i1.5X10’−″以下にするには、不整合t
’に0.00015A以下に押えればよい。
The next problem is the refractive index anisotropy (birefringence) of the optical waveguide layer itself, which occurs due to lattice constant mismatch.
To make this less than 'i1.5X10'-'', the mismatch t
It is sufficient to keep the current to 0.00015A or less.

〔発明の実施例〕[Embodiments of the invention]

以下、不発明の一実施例ケ第2図により説明する。 Hereinafter, one embodiment of the invention will be explained with reference to FIG. 2.

実施例 先ず、単一モードの先導波層形状を取るファラデーN転
子の形成法を述べる。G GG基板4紮Y203 + 
 G d20s + G a20s + F @20s
等の酸化物を溶かしたPb0 8203フラツクス中に
浸し、液相エピタキシャル法(通称L P E法という
)により中間層3として、(Y Ga )s (F−G
−1a 012ケエバ坏セント波が充分減衰する厚さ1
0μm程度槓層させた。その後、Ga2O3の溶融量を
増加させたフラックスに浸し、中間層3より0.3+置
換量が0、 (15mol/f、 11. N度で屈折
率が0.34ali大@くかつ、格子定数差が0.00
015A以下の光導波層2を3μm積層させた後に、中
間層3の積層時と同じ条件でキャップ層を積層1させた
。このようにして作製した光導波層形状を取るファラデ
ーN転子の消光比全通常の光学的方法で測定し、20d
B以上を得た。
EXAMPLE First, a method for forming a Faraday N trochanter having a single mode leading wave layer shape will be described. G GG substrate 4 ligature Y203 +
G d20s + G a20s + F @20s
(YGa)s (F-G
-1a 012 Thickness 1 that sufficiently attenuates the Keeva cent wave
A layer of about 0 μm was formed. After that, it is immersed in a flux with an increased melting amount of Ga2O3, and the intermediate layer 3 has a 0.3 + substitution amount of 0, (15 mol/f, 11. is 0.00
After the optical waveguide layer 2 of 015A or less was laminated to a thickness of 3 μm, a cap layer 1 was laminated under the same conditions as when the intermediate layer 3 was laminated. The extinction ratio of the Faraday N trochanter having the shape of the optical waveguide layer prepared in this manner was measured using a conventional optical method.
I got a B or higher.

第4図に、この光導波層形状ケ取るファラデー回転子?
用いた場合の光アイソレータの構成ケ示す。エバネセン
ト波が充分に減辰する厚さを持つギャップ1!1の上に
バイアス磁界全印加するための永久磁石5會来せてファ
ラデーN転子を構成する。又、キャップ層の一部ケ熱リ
ン酸でエツチングして薄クシ、そこに金属膜6を蒸着し
て偏光子分構成する。
Figure 4 shows a Faraday rotator that takes the shape of this optical waveguide layer.
The configuration of the optical isolator when used is shown. A Faraday N trochanter is constructed by placing 5 permanent magnets for applying the full bias magnetic field over the gap 1!1 having a thickness such that the evanescent waves are sufficiently reduced. Further, a part of the cap layer is etched with hot phosphoric acid to form a thin comb, and a metal film 6 is deposited thereon to form a polarizer.

動作原理は、レーザからの光10−1は、TEモード、
TMモードのパワが等しく、つ才り、膜面に対し偏波面
が45度頌くように光導波層2に入射する。ファラデー
回転子で45度旋光をして完全にTEモードとなり、偏
光子を透過し、出射光10−2となる。これに対し、逆
からの光11−1は、偏光子でTEモードのみが透過し
、ファラデー回転子で45度の旋光全して、レーザから
の光10−1の偏波面から90度1頃いた光11−2と
なる。レーザは偏光特性に優れているために、この光1
1−2は何ら発振状態に影響を与えない。
The operating principle is that the light 10-1 from the laser is in TE mode,
The TM modes are of equal power and are incident on the optical waveguide layer 2 so that the plane of polarization is oriented at 45 degrees with respect to the film surface. The light is rotated by 45 degrees with a Faraday rotator, becomes completely in TE mode, and is transmitted through a polarizer, becoming an output light 10-2. On the other hand, for the light 11-1 from the opposite direction, only the TE mode is transmitted through the polarizer, and the entire optical rotation of 45 degrees is carried out by the Faraday rotator, which is around 90 degrees 1 from the polarization plane of the light 10-1 from the laser. It becomes light 11-2. Since the laser has excellent polarization characteristics, this light 1
1-2 does not affect the oscillation state at all.

このように、光アイソレータ全薄膜化することで、個々
の光学部品を接N構成していたバルク型光アイソレータ
に比べ小型化、高信頼化がなされる。
In this way, by making the entire optical isolator thinner, the optical isolator can be made smaller and more reliable than a bulk type optical isolator in which individual optical components are configured in a contact-N configuration.

〔発明の効果〕〔Effect of the invention〕

光導波層に接する中間層、キャップノーと、その光導波
層との屈折率差i 0.396以下と小さくすることに
より、光導波層の構造から生じる1゛EモードとTMモ
ードの実効屈折率差を小さくできるので、精度良く、又
、再現性良くこれ壕で得られなかった消光比20 dB
以上金上布る先導波層形状(9) ケ取るファラデー回転子が構成できる。
By reducing the refractive index difference i between the intermediate layer in contact with the optical waveguide layer and the optical waveguide layer to 0.396 or less, the effective refractive index of the 1゛E mode and TM mode generated from the structure of the optical waveguide layer can be reduced. Since the difference can be made smaller, the extinction ratio of 20 dB can be achieved with good accuracy and reproducibility, which was not possible with this method.
As described above, a Faraday rotator can be constructed that takes the leading wave layer shape (9).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は波長1.3μmの光ケファラデー回転能200
度/cmを刹する光導波層形状?取るファラデーN転子
に入射したときのTEモードとTMモードの実効屈折率
差に対する消光比の計算値を示した図、第2図は本発明
の光導波層形状ケ取るファラデーN転子の概略構成図、
第3図は中間層とキャップ層の屈折率が等しいとした場
合の光導波層とこれらの層の屈折率差に対するTEモー
ドとTMモードの実効屈折率の計算11i!全示した図
、第4図は本発明のファラデー回転子全利用した光アイ
ソレータの構成図ヶ示したものである。 1・・・キャップ層、2・・・光導波j−13・・・中
間層、4・・・基板、5・・・磁石、6・・・金属膜、
10−1,2・・・レーザからの光(入射光、出射光)
、11−1,2・・・逆からの光(入射光、出射光)。 代理人 弁理士 高橋明夫 (10) 第  1  図 TE −f−−1<゛trMモード の寅交iメEすq
牽基第 2  図 33図 光導波4とf間/i(キャラ7A)”層斬季差(7j?
1.) 刀4図
Figure 1 shows the optical Kefalada rotation power of 200 at a wavelength of 1.3 μm.
Optical waveguide layer shape that separates degrees/cm? Figure 2 shows the calculated value of the extinction ratio for the effective refractive index difference between the TE mode and the TM mode when the beam enters the Faraday N trochanter. Diagram,
FIG. 3 shows the calculation 11i! of the effective refractive index of TE mode and TM mode with respect to the refractive index difference between the optical waveguide layer and these layers, assuming that the refractive index of the intermediate layer and the cap layer are equal! The fully illustrated diagram, FIG. 4, is a block diagram of an optical isolator that fully utilizes the Faraday rotator of the present invention. DESCRIPTION OF SYMBOLS 1... Cap layer, 2... Optical waveguide j-13... Intermediate layer, 4... Substrate, 5... Magnet, 6... Metal film,
10-1, 2...Light from laser (incident light, emitted light)
, 11-1, 2... Light from the opposite direction (incident light, emitted light). Agent Patent attorney Akio Takahashi (10) Figure 1 TE −f−−1<゛trM mode tora exchange email Esuq
Figure 33 Between optical waveguide 4 and f/i (Character 7A) "Layer cutting season difference (7j?
1. ) Sword 4

Claims (1)

【特許請求の範囲】 1、非磁性ガーネット基板上に、磁性ガーネットとしテ
it換型Y I G (Ys F −5012) かう
なる中間層を介して、置換型YIGからなる光導波層を
積層し、さらに、その光導波層上に置換型YIGからな
るキャップ層を積層し、その先導波層の屈折率をこれを
挾む中間層及びキャップ層エリ大きくすると共に、光導
波層と中間層、光導波層とキャップ層の屈折率差全0.
3%以下にしたことを特徴とするファラデー回転子。 2.0GG基板上に、置換型Y I G I Y、、 
i”e5012)からなる中間層を介して、置換型YI
Gからなる光導波層を積層し、さらに、その光導波層上
に直換型YIGからなるキャップ層を積層し、その光導
波層のMA折率全これを挾む中間層及びキャップ層より
大きくすると共に、先導波層と中間層、光導波層とキャ
ップ層の屈折率差ヲ0.3%以下にし、しかも格子定数
の不整合を0.00015Å以下にしたことを特徴とす
るファラデー回転子。 3、特許請求の範囲第1項もしくは第2項記載の構造を
取るファラデー回転子において、入射直線偏光の偏波面
が45度回転するように印加磁界の強度及び長さを定め
る手段金偏えたこと全特徴とするファラデー回転子。
[Claims] 1. An optical waveguide layer made of substitutional YIG is laminated on a non-magnetic garnet substrate via an intermediate layer consisting of magnetic garnet and substitutional YIG (Ys F-5012). Furthermore, a cap layer made of substitutional YIG is laminated on the optical waveguide layer, the refractive index of the waveguide layer is increased in the area of the intermediate layer and the cap layer sandwiching it, and the optical waveguide layer, the intermediate layer, and the optical waveguide layer are The total refractive index difference between the wave layer and the cap layer is 0.
A Faraday rotator characterized by having a ratio of 3% or less. On the 2.0GG substrate, substitution type Y I G I Y,,
i”e5012) through an intermediate layer consisting of substitution type YI
An optical waveguide layer made of G is laminated, and a cap layer made of direct conversion type YIG is further laminated on the optical waveguide layer, so that the total MA refractive index of the optical waveguide layer is larger than that of the intermediate layer and cap layer sandwiching it. In addition, a Faraday rotator characterized in that the refractive index difference between the leading wave layer and the intermediate layer, the optical waveguide layer and the cap layer is 0.3% or less, and the lattice constant mismatch is 0.00015 Å or less. 3. In a Faraday rotator having the structure described in claim 1 or 2, means for determining the strength and length of the applied magnetic field so that the plane of polarization of incident linearly polarized light is rotated by 45 degrees. Faraday rotator with all features.
JP9934783A 1983-06-06 1983-06-06 Faraday rotator Pending JPS59224819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9934783A JPS59224819A (en) 1983-06-06 1983-06-06 Faraday rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9934783A JPS59224819A (en) 1983-06-06 1983-06-06 Faraday rotator

Publications (1)

Publication Number Publication Date
JPS59224819A true JPS59224819A (en) 1984-12-17

Family

ID=14245079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9934783A Pending JPS59224819A (en) 1983-06-06 1983-06-06 Faraday rotator

Country Status (1)

Country Link
JP (1) JPS59224819A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245134A (en) * 1985-04-20 1986-10-31 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Planar light waveguide and manufacture thereof
EP0205220A2 (en) * 1985-06-12 1986-12-17 Philips Patentverwaltung GmbH Magneto-optical wave guide structure for the conversion of the modes guided in this structure
JPH01319706A (en) * 1988-06-21 1989-12-26 Brother Ind Ltd Optical isolator
JPH02139502A (en) * 1988-11-21 1990-05-29 Matsushita Electric Ind Co Ltd Optical isolator, magneto-optical element and optical integrated circuit, production of magneto-optical element and production of optical integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245134A (en) * 1985-04-20 1986-10-31 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Planar light waveguide and manufacture thereof
EP0205220A2 (en) * 1985-06-12 1986-12-17 Philips Patentverwaltung GmbH Magneto-optical wave guide structure for the conversion of the modes guided in this structure
JPH01319706A (en) * 1988-06-21 1989-12-26 Brother Ind Ltd Optical isolator
JPH02139502A (en) * 1988-11-21 1990-05-29 Matsushita Electric Ind Co Ltd Optical isolator, magneto-optical element and optical integrated circuit, production of magneto-optical element and production of optical integrated circuit

Similar Documents

Publication Publication Date Title
US6545795B2 (en) Magneto-optical member and optical isolator using the same
CA2141109C (en) Polarization independent optical isolator
US4973119A (en) Optical waveguide isolator
JPH02292887A (en) Integrated optical isolator
US4032217A (en) Optical wave guide for carrying out phase-tuning between two modes of light propagation
Ando Nonreciprocal devices for integrated optics
CN211741391U (en) Straight waveguide phase modulator and integrated assembly
JPS59224819A (en) Faraday rotator
JPH03288104A (en) Unidirectional mode converter and optical isolator using the same
Wolfe et al. Magneto-optic waveguide isolators based on laser annealed (Bi, Ga) YIG films
JPH05313109A (en) Waveguide type polarization controller
US9405127B2 (en) Planar waveguide faraday rotator
Noda Ti-diffused LiNbO3 waveguides and modulators
JP2721879B2 (en) Self-temperature compensated optical isolator
CN113281550A (en) Straight waveguide phase modulator, integrated assembly and preparation method
JP3540826B2 (en) Fiber type optical isolator
JP2000206576A (en) Element for optical switch and optical switch
Li et al. Compact and low loss magneto-optical waveguide isolator for TE mode based on lithium niobate on insulator
JPH0651241A (en) Optical non-reciprocal circuit
JPS59101604A (en) Optical isolator
JPH0850261A (en) Optical circulator
JPS5977408A (en) Optical isolator
JP2862630B2 (en) Waveguide type optical isolator
JPH0570128B2 (en)
JP2890525B2 (en) Optical isolator