JPS62211961A - 化合物半導体装置およびその製造方法 - Google Patents
化合物半導体装置およびその製造方法Info
- Publication number
- JPS62211961A JPS62211961A JP5361286A JP5361286A JPS62211961A JP S62211961 A JPS62211961 A JP S62211961A JP 5361286 A JP5361286 A JP 5361286A JP 5361286 A JP5361286 A JP 5361286A JP S62211961 A JPS62211961 A JP S62211961A
- Authority
- JP
- Japan
- Prior art keywords
- region
- substrate
- type
- compound semiconductor
- side walls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 150000001875 compounds Chemical class 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 108091006146 Channels Proteins 0.000 abstract description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 102000004129 N-Type Calcium Channels Human genes 0.000 abstract description 4
- 108090000699 N-Type Calcium Channels Proteins 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 2
- 238000005036 potential barrier Methods 0.000 abstract description 2
- 230000003071 parasitic effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 229910017903 NH3F Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/808—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔概 要〕
化合物半導体装置およびその製造方法であって、基板(
5)上に所定の厚さ(d)を有する側壁(6a、6b)
を設け、この側壁を用いて高不純物濃度の第2および第
3の領域(2,3)を自己整合的に第4の領域(4)へ
近接させて形成することにより、大きな動作余裕度、高
集積化および高速化を可能とする。
5)上に所定の厚さ(d)を有する側壁(6a、6b)
を設け、この側壁を用いて高不純物濃度の第2および第
3の領域(2,3)を自己整合的に第4の領域(4)へ
近接させて形成することにより、大きな動作余裕度、高
集積化および高速化を可能とする。
本発明は化合物半導体装置およびその製造方法に関し、
特に、高速コンピュータ、高速通信システム等において
要求されている高性能LSI(大規模集積回路)の基本
素子としてのFET (電界効果トランジスタ)および
その製造方法に関する。
特に、高速コンピュータ、高速通信システム等において
要求されている高性能LSI(大規模集積回路)の基本
素子としてのFET (電界効果トランジスタ)および
その製造方法に関する。
従来、プレーナ構造のFETを用いる化合物半導体装置
としては、MESF147 (ショットキーバリアゲー
ト形F ET) 、 JPET (接合ゲート形FET
)。
としては、MESF147 (ショットキーバリアゲー
ト形F ET) 、 JPET (接合ゲート形FET
)。
あるいはへテロ接合結晶を用いるもの1例えばHEMT
(高電子移動度トランジスタ) 、 5ISFET
(半導体絶縁ゲート形FIET)等、があり、製造の容
易さおよび価格の点では、了ビタキシャル成長工程を伴
なわないMESFETおよびJPETが有利である。
(高電子移動度トランジスタ) 、 5ISFET
(半導体絶縁ゲート形FIET)等、があり、製造の容
易さおよび価格の点では、了ビタキシャル成長工程を伴
なわないMESFETおよびJPETが有利である。
MESFETの場合、基板内に導入される不純物の導電
形が単一であるため、製造工程が比較的簡単である。ま
た、不純物濃度の高いソース領域およびドレイン領域を
ゲート電極に対して自己整合的に形成する技術が開発さ
れていることに伴ない、寄生抵抗の低減およびデバイス
寸法の縮小化が行われ、その結果として現在では、メモ
リ容量16にビット程度のSl?AM (スタティック
形ランダムアクセスメモリ)が試作されるに及んでいる
。
形が単一であるため、製造工程が比較的簡単である。ま
た、不純物濃度の高いソース領域およびドレイン領域を
ゲート電極に対して自己整合的に形成する技術が開発さ
れていることに伴ない、寄生抵抗の低減およびデバイス
寸法の縮小化が行われ、その結果として現在では、メモ
リ容量16にビット程度のSl?AM (スタティック
形ランダムアクセスメモリ)が試作されるに及んでいる
。
しかしながらMESNETにおいては、ゲート・チャネ
ル間のバリアとしてショットキーバリアを用いているた
め、使用可能なゲート電極材料1例えばW(タングステ
ン)、Δl (アルミニウム)。
ル間のバリアとしてショットキーバリアを用いているた
め、使用可能なゲート電極材料1例えばW(タングステ
ン)、Δl (アルミニウム)。
WS+、(タングステンシリサイド)等、については0
.8 V程度の値であり、このため、集積回路を構成し
た際、その論理振幅を大きく取ることができない。従っ
て、回路チップ内のFETの特性の不均一性に対する回
路の動作余裕度が小さくなり、そのために高密度かつ高
速度のデバイスを再現性良く製造することが困難である
という問題点が生じる。
.8 V程度の値であり、このため、集積回路を構成し
た際、その論理振幅を大きく取ることができない。従っ
て、回路チップ内のFETの特性の不均一性に対する回
路の動作余裕度が小さくなり、そのために高密度かつ高
速度のデバイスを再現性良く製造することが困難である
という問題点が生じる。
一方、JPETの場合、ゲート・チャネル間のバリアと
してpn接合を用いているため1.2v程度の値を得る
ことができ、論理振幅についてはMESPETによる回
路に比べて1.5倍程度まで大きく取ることができると
いう利点がある。
してpn接合を用いているため1.2v程度の値を得る
ことができ、論理振幅についてはMESPETによる回
路に比べて1.5倍程度まで大きく取ることができると
いう利点がある。
しかしながらJPETにおいては、チャネル領域とゲー
ト領域(ゲート電極にオーミック接触する領域)は互い
に反対のM型彫であるため、MESPETにおいて用い
られているような高不純物濃度のソース領域およびドレ
イン領域の自己整合形成を行うと、寄生容量の増加、ブ
レークダウン電圧の低下をひき起こすという問題点があ
る。また、従来構造のJFETを単に微細化して高集積
化を行うと、寄生抵抗が増加すると共に電極加工のマス
ク合せ余裕が低下して、動作速度および歩留りが犠牲に
なってしまうという問題点がある。
ト領域(ゲート電極にオーミック接触する領域)は互い
に反対のM型彫であるため、MESPETにおいて用い
られているような高不純物濃度のソース領域およびドレ
イン領域の自己整合形成を行うと、寄生容量の増加、ブ
レークダウン電圧の低下をひき起こすという問題点があ
る。また、従来構造のJFETを単に微細化して高集積
化を行うと、寄生抵抗が増加すると共に電極加工のマス
ク合せ余裕が低下して、動作速度および歩留りが犠牲に
なってしまうという問題点がある。
本発明は、上述した従来形における問題点に鑑み創作さ
れたもので、大きな動作余裕度を維持し、寄生容量およ
び寄生抵抗の増加ならびに耐圧の低下を招くことなく高
集積化および高速化を可能とし、歩留りの改善に寄与す
ることができる化合物半導体装置およびその製造方法を
提供することを目的としている。
れたもので、大きな動作余裕度を維持し、寄生容量およ
び寄生抵抗の増加ならびに耐圧の低下を招くことなく高
集積化および高速化を可能とし、歩留りの改善に寄与す
ることができる化合物半導体装置およびその製造方法を
提供することを目的としている。
第1図に本発明の一形態としての化合物半導体装置の原
理ブロック図が示される。
理ブロック図が示される。
第1図において5は化合物半導体の基板であり、該基板
5上には所定の厚さdを有する2個の側壁6a、6bが
対向配置されている。
5上には所定の厚さdを有する2個の側壁6a、6bが
対向配置されている。
1はキャリヤ通路用の第1の領域であって、−導電形(
n形またはp形)の不純物を含んでいる。
n形またはp形)の不純物を含んでいる。
2および3はそれぞれキャリア注入用の第2の領域、キ
ャリヤ排出用の第3の領域であって、それぞれ第1の領
域(1)と同じ導電形(n形またはp形)の不純物を高
濃度(n”またはp”)に含み、側壁6a、6bの外側
の各端部に対してそれぞれ自己整合的に形成されている
。4はキャリヤ制御用の第4の領域であって、第1の領
域(11と反対導電形(p形またはn形)の不純物を含
み、側壁6a。
ャリヤ排出用の第3の領域であって、それぞれ第1の領
域(1)と同じ導電形(n形またはp形)の不純物を高
濃度(n”またはp”)に含み、側壁6a、6bの外側
の各端部に対してそれぞれ自己整合的に形成されている
。4はキャリヤ制御用の第4の領域であって、第1の領
域(11と反対導電形(p形またはn形)の不純物を含
み、側壁6a。
6bの内側の端部に対応して形成されている。
従って、本発明の装置は全体として、高不純物濃度(n
”またはplの第2の領域2および第3の領域3が、該
領域2.3とは反対導電形の第4の領域4から所定の距
離dだけ隔てられて自己整合的に形成されている。
”またはplの第2の領域2および第3の領域3が、該
領域2.3とは反対導電形の第4の領域4から所定の距
離dだけ隔てられて自己整合的に形成されている。
また、本発明の他の形態によれば、第1図の化合物半導
体装置の製造方法が提供される。この製造方法は、化合
物半導体の基板5の表面に一導電形(n形またはp形)
の不純物を導入して第1の領域1を形成した後で、該第
1の領域1上に所定の厚さdを有する2個の側壁6a、
6bを対向させて形成し、前記基板5の表面に前記第1
の領域1と同じ導電形(n形またはp形)の不純物を高
濃度(n′″またはp”)に導入することにより第2の
領域2および第3の領域3をそれぞれ前記側壁6a、6
bの外側の各端部に対して自己整合的に形成し、そして
、前記基板5の表面に前記第1の領域1と反対導電形(
p形またはn形)の不純物を導入することにより第4の
領域4を前記側壁6a、6bの内側の端部に対応させて
形成する、ことを特徴としている。
体装置の製造方法が提供される。この製造方法は、化合
物半導体の基板5の表面に一導電形(n形またはp形)
の不純物を導入して第1の領域1を形成した後で、該第
1の領域1上に所定の厚さdを有する2個の側壁6a、
6bを対向させて形成し、前記基板5の表面に前記第1
の領域1と同じ導電形(n形またはp形)の不純物を高
濃度(n′″またはp”)に導入することにより第2の
領域2および第3の領域3をそれぞれ前記側壁6a、6
bの外側の各端部に対して自己整合的に形成し、そして
、前記基板5の表面に前記第1の領域1と反対導電形(
p形またはn形)の不純物を導入することにより第4の
領域4を前記側壁6a、6bの内側の端部に対応させて
形成する、ことを特徴としている。
本発明による化合物半導体装置およびその製造方法にお
いては、キャリヤ通路用の第1の領域1とキャリヤ制御
用の第4の領域4の間にpn接合が用いられているため
、該第1の領域・第4の領域間でのキャリヤに対するポ
テンシャルバリアが大きいので論理振幅を大きく取るこ
とができ、それによって大きな動作余裕度が保証される
。また、高不純物濃度(n”またはp+)の第2の領域
2および第3の領域は前記第4の領域4に対して自己整
合的に形成され、かつこれらの距離は間隔保持用側壁6
a 、 6bによってdに保たれるので、加工マスクの
位置合せ工程が不要となり、寄生抵抗および寄生容量の
増加ならびに耐圧の低下を招くことなく高集積化が可能
となり、伝達コンダクタンスgmが改善されるので高速
化が可能となる。
いては、キャリヤ通路用の第1の領域1とキャリヤ制御
用の第4の領域4の間にpn接合が用いられているため
、該第1の領域・第4の領域間でのキャリヤに対するポ
テンシャルバリアが大きいので論理振幅を大きく取るこ
とができ、それによって大きな動作余裕度が保証される
。また、高不純物濃度(n”またはp+)の第2の領域
2および第3の領域は前記第4の領域4に対して自己整
合的に形成され、かつこれらの距離は間隔保持用側壁6
a 、 6bによってdに保たれるので、加工マスクの
位置合せ工程が不要となり、寄生抵抗および寄生容量の
増加ならびに耐圧の低下を招くことなく高集積化が可能
となり、伝達コンダクタンスgmが改善されるので高速
化が可能となる。
第2図に本発明の一実施例としての化合物半導体装置の
構成が断面的に示され、第3図には該装置の製造工程が
示される。
構成が断面的に示され、第3図には該装置の製造工程が
示される。
第2図の装置はnチャネル形GaAs (ガリウムヒ素
) JFETの場合を示し、図中、5はp−形半絶縁性
GaAs基板である。基板5の表面にはn形チャネル領
域1が形成され、さらにこのn形チャネル領域1内の基
板表面にはp形ゲーHJ域4が形成されており、このp
形ゲート領域4にオーミック接触によるゲート電極Gが
自己整合的に設けられている。また、チャネル領域1の
両側には、ゲート電極Gの側面に設けられた厚さdの側
壁6a、6bを用いて自己整合的に高濃度のn゛形ソー
ス領域2およびn“形ドレイン領域3が形成されており
、ソースおよびドレインの各領域にはそれぞれソース電
極S、ドレイン電極りがオーミック接触により設けられ
ている。7は各電極間を絶縁するための絶縁層であり、
この絶縁層は側壁6a、6bと同じ材料で形成されてい
る。
) JFETの場合を示し、図中、5はp−形半絶縁性
GaAs基板である。基板5の表面にはn形チャネル領
域1が形成され、さらにこのn形チャネル領域1内の基
板表面にはp形ゲーHJ域4が形成されており、このp
形ゲート領域4にオーミック接触によるゲート電極Gが
自己整合的に設けられている。また、チャネル領域1の
両側には、ゲート電極Gの側面に設けられた厚さdの側
壁6a、6bを用いて自己整合的に高濃度のn゛形ソー
ス領域2およびn“形ドレイン領域3が形成されており
、ソースおよびドレインの各領域にはそれぞれソース電
極S、ドレイン電極りがオーミック接触により設けられ
ている。7は各電極間を絶縁するための絶縁層であり、
この絶縁層は側壁6a、6bと同じ材料で形成されてい
る。
以下、第3図を参照しながら第2図装置の製造工程を説
明する。
明する。
まず、工程(alにおいては、予めフォトリソグラフィ
工程によりパターニング露光および現象の完了した後の
フォトレジスト層10が形成されたp−形半絶縁性基板
5に対して、Si のイオン注入20(エネルギー12
0KeV、ドーズ量2 X 10’ 2cm−2)10
は除去され、さらにスパッタにより窒化アルミニウム(
Aj! N)からなる保護膜が基板上にデポジションさ
れた後、850°C910分間の活性化熱処理が施され
る。この熱処理が施された後、保護膜は熱リン酸により
除去される。
工程によりパターニング露光および現象の完了した後の
フォトレジスト層10が形成されたp−形半絶縁性基板
5に対して、Si のイオン注入20(エネルギー12
0KeV、ドーズ量2 X 10’ 2cm−2)10
は除去され、さらにスパッタにより窒化アルミニウム(
Aj! N)からなる保護膜が基板上にデポジションさ
れた後、850°C910分間の活性化熱処理が施され
る。この熱処理が施された後、保護膜は熱リン酸により
除去される。
工程(b)においてはダミーゲート30が形成される。
このダミーゲート30は、温度350°Cの下でCVD
(化学気相成長)法によりn形チャネル領域1上にシ
リコン酸化膜(SiOz) (厚さ8000人)をデポ
ジションした後、パターニングを行い、プラズマ状態の
CIIP3ガス雰囲気中で異方性のRIB(反応性イオ
ンエツチング)を行うことにより、形成される。
(化学気相成長)法によりn形チャネル領域1上にシ
リコン酸化膜(SiOz) (厚さ8000人)をデポ
ジションした後、パターニングを行い、プラズマ状態の
CIIP3ガス雰囲気中で異方性のRIB(反応性イオ
ンエツチング)を行うことにより、形成される。
工程tc)においては、温度300℃の下でプラズマC
VD法により基板上にシリコン窒化膜(SiNx)40
(厚さ3000人)がデポジションされる。
VD法により基板上にシリコン窒化膜(SiNx)40
(厚さ3000人)がデポジションされる。
工程+dlにおいては、基板」−にデポジションされた
シリコン窒化膜40に対して、プラズマ状態のくCF4
+0□)ガス雰囲気中で異方性のエツチング(RT E
)が行われ、それによって側壁6a+6b (厚さd
=3000人)が形成される。
シリコン窒化膜40に対して、プラズマ状態のくCF4
+0□)ガス雰囲気中で異方性のエツチング(RT E
)が行われ、それによって側壁6a+6b (厚さd
=3000人)が形成される。
工程(elにおいては、予めフォトリングラフィ工程に
よりパターニング露光および現象の完了した(]1) 後のフォトレジスト層11が形成されたp−形半絶縁性
基板5に対して、Siのイオン注入2】(エネルギー1
75KeV、 ドーズ量2 Xl013cm−2)が
行われ、高ン農度のn゛形ソース領域2およびn・形ド
レイン領域3が形成される。この場合、ソースおよびド
レイン領域はそれぞれ側壁6a、6bの外側の端部に対
して自己整合的に形成される。ソースおよびドレイン領
域の形成後、フォトレジスト層IIは除去され、さらに
スパッタにより窒化アルミニウム(AIlN)からなる
保護膜が基板」二にデポジションされた後、750℃、
15分間の活性化熱処理が施される。この熱処理が施さ
れた後、保護膜は熱リン酸により除去される。
よりパターニング露光および現象の完了した(]1) 後のフォトレジスト層11が形成されたp−形半絶縁性
基板5に対して、Siのイオン注入2】(エネルギー1
75KeV、 ドーズ量2 Xl013cm−2)が
行われ、高ン農度のn゛形ソース領域2およびn・形ド
レイン領域3が形成される。この場合、ソースおよびド
レイン領域はそれぞれ側壁6a、6bの外側の端部に対
して自己整合的に形成される。ソースおよびドレイン領
域の形成後、フォトレジスト層IIは除去され、さらに
スパッタにより窒化アルミニウム(AIlN)からなる
保護膜が基板」二にデポジションされた後、750℃、
15分間の活性化熱処理が施される。この熱処理が施さ
れた後、保護膜は熱リン酸により除去される。
工程(flにおいては表面の平坦化が行われる。これは
、温度300℃の下でプラズマCVD法により基板上に
シリコン窒化膜(SiNJ勇阜相棚7(厚さ8000人
)をデポジションした後、フォトレジストをスピンコー
ド法により塗布し、プラズマ状態の(CF4+O□)ガ
ス雰囲気中で、レジストとSiN、(の選択比が1とな
る条件下でエツチング(RI E)を行うことにより、
平坦化される。
、温度300℃の下でプラズマCVD法により基板上に
シリコン窒化膜(SiNJ勇阜相棚7(厚さ8000人
)をデポジションした後、フォトレジストをスピンコー
ド法により塗布し、プラズマ状態の(CF4+O□)ガ
ス雰囲気中で、レジストとSiN、(の選択比が1とな
る条件下でエツチング(RI E)を行うことにより、
平坦化される。
工程+g+においては、(11□0+NH3F)の溶液
を用いたウニソ)・エツチングにより、5i(hからな
るダミーゲート30の部分のみが除去される。
を用いたウニソ)・エツチングにより、5i(hからな
るダミーゲート30の部分のみが除去される。
工程(h)においては、ダミーゲートが抜けた部分に対
して、Znのイオン注入22 (エネルギー60KeV
、ドーズ量3 XIQ”cm−2)が行われ、p形ゲー
ト領域4がn形チャネル領域1内に形成される。このp
形ゲート領域4の形成後、好適には窒化アルミニウム(
A I N)からなる保護膜がデポジションされて、9
00℃、10秒間の活性化熱処理が施される。この熱処
理が施された後、保護膜は熱リン酸により除去される。
して、Znのイオン注入22 (エネルギー60KeV
、ドーズ量3 XIQ”cm−2)が行われ、p形ゲー
ト領域4がn形チャネル領域1内に形成される。このp
形ゲート領域4の形成後、好適には窒化アルミニウム(
A I N)からなる保護膜がデポジションされて、9
00℃、10秒間の活性化熱処理が施される。この熱処
理が施された後、保護膜は熱リン酸により除去される。
工程(11においてば、p形ゲート領域4に対してゲー
ト電極Gがオーミック接触して自己整合的に形成される
。このゲート電極Gは、p形ゲート領域4にAu/Zn
の合金を蒸着させ、パターニング(イオンミリング)を
行って不要の部分を除去することにより、形成される。
ト電極Gがオーミック接触して自己整合的に形成される
。このゲート電極Gは、p形ゲート領域4にAu/Zn
の合金を蒸着させ、パターニング(イオンミリング)を
行って不要の部分を除去することにより、形成される。
最後の工程(j)においては、ソース電極Sおよびドレ
イン電極りが形成される。ソースおよびドレイン電極は
、プラズマ状態の(CF4+O□)ガス雰囲気中でエツ
チング(RI E)を行ってコンタクト窓を形成した後
、それぞれのn゛の領域にAuGe/Auの合金を蒸着
させ1.パターニング(イオンミリングまたはリフトオ
フ)を行って不要の部分を除去することにより、形成さ
れる。
イン電極りが形成される。ソースおよびドレイン電極は
、プラズマ状態の(CF4+O□)ガス雰囲気中でエツ
チング(RI E)を行ってコンタクト窓を形成した後
、それぞれのn゛の領域にAuGe/Auの合金を蒸着
させ1.パターニング(イオンミリングまたはリフトオ
フ)を行って不要の部分を除去することにより、形成さ
れる。
以上説明した工程に従って製造されたnチャネル形Ga
As JFETにおいては、側壁6a、6bをマスクと
するイオン注入により、高不純物濃度(n′″)のソー
スおよびドレイン領域が側壁の厚さd (=3000
人)の分だけp形ゲート領域4から隔てられており、し
かもソースおよびドレイン領域はチャネル領域1に対し
て自己整合的に形成されているので、寄生抵抗の低減が
可能になると共に、位置合わせ工程が不要となり、高集
積化が可能になる。
As JFETにおいては、側壁6a、6bをマスクと
するイオン注入により、高不純物濃度(n′″)のソー
スおよびドレイン領域が側壁の厚さd (=3000
人)の分だけp形ゲート領域4から隔てられており、し
かもソースおよびドレイン領域はチャネル領域1に対し
て自己整合的に形成されているので、寄生抵抗の低減が
可能になると共に、位置合わせ工程が不要となり、高集
積化が可能になる。
高濃度(n゛)の領域とp形ゲート領域4の間の距離は
マスク合せ精度で決まり、一般には余裕を見込んで1μ
m程度が限度となるが、本実施例の製造方法によれば、
この距離は側壁6a、6bの厚さD (=30QO人)
によって決定されることになる。
マスク合せ精度で決まり、一般には余裕を見込んで1μ
m程度が限度となるが、本実施例の製造方法によれば、
この距離は側壁6a、6bの厚さD (=30QO人)
によって決定されることになる。
すなわち、チャネル領域の寄生抵抗分は約1/3となり
、(n゛)nu域の抵抗も含めた値では、従来例の寄生
抵抗値約23Ωに対して、第2図実施例によれば約10
Ωに低減される。
、(n゛)nu域の抵抗も含めた値では、従来例の寄生
抵抗値約23Ωに対して、第2図実施例によれば約10
Ωに低減される。
さらに、第4図にはデー1−長Lgと伝達コンダクタン
スgmの関係が示される。伝達コンダクタンスgnlは
、第4図に示されるように従来例の場合はゲート長I
P、が短い領域では飽和する傾向にあったが、第2図実
施例によって改善されており、−例としてゲート長I1
gが1μmの場合、従来例の約230m5/mmに対し
第2図実施例では約320m5/mmとなっており、従
来の約1.4倍に改善されている。従って、短ゲート長
のGaAs JFETの場合でも高速化が可能になる。
スgmの関係が示される。伝達コンダクタンスgnlは
、第4図に示されるように従来例の場合はゲート長I
P、が短い領域では飽和する傾向にあったが、第2図実
施例によって改善されており、−例としてゲート長I1
gが1μmの場合、従来例の約230m5/mmに対し
第2図実施例では約320m5/mmとなっており、従
来の約1.4倍に改善されている。従って、短ゲート長
のGaAs JFETの場合でも高速化が可能になる。
以十、本発明の一実施例としてnチャネル形JPETの
場合について説明したが、それに限らず、pチャネル形
JFF、Tに対しても同様に応用が可能であることばも
らろんである。また、ゲート領域の形成方法(第3図の
工程(hl参照)として−11iの実施例ではイオン注
入法を用いたが、それに限らず、気相または固相の拡散
源からの不純物拡散法を用いる場合についても同様の効
果が得られる。
場合について説明したが、それに限らず、pチャネル形
JFF、Tに対しても同様に応用が可能であることばも
らろんである。また、ゲート領域の形成方法(第3図の
工程(hl参照)として−11iの実施例ではイオン注
入法を用いたが、それに限らず、気相または固相の拡散
源からの不純物拡散法を用いる場合についても同様の効
果が得られる。
さらに、基板材料としてはGaAs以夕■に、InAs
。
。
InSb、 InP等のm−v化合物半導体、 ZnO
,Zn5e等のn−vr化合物半導体、さらにばAl
GaAs+TnGaA’s、 InAsP、 InGa
An P等の三元、四元混晶基板を用いることも可能で
あり、同様の効果が期待できる。
,Zn5e等のn−vr化合物半導体、さらにばAl
GaAs+TnGaA’s、 InAsP、 InGa
An P等の三元、四元混晶基板を用いることも可能で
あり、同様の効果が期待できる。
以上説明したように本発明によれば、大きな動作余裕度
を維持すると共に、寄生抵抗および寄生容量の増加なら
びに耐圧の低下を招くことなく高集積化および高速化を
図ることができ、歩留りの改善に寄与することができる
。具体的には、メモリ容量16にのSI?AM等の高密
度かつ高速集積回路の基本素子に適した。IPETを容
易に製造することができる。
を維持すると共に、寄生抵抗および寄生容量の増加なら
びに耐圧の低下を招くことなく高集積化および高速化を
図ることができ、歩留りの改善に寄与することができる
。具体的には、メモリ容量16にのSI?AM等の高密
度かつ高速集積回路の基本素子に適した。IPETを容
易に製造することができる。
(I6)
第1図は本発明による化合物半導体装置の原理プロ・ツ
ク図、 第2図は本発明の一実施例の構成を示す断面図、第3図
は第2図に示される装置の製造工程図、第4図はゲート
長LfXと伝達コンダクタンスgmの関係を示す図、で
ある。 1・・・第1の領域(チャネル領域)、2・・・第2の
領域(ソース領域)、 3・・・第3の領域(ドレイン領域)、4・・・第4の
領域(ゲート領域)、 5・・・基板、 6a、6b・・・側壁、 d・・・
側壁の厚さ。
ク図、 第2図は本発明の一実施例の構成を示す断面図、第3図
は第2図に示される装置の製造工程図、第4図はゲート
長LfXと伝達コンダクタンスgmの関係を示す図、で
ある。 1・・・第1の領域(チャネル領域)、2・・・第2の
領域(ソース領域)、 3・・・第3の領域(ドレイン領域)、4・・・第4の
領域(ゲート領域)、 5・・・基板、 6a、6b・・・側壁、 d・・・
側壁の厚さ。
Claims (1)
- 【特許請求の範囲】 1、化合物半導体の基板(5)と、 該基板(5)上に対向配置された所定の厚さ(d)を有
する2個の側壁(6a、6b)を有し、前記基板(5)
の表面に、 一導電形の不純物を含み、前記側壁(6a、6b)の外
側の端部に対応して形成されたキャリヤ通路用の第1の
領域(1)と、 該第1の領域(1)と同じ導電形の不純物を高濃度に含
み、前記側壁(6a、6b)の外側の各端部に対してそ
れぞれ自己整合的に形成されたキャリヤ注入用の第2の
領域(2)、キャリヤ排出用の第3の領域(3)と、 前記第1の領域(1)と反対導電形の不純物を含み、前
記側壁(6a、6b)の内側の端部に対応して形成され
たキャリヤ制御用の第4の領域(4)とを備えた、こと
を特徴とする化合物半導体装置。 2、前記基板(5)が前記第1の領域(1)と反対導電
形の化合物半導体からなる特許請求の範囲第1項記載の
装置。 3、前記基板(5)が半絶縁性の化合物半導体からなる
特許請求の範囲第1項記載の装置。 4、化合物半導体の基板(5)の表面に一導電形の不純
物を導入して第1の領域(1)を形成した後で、該第1
の領域(1)上に所定の厚さ(d)を有する2個の側壁
(6a、6b)を対向させて形成し、前記基板(5)の
表面に前記第1の領域(1)と同じ導電形の不純物を高
濃度で導入することにより第2の領域(2)および第3
の領域(3)をそれぞれ前記側壁(6a、6b)の外側
の各端部に対して自己整合的に形成し、そして、 前記基板(5)の表面に前記第1の領域(1)と反対導
電形の不純物を導入することにより第4の領域(4)を
前記側壁(6a、6b)の内側の端部に対応させて形成
する、ことを特徴とする化合物半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5361286A JPS62211961A (ja) | 1986-03-13 | 1986-03-13 | 化合物半導体装置およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5361286A JPS62211961A (ja) | 1986-03-13 | 1986-03-13 | 化合物半導体装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62211961A true JPS62211961A (ja) | 1987-09-17 |
Family
ID=12947724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5361286A Pending JPS62211961A (ja) | 1986-03-13 | 1986-03-13 | 化合物半導体装置およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62211961A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542448A2 (en) * | 1991-11-11 | 1993-05-19 | Nec Corporation | Charge transfer device with junction type output transistor |
-
1986
- 1986-03-13 JP JP5361286A patent/JPS62211961A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542448A2 (en) * | 1991-11-11 | 1993-05-19 | Nec Corporation | Charge transfer device with junction type output transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970004457B1 (ko) | 반도체 장치 및 그 제조 방법 | |
US4711858A (en) | Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer | |
JPS634955B2 (ja) | ||
JPS62211961A (ja) | 化合物半導体装置およびその製造方法 | |
JPS616871A (ja) | 電界効果トランジスタの製造方法 | |
JP3653652B2 (ja) | 半導体装置 | |
JP2657820B2 (ja) | Mos型電界効果トランジスタの製造方法 | |
KR950000155B1 (ko) | 전계효과 트랜지스터의 제조방법 | |
JP2921930B2 (ja) | 電界効果トランジスタ、その製造方法およびこれを用いた半導体集積回路 | |
JPH05275464A (ja) | 化合物半導体集積回路装置の製造方法 | |
JPH01162378A (ja) | 半導体装置 | |
JPS6068661A (ja) | 半導体装置 | |
JPS6057980A (ja) | 半導体装置の製造方法 | |
JP2663480B2 (ja) | 半導体装置の製造方法 | |
JP2616032B2 (ja) | 電界効果トランジスタの製造方法 | |
JPH028454B2 (ja) | ||
JPH0793322B2 (ja) | 半導体装置 | |
JPS61251080A (ja) | 電界効果トランジスタの製造方法 | |
JPH01208867A (ja) | 半導体装置およびその製造方法 | |
JPS6260269A (ja) | 電界効果トランジスタの製造方法 | |
JPS6070772A (ja) | 電界効果トランジスタの製造方法 | |
JPS62211959A (ja) | 半導体装置 | |
JPH0758715B2 (ja) | 電界効果トランジスタの製造方法 | |
JPS6367787A (ja) | 電界効果トランジスタ | |
JPS63281473A (ja) | 電界効果型半導体装置及びその製造方法 |