JPS6292427A - Semiconductor-manufacturing device - Google Patents

Semiconductor-manufacturing device

Info

Publication number
JPS6292427A
JPS6292427A JP23369485A JP23369485A JPS6292427A JP S6292427 A JPS6292427 A JP S6292427A JP 23369485 A JP23369485 A JP 23369485A JP 23369485 A JP23369485 A JP 23369485A JP S6292427 A JPS6292427 A JP S6292427A
Authority
JP
Japan
Prior art keywords
region
substrate
speed
scanning mirror
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23369485A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23369485A priority Critical patent/JPS6292427A/en
Publication of JPS6292427A publication Critical patent/JPS6292427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a single-crystal region to be formed by uniform recrystallization which maintains crystal orientation all over the surface of a substrate, and enhance throughput to a stage capable for massproduction, by scanning laser spot-shaped beams in an X direction within the time shorter than line an melt thermal-response time of the substrate. CONSTITUTION:A region 108 is formed by actuating a X-directional scanning mirror 106 at a high speed, one figure or more (about several KHz or more) larger than a thermal response speed of a substrate (about several msec). The melt region 108 is gradually moved in the Y direction by slowly actuating a Y-directional scanning mirror 104, with an epitaxial growth layer following. When the high-speed operation of the X-directional scanning mirror 106 is con trolled to make the time when laser beams stay at both ends longer than the time at the center, the temperature of the melt region 108 is distributed lower at the central part than at both ends, and single crystallization becomes easier to advance from the central part to the both ends. Hence, a single crystal region of high quality can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は再結晶化法による単結晶成長をレーザ・エネル
ギーの使用によシ、低温で高品質なものとして製造でき
る半導体製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor manufacturing apparatus capable of producing high-quality products at low temperatures by growing a single crystal by recrystallization using laser energy.

2 ヘー。2 Heh.

従来の技術 レーザ光による非晶絶縁膜上のシリコン再結晶化は、1
978年(A、Gat et an;アプライ フィジ
ックスレター(App、/、Phys、Lett 、、
)voJ733 。
Conventional technology Silicon recrystallization on an amorphous insulating film using laser light is
978 (A, Gat et an; Apply Physics Letter (App, /, Phys, Lett,,
) voJ733.

p775,1978参照〕に始まシ、絶縁膜を介してシ
リコン単結晶薄膜を積層化する多層5OI(Stlia
on on In5nlatorの略)形成技術として
注目されている。
p775, 1978], multilayer 5OI (Stlia
It is attracting attention as a formation technology.

レーザ・アニールの様な溶融再結晶法によシSOI構造
の単結晶化を実施する従来の代表的方法を第3図に示す
FIG. 3 shows a typical conventional method of single crystallizing an SOI structure by a melt recrystallization method such as laser annealing.

第3図(a) 、 (b) 、 (C)は、レーザ光の
強度分布を工夫したもので、第3図(d)はレーザ光の
走査方法である。
Figures 3(a), 3(b), and 3(C) show modified laser beam intensity distributions, and Figure 3(d) shows a laser beam scanning method.

第3図において、1はレーザビームで、矢印の走査方向
2に走査される。3は水晶複屈折板、4は多結晶シリコ
ン、5はS x 02 t 6は単結晶領域である。第
3図(a)の8字型ビーム1aは多峰性の強度分布をも
つもので、ビームスブリックにより1本のガラス型レー
ザビーム1を分割して作る。
In FIG. 3, a laser beam 1 is scanned in a scanning direction 2 indicated by an arrow. 3 is a crystal birefringent plate, 4 is polycrystalline silicon, 5 is S x 02 t, and 6 is a single crystal region. The figure-eight beam 1a shown in FIG. 3(a) has a multimodal intensity distribution and is created by dividing one glass-shaped laser beam 1 using a beam brick.

3ヘー/′ [N、Aizaki: ”Recrystaj7iza
tion of Sifilm on insJati
ng dayers using a gaierbe
am spI!it by a birefringe
nt pgate” 、 7プライ フィジックス レ
ター(App# 、Phys。
3 ha/' [N, Aizaki: "Recrystaj7iza
tion of Sifilm on insJati
ng dayers using a gaierbe
am spI! it by a birefringe
nt pgate”, 7-ply Physics Letter (App#, Phys.

Lett、、、)Vo$44 、 pp686〜688
 、1984)第3図山)のドーナツ形ビーム1bij
TEM、。モードとTEM01モードとを混合する事に
よシ得られ、この画形状共ビーム中央部の温度が低い為
に走査後に残される溶融領域7は中央が凹んだ形になる
Lett,,,) Vo$44, pp686-688
, 1984) Donut-shaped beam 1bij of Figure 3 Mt.
TEM,. This image shape is obtained by mixing the mode and the TEM01 mode, and since the temperature at the center of the beam is low, the melted region 7 left after scanning has a concave shape at the center.

(S、Kawamura et al: ’¥1ecr
ysta、/1izationof St on am
orphous 5ubstrates by dou
ghnut−5haped ay Ar 、/asei
 beam”、アプライ フィジックスレター(App
A7 、Phys 、Lett 、、) vo140、
pp394〜395.1982)第3図(C)の三ケ月
形レーザビーム1Cは、スリット8によシ整形して作ら
れる。9はレーザ、10はXYステージ、11は試料で
ある。(T、I、Stu#Y:”The use of
 beam shaping to achieve、
/arge −grain cw /aser −re
crystal/1yedpo、/ysi、/1con
 on amorphous substrateg′
’  。
(S, Kawamura et al: '¥1ecr
ysta, /1ization of St on am
orphous 5ubstrates by dou
ghnut-5haped ay Ar, /asei
beam”, Apply Physics Letter (App
A7, Phys, Lett,,) vo140,
pp. 394-395.1982) The crescent-shaped laser beam 1C shown in FIG. 9 is a laser, 10 is an XY stage, and 11 is a sample. (T, I, Stu#Y:”The use of
beam shaping to achieve,
/arge-grain cw /aser-re
crystal/1yedpo, /ysi, /1con
on amorphous substrateg'
'.

アプライ フィジックス レター(App4Phys。Apply Physics Letter (App4Phys.

Lett、、 ) vo、/39 、 pp  498
〜500.1981)第3図(a)、Φ) 、 (0)
共、溶融領域は中央から両端に向かって固化し、中央部
に単結晶領域が得られる。
Lett, ) vo, /39, pp 498
~500.1981) Figure 3 (a), Φ), (0)
In both cases, the molten region solidifies from the center toward both ends, and a single crystal region is obtained in the center.

第3図(d)は、島状に形成したSi領域に破線で示す
様なレーザビームの走査を行い、島状Si領域1゜と周
辺の絶縁膜との放熱条件の違いを利用して溶融領域7の
中央部を凹ませている。(G、に、Ce17eret 
al: ”5eeded osci41atory g
rowth of 5iover 5to2b7 cw
 、daser 1rzadiation”、アプライ
 フィジックス レタ=(App、/、Phys、Le
tt、、)vo140 、pp1043〜1045.1
982 〕発明が解決しようとする問題点 しかしながら、従記従来の方法では、レーザビーム径が
、約60μm と小さいため、結晶方位を安定に保ちな
がら再結晶化させるのが困難であった。この為、溶融再
結晶化で単結晶となる領域は、小さな範囲に限定され、
基板全面の再結晶化など大面積SOI形成への適用には
、スループットの低さと全面にわたる単結晶の均質性へ
実現の困難が6ベーノ 大きな問題点となっている。
In Figure 3(d), a laser beam is scanned as shown by the broken line on a Si region formed in the form of an island, and the island-like Si region 1° is melted by utilizing the difference in heat dissipation conditions with the surrounding insulating film. The center of region 7 is recessed. (G, ni, Ce17eret
al: ”5eeded osci41atory g
row of 5iover 5to2b7 cw
, daser 1rzadition”, Apply Physics Letter = (App, /, Phys, Le
tt,,) vo140, pp1043-1045.1
[982] Problems to be Solved by the Invention However, in the conventional method described above, since the laser beam diameter is as small as about 60 μm, it is difficult to perform recrystallization while keeping the crystal orientation stable. For this reason, the region that becomes single crystal by melt recrystallization is limited to a small area,
When applied to large-area SOI formation such as recrystallization of the entire surface of a substrate, the low throughput and difficulty in achieving uniformity of single crystal over the entire surface are major problems.

本発明は基板全面にわたる結晶方位を維持した均一な再
結晶化による単結晶領域形成を可能とした半導体製造装
置を提供することを目的とする。
An object of the present invention is to provide a semiconductor manufacturing apparatus that can form a single crystal region by uniform recrystallization while maintaining the crystal orientation over the entire surface of the substrate.

問題点を解決するための手段 本発明は、上記目的を達成するために、レーザ光の点状
ビームの走査方向(Y方向)と直角な方向(X方向)に
基板の熱応答時間(数m5ec)よシも1桁以上速く走
査して線状ビーム(擬似線状ビーム)に変換し、溶融領
域の広幅化を可能にする半導体製造装置である。
Means for Solving the Problems In order to achieve the above object, the present invention provides a thermal response time (several m5ec) of the substrate in the direction (X direction) perpendicular to the scanning direction (Y direction) of the point beam of laser light. ) This is a semiconductor manufacturing device that scans an order of magnitude faster and converts it into a linear beam (pseudo-linear beam), making it possible to widen the melting area.

作  用 本発明はレーザの点状ビームを基板の熱応答時間よシ速
い時間でX方向に高速走査することで、擬似線状ビーム
が形成される。この結果、溶融範囲が拡張され、基板全
面にわたる結晶方位を維持した均一な再結晶化による単
結晶領域形成が可能となシ、量産可能な段階までスルー
プットが高められる。
Operation In the present invention, a pseudo-linear beam is formed by scanning a point beam of a laser at high speed in the X direction in a time faster than the thermal response time of the substrate. As a result, the melting range is expanded, it is possible to form a single crystal region by uniform recrystallization while maintaining the crystal orientation over the entire surface of the substrate, and the throughput is increased to the stage where mass production is possible.

実施例 6ページ 以下、図面を用いて、本発明の実施例を詳細に説明する
。第1図(−)は、レーザ光の擬似線状ビームを用いた
再結晶化法によシ結晶方位を維持しながら基板表面全域
の多結晶(又はアモルファス結晶)を単結晶化する半導
体製造装置の構成を示す。
Example 6 From page 6 onwards, examples of the present invention will be described in detail with reference to the drawings. Figure 1 (-) shows a semiconductor manufacturing device that converts polycrystals (or amorphous crystals) over the entire surface of a substrate into single crystals while maintaining the crystal orientation using a recrystallization method using a quasi-linear beam of laser light. The configuration is shown below.

連続発振のアルゴンレーザ101からでた点状ビームB
はビーム・エクスパンダ102”’C’ビーム径を拡大
し、パワーアジャスト103でビーム密度を制御し、Y
方向走査用ミラー104.ビームフォーカスレンズ10
5.X方向走査用ミラー106を介して、シリコン基板
107表面に照射される。
Point beam B emitted from continuous wave argon laser 101
expands the beam expander 102'''C' beam diameter, controls the beam density with the power adjuster 103, and
Directional scanning mirror 104. Beam focus lens 10
5. The surface of the silicon substrate 107 is irradiated via the X-direction scanning mirror 106.

X方向走査用ミラー106を基板熱応答速度(約数m5
ec)に比べて1桁以上の速度(約数KHz以上)で動
作させることによシ、線状の溶融領域108が形成され
る。
The X-direction scanning mirror 106 has a substrate thermal response speed (about several m5
By operating at a speed that is one order of magnitude higher (about several KHz or higher) than ec), a linear molten region 108 is formed.

又、再結晶化のための基板温度は400〜600℃とし
て、下層構造への熱的影響を小さくしている。
Further, the substrate temperature for recrystallization is set at 400 to 600°C to reduce the thermal influence on the underlying structure.

一方、Y方向走査用ミラー104をゆっくシ動かす事に
よシ、溶融領域108は、Y方向に徐々7ヘーノ に移動し、そのあとから、エピタキシャル成長層が移動
して来る。109はウェハーホルダー、110.111
 .112はミラーである。
On the other hand, by slowly moving the Y-direction scanning mirror 104, the molten region 108 is gradually moved by 7 degrees in the Y-direction, after which the epitaxial growth layer begins to move. 109 is a wafer holder, 110.111
.. 112 is a mirror.

この時、X方向走査用ミラー106の高速動作を制御し
て、レーザビームの両端での滞在時間を中央に比べて長
くする事にょシ、溶融領域108の温度分布は、中央部
が両端よシ低温になシ、中央から両端に向かって単結晶
化が進み易くなシ、高品質の単結晶領域が形成される。
At this time, the high-speed operation of the X-direction scanning mirror 106 is controlled to make the stay time of the laser beam at both ends longer than that at the center. At low temperatures, single crystallization tends to progress from the center to both ends, and a high quality single crystal region is formed.

第1図(b)はX方向走査用ミラー106を基板熱応答
速度に比べ1桁速い動作速度を実現するためのミラーの
具体例である。
FIG. 1(b) shows a specific example of a mirror for realizing an operation speed of the X-direction scanning mirror 106 that is one order of magnitude faster than the substrate thermal response speed.

第1図中)のミラーは多角柱ミラーで、側面部が反射鏡
面113になっている。この多角柱ミラーを軸の回シに
高速回転させる事により、レーザビームのX方向の高速
走査を実現する。
The mirror shown in FIG. By rotating this polygonal prism mirror at high speed around the shaft, high-speed scanning of the laser beam in the X direction is realized.

現在、市販されているAC)ランジスタモータ等は、速
度制御精度が0.1%と高く、回転速度が18000 
(rpm)と高速であるので、とのモータを利用すれば
、毎秒300回転が得られる。従って10角柱ミラーを
用いれば、3 KHz / seaの高速走査が可能と
なる。
Currently, commercially available AC) transistor motors have a high speed control accuracy of 0.1% and a rotation speed of 18,000.
(rpm), so if you use the motor, you can get 300 revolutions per second. Therefore, if a 10-sided prism mirror is used, high-speed scanning of 3 KHz/sea is possible.

第1図(C)は、多角柱ミラーの設計方法を示すもので
ある。反射鏡面113に直角にレーザビームが入射し、
反射して基板のA点に達し、多角柱ミラーが1反射面分
だけ回転して反射したレーザビームが基板のB点に達し
たとする。基板直径AB=L、多角柱ミラーから基板ま
での距離をり、n角柱ミラーを用いたとすると、 L = 2 h tan (−)        ” 
”(1)が成立する。
FIG. 1(C) shows a method of designing a polygonal prism mirror. A laser beam enters the reflecting mirror surface 113 at right angles,
Assume that the laser beam is reflected and reaches point A on the substrate, and the polygon mirror rotates by one reflection surface, and the reflected laser beam reaches point B on the substrate. If the substrate diameter AB = L, the distance from the polygonal mirror to the substrate, and an n-prism mirror is used, then L = 2 h tan (-) ”
”(1) holds true.

なお、第1図(C)において、 π(n−2)、  π  4π ξ=□   ・・ψ=−−ψ=− 2n              2      n実
際上では、第1図(C)の・レーザ光の反射鏡面113
9 ヘ−7 への入射角を適当に決めて、装置を設計すればよい。
In addition, in Fig. 1 (C), π (n-2), π 4π ξ = □ ... ψ = - - ψ = - 2n 2 nIn reality, -Reflection of laser light in Fig. 1 (C) Mirror surface 113
The device can be designed by appropriately determining the angle of incidence on 9 H-7.

第2図は、第1図(a)(第2図の枠C内に示す)を用
いた量産化用製造装置の概観を示すものである。プリヒ
ータ200 、アフタヒータ201で、基板温度を40
0〜600℃に設定するチェンバー202内を基板20
3が左側(Y方向)に移動している。1層目の単結晶領
域204上の絶縁層206の土に形成した2層目の多結
晶領域(又はアモルファス領域)206は、レーザビー
ムで溶融領域207となシ、Y方向の移動と共に、2層
目単結晶領域208が形成される。209はのぞき窓で
ある。
FIG. 2 shows an overview of a manufacturing apparatus for mass production using FIG. 1(a) (shown in box C in FIG. 2). Pre-heater 200 and after-heater 201 keep the substrate temperature at 40
The substrate 20 is placed inside the chamber 202 which is set at 0 to 600°C.
3 is moving to the left (Y direction). The second layer polycrystalline region (or amorphous region) 206 formed in the soil of the insulating layer 206 on the first layer single crystal region 204 becomes a melted region 207 by the laser beam, and as it moves in the Y direction, the second layer polycrystalline region (or amorphous region) 206 is Layered single crystal regions 208 are formed. 209 is a peephole.

第2図の装置を数個直列に接続すれば単結晶の精製(リ
ファインニング)が可能となシ、第2図の装置を何度も
利用する事によシ多層SOIも、高いスループットで実
現できるようになる。
By connecting several devices shown in Figure 2 in series, it is possible to refine single crystals, and by using the devices shown in Figure 2 many times, multilayer SOI can also be achieved with high throughput. become able to.

発明の詳細 な説明した様に本発明によれば、レーザの点状ビームを
基板熱応答速度(数百Hz)より1桁(1oヘ一) 10倍)以上速い速度(数KHz)でX方向に走査して
擬似線状ビームとすることにょシ、大面積基板上の多結
晶領域(又はアモルファス領域)を線状に溶融し、Y方
向にゆっく多走査しながら再結晶化法によシ単結晶成長
を実現するものである。
As described in detail, according to the present invention, the point beam of the laser is moved in the X direction at a speed (several KHz) that is one order of magnitude faster (10 times) than the substrate thermal response speed (several hundred Hz). The polycrystalline region (or amorphous region) on the large-area substrate is melted linearly to form a pseudo-linear beam, and then the polycrystalline region (or amorphous region) on the large-area substrate is melted linearly, and then the polycrystalline region (or amorphous region) on the large-area substrate is melted by a recrystallization method while being scanned slowly in the Y direction. This realizes single crystal growth.

この結果、単結晶領域の広範囲の均質化がはがれ、高い
スループットが得られる。これは、雰囲気を選ばないS
OI基板、多層SOI基板形成の量産技術として、極め
て有効な製造装置である。
As a result, a wide range of single-crystal regions are removed from homogenization, resulting in high throughput. This S is suitable for any atmosphere.
This is an extremely effective manufacturing device as a mass production technology for forming OI substrates and multilayer SOI substrates.

又、溶融状態にならない程度にビームエネルギーを弱め
れば、低温での熱酸化膜、熱窒化膜、CVD薄膜形成に
も使用でき用途も広い。
Furthermore, if the beam energy is weakened to the extent that it does not become molten, it can be used to form thermal oxide films, thermal nitride films, and CVD thin films at low temperatures, and has a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の半導体製造装置の一実施例の概
略構成を示す基本構成図、第1図中)は同高速X方向走
査用の多角柱ミラーの構成を示す斜視図、第1図(C)
は同多角柱ミラーの設計方法を示す概略構成図、第2図
は第1図(−)の製造装置を用いた量産化用装置の概略
構成図、第3図(a)〜(d)はレーザ光の点状ビーム
を用いたSOI技術の従来例を示す11”’−7 構成図である。 101・−・・・、アルゴンレーザー、102・・・・
−・ビームエクスパングー、106−・・−・−X方向
走査用ミラー、107・・・−・シリコン基板、113
・・・・・・反射鏡面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名10
s−−−b’−411−IJ又VrffDc−−−X方
向え萱用ミラー□ 第1図 1に一−−正n角柱棲打鏡 (bン H3−−一反艙娩如 り00−−−7°り仁−タ 2DI−7フグ仁−タ 20e−−−ナエッ1(− 第2図     カ5−基販 204−−1/lllギまかA4多−!2Q 5−一季
!M 21C−−27!ffi沙鈷b/4鐸(の7一−−3令
1区1多較 ”−−f’484 liB 舛4 2aQ−−−のぞ”き宅
FIG. 1(a) is a basic configuration diagram showing a schematic configuration of an embodiment of the semiconductor manufacturing apparatus of the present invention, FIG. Figure 1 (C)
2 is a schematic configuration diagram showing the design method of the same polygonal columnar mirror, FIG. 2 is a schematic configuration diagram of a mass production device using the manufacturing device shown in FIG. 1 (-), and FIGS. 3 (a) to (d) are It is an 11"'-7 block diagram showing a conventional example of SOI technology using a point beam of laser light. 101..., argon laser, 102...
- Beam expander, 106--X direction scanning mirror, 107...-Silicon substrate, 113
...Reflecting mirror surface. Name of agent: Patent attorney Toshio Nakao and 1 other person10
s---b'-411-IJ and VrffDc---X-direction mirror --7° Rijinta 2DI-7 Fugujinta 20e---Naetsu 1 (- Figure 2 Ka5-Key sales 204--1/lll Gimaka A4 multi-!2Q 5-Ichiki!M 21C--27! ffi Shako b/4 Taku (no 71--3 Rei 1 Ward 1 comparison"--f'484 liB Masu 4 2aQ---Nozo"ki house

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板表面上に、線状に溶融領域を形成する
ため、レーザ光源と、このレーザ光源の点状ビームを擬
似線状ビームに変換する可動ミラーを備えた事を特徴と
する半導体製造装置。
(1) Semiconductor manufacturing characterized by comprising a laser light source and a movable mirror that converts the point beam of the laser light source into a pseudo-linear beam in order to form a linear molten region on the surface of a semiconductor substrate. Device.
(2)可動ミラーが、高速回転する正多角柱ミラーであ
ることを特徴とする特許請求の範囲第1項記載の半導体
製造装置。
(2) The semiconductor manufacturing apparatus according to claim 1, wherein the movable mirror is a regular polygonal mirror that rotates at high speed.
(3)レーザ光源の点状ビームを基板応答速度より10
倍以上速い速度で走査して擬似線状ビームとすることを
特徴とする特許請求の範囲第1項記載の半導体製造装置
(3) The point beam of the laser light source is
2. The semiconductor manufacturing apparatus according to claim 1, wherein a pseudo-linear beam is produced by scanning at a speed more than twice as fast.
JP23369485A 1985-10-18 1985-10-18 Semiconductor-manufacturing device Pending JPS6292427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23369485A JPS6292427A (en) 1985-10-18 1985-10-18 Semiconductor-manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23369485A JPS6292427A (en) 1985-10-18 1985-10-18 Semiconductor-manufacturing device

Publications (1)

Publication Number Publication Date
JPS6292427A true JPS6292427A (en) 1987-04-27

Family

ID=16959081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23369485A Pending JPS6292427A (en) 1985-10-18 1985-10-18 Semiconductor-manufacturing device

Country Status (1)

Country Link
JP (1) JPS6292427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239836A (en) * 1988-03-18 1989-09-25 Masakuni Suzuki Manufacture of semiconductor crystalline layer
JPH02112227A (en) * 1988-10-21 1990-04-24 Masakuni Suzuki Manufacture of semiconductor crystal layer
JPH02234418A (en) * 1989-03-07 1990-09-17 Nec Corp Manufacture of epitaxial wafer
US5219422A (en) * 1990-12-26 1993-06-15 Asmo Co., Ltd. Washer pump provided with means for determining when the level of washer fluid is low

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239836A (en) * 1988-03-18 1989-09-25 Masakuni Suzuki Manufacture of semiconductor crystalline layer
JPH02112227A (en) * 1988-10-21 1990-04-24 Masakuni Suzuki Manufacture of semiconductor crystal layer
JPH02234418A (en) * 1989-03-07 1990-09-17 Nec Corp Manufacture of epitaxial wafer
US5219422A (en) * 1990-12-26 1993-06-15 Asmo Co., Ltd. Washer pump provided with means for determining when the level of washer fluid is low

Similar Documents

Publication Publication Date Title
JP4211967B2 (en) Method for crystallizing silicon using mask
US6590228B2 (en) LCD device with optimized channel characteristics
JP4263403B2 (en) Silicon crystallization method
JP4103447B2 (en) Manufacturing method of large area single crystal silicon substrate
JPH04338631A (en) Thin-film semiconductor device and manufacture thereof
JP2002524874A (en) Double pulse laser crystallization of thin semiconductor films
JP2009518864A (en) System and method for processing membranes and thin films
TW200419017A (en) Method for fabricating single crystal silicon film
CN101111925A (en) System and method for generating polysilicon film controlled on crystallization direction
KR20060029165A (en) Semiconductor devices and methods of manufacture thereof
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPS6292427A (en) Semiconductor-manufacturing device
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
KR20000028860A (en) A method for manufacturing polycrystalline silicon
JPS6237922A (en) Semiconductor substrate
JPS61266387A (en) Method for recrystallizing semiconductor thin film with laser
JPH06140324A (en) Method of crystallizing semiconductor film
JPH0442358B2 (en)
JPH06140323A (en) Method of crystallizing semiconductor film
JPH04196411A (en) Formation of polycrystalline silicon film
JPH0354819A (en) Manufacture of soi substrate
JPS62243314A (en) Manufacture of semiconductor device
JPS627691A (en) Production of semiconductor recrystallized film by lamp annealing
JPH027414A (en) Formation of soi thin film
JPS58110484A (en) Growing method for crystal