JPS62194668A - Manufacture of solid-state image pickup device - Google Patents

Manufacture of solid-state image pickup device

Info

Publication number
JPS62194668A
JPS62194668A JP61035060A JP3506086A JPS62194668A JP S62194668 A JPS62194668 A JP S62194668A JP 61035060 A JP61035060 A JP 61035060A JP 3506086 A JP3506086 A JP 3506086A JP S62194668 A JPS62194668 A JP S62194668A
Authority
JP
Japan
Prior art keywords
layer
region
sin
poly
channel stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035060A
Other languages
Japanese (ja)
Inventor
Shinji Uya
真司 宇家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61035060A priority Critical patent/JPS62194668A/en
Publication of JPS62194668A publication Critical patent/JPS62194668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To stop a channel in width close to minimum size capable of being formed through a photoetching method by forming a second SiO2 layer in a region as a channel stop, implanting channel-stopper atoms through an ion implantation method and removing only the second SiO2 layer through etching. CONSTITUTION:A first SiO2 layer 2, an SiN layer 3 and a poly Si layer 4 are formed onto a p-type Si substrate 1, photoresists 5-1 are shaped through a photoetching method, poly Si is etched through an anisotropic etching method, a photoresist 5-b is formed through the photoetching method so that the SiN layers 3 in sections as isolation regions in the peripheral sections are exposed, the SiN layers 3 are etched, and boron is implanted. The poly Si layers 4 on the SiN layers 3 in picture element sections are oxidized completely and changed into second SiO2 layers 6 through sufficient thermal oxidation. When boron is implanted, a channel stop region having width narrower than minimum size through the photoetching method can be shaped.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は固体撮像装置の、?141分子領域の形成方
法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a solid-state imaging device. This invention relates to a method for forming a 141 molecule region.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、固体撮像装置の素子分離方法としてLOCO8法
が多く使われてきた。このLOCO8法は、第8図〜第
11図に示すように、たとえばp型Si基板(1)上に
SiO□層■とSiN層■を形成しく第8図)、SiN
層■を写真食刻法など°によって分離領域となる部分の
SiN層が除かれるようにエツチングし、その後にこの
分離領域となる部分がより高い濃度のp型Siとなるよ
うに例えばボロンなどを拡散しく第9図)、 その後に
酸化を行なってSiN層を除去した部分に厚いSi酸化
膜(イ)を成長させ(第10図)、Sin。
Conventionally, the LOCO8 method has been widely used as an element isolation method for solid-state imaging devices. As shown in FIGS. 8 to 11, this LOCO8 method involves forming, for example, a SiO □ layer (■) and an SiN layer (■) on a p-type Si substrate (1) (FIG. 8), SiN
The layer (2) is etched using a photolithography method or the like so that the SiN layer in the part that will become the separation region is removed, and then, for example, boron or the like is etched so that the part that will become the separation region becomes p-type Si with a higher concentration. After that, a thick Si oxide film (A) is grown on the part where the SiN layer was removed by oxidation (Fig. 10).

層■とSiN層(3)をエツチングして分離領域を形成
する(第11図)方法である。LOCO3法は半導体装
置の素子分離法として広く利用されている方法であるが
、厚いSi酸化膜(14)を成長される過程で内部応力
が発生するため厚いSi酸化膜(14)の端部に結晶欠
陥が発生し易くなり、画像欠陥の発生率が増加して固体
撮像装置の製造方法としては不利である。そこで1周辺
の回路部分のみをLOCO5法で形成し1画素部分の分
離には不純物を拡散して形成したチャネルストップのみ
を用いる方法(以後、周辺LOCO3法と呼ぶ)が用い
られてきた。しかし。
This is a method of etching the layer (1) and the SiN layer (3) to form an isolation region (FIG. 11). The LOCO3 method is a method that is widely used as an element isolation method for semiconductor devices, but internal stress is generated during the process of growing a thick Si oxide film (14), so the edges of the thick Si oxide film (14) Crystal defects are more likely to occur, and the incidence of image defects increases, which is disadvantageous as a method for manufacturing solid-state imaging devices. Therefore, a method has been used in which only one peripheral circuit portion is formed by the LOCO5 method and only a channel stop formed by diffusing impurities is used to isolate one pixel portion (hereinafter referred to as the peripheral LOCO3 method). but.

この周辺LOCO3法では例えば拡散定数が大きいボロ
ン原子の拡散でチャネルストップを形成する場合などは
、ボロンの熱拡散によってチャネルストップの幅が広が
り、フォトダイオードやチャネルを形成する有効領域が
低減するという問題があった。特に1画素セルの縮小に
伴って、この熱拡散による有効領域の低減率はより大き
くなるため、高画素密度で多画素の固体撮像装置を実現
するためにほこのような有効領域の低減をできる限り小
さく押えることが重要な課題であった。
In this peripheral LOCO3 method, for example, when a channel stop is formed by diffusing boron atoms with a large diffusion constant, the width of the channel stop increases due to the thermal diffusion of boron, reducing the effective area for forming a photodiode or channel. was there. In particular, as the size of a single pixel cell decreases, the reduction rate of the effective area due to thermal diffusion becomes greater, so it is possible to reduce the effective area as much as possible in order to realize a solid-state imaging device with a high pixel density and a large number of pixels. The important issue was to keep it as small as possible.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した従来方法の欠点であるチャネルス
トップとなる領域に必要な不純物原子(以後チャネルス
トッパー原子と呼ぶ)の熱拡散による有効領域の低減を
考慮した素子分離方法で。
The present invention is an element isolation method that takes into consideration the reduction of the effective area due to thermal diffusion of impurity atoms (hereinafter referred to as channel stopper atoms) necessary for the region serving as a channel stop, which is a drawback of the conventional method described above.

従来方法に余り多くの工程を追加せずに有効領域の低減
が実効的にはほとんど発生しない素子分離方法を提供す
ることを目的とする。
It is an object of the present invention to provide an element isolation method that effectively causes almost no reduction in the effective area without adding too many steps to the conventional method.

〔発明の概要〕[Summary of the invention]

本発明は、Si基板上に不純物原子の拡散を行なって画
素領域の各構成要素を分離するチャネルストップと、周
辺回路の分離領域であるフィールド酸化膜を形成する工
程において、Si基板上に第1の3102層を形成し、
この第1のSin、層の上部にSiN層を形成し、この
SiN層の上部にポリSi層を形成し、前記チャネルス
トップとなる領域ではポリSi層のみをエツチングし、
前記フィールドとなる領域ではポリSi層とSiN、l
とをエツチングし、この後に酸化を行なって、前記チャ
ネルストップとなる領域ではSiN層上のポリSi層を
完全に酸化して第2のSin2層を形成し前記フィール
ド酸化膜となる領域では前記第1のSin2層をさらに
酸化させて厚いSjO□層と成し、この後、チャネルス
トッパー原子をイオン打込み法によって打込み、この後
In the process of diffusing impurity atoms onto the Si substrate to form a channel stop that separates each component of a pixel region and a field oxide film that is an isolation region for peripheral circuits, the first 3102 layers of
forming a SiN layer on top of this first Si layer, forming a polySi layer on top of this SiN layer, and etching only the polySi layer in the region that will become the channel stop;
In the region that becomes the field, a poly-Si layer and SiN, l
The poly-Si layer on the SiN layer is completely oxidized in the region that will become the channel stop, forming a second Si layer, and the poly-Si layer on the SiN layer is completely oxidized in the region that will become the field oxide film. The Sin2 layer of No. 1 is further oxidized to form a thick SjO□ layer, after which channel stopper atoms are implanted by ion implantation.

前記第2のSin、層のみをエツチングして除去するこ
とによって、画素領域の各構成要素を分離するチャネル
ストップと周辺回路の分離領域であるフィールド酸化膜
とを形成することを特徴とする。
The method is characterized in that by etching and removing only the second Sin layer, a channel stop that separates each component of the pixel region and a field oxide film that is an isolation region for peripheral circuits are formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酸化によって膨張したポリSi層がチ
ャネルストッパー原子の打込まれる領域の幅を狭めるこ
ととなり、チャネルストッパー原子の拡散を考慮しても
、写真食刻法によって形成可能な最少寸法に近い幅でチ
ャネルストップが出来りがる。また、周辺のフィールド
酸化膜を形成する工程がSiN膜上のポリSi層を酸化
する工程を兼ねているため、従来工程に、ポリ5iJf
iの形成工程、ポリSi層のエツチング工程と酸化した
ポリSiの除去工程のわずかな工程増加で上記の効果が
得られる。
According to the present invention, the poly-Si layer expanded by oxidation narrows the width of the region where channel stopper atoms are implanted, and even considering the diffusion of channel stopper atoms, the minimum size that can be formed by photolithography is achieved. A channel stop is created with a width close to . In addition, since the process of forming the peripheral field oxide film also serves as the process of oxidizing the poly-Si layer on the SiN film, the poly 5iJf
The above effect can be obtained with a slight increase in the steps of forming i, etching the poly-Si layer, and removing oxidized poly-Si.

〔発明の実施例〕[Embodiments of the invention]

第1図〜第7図は、本発明の詳細な説明するための図で
、右側の図(b)は周辺部の断面図を、左側の図(a)
は画素部の断面図を表している。この実施例においては
、p型Si基板上にインターライン転送型CCDを形成
する場合を例にとって説明する。
Figures 1 to 7 are diagrams for explaining the present invention in detail, and the right figure (b) is a sectional view of the peripheral area, and the left figure (a) is a sectional view of the peripheral part.
represents a cross-sectional view of the pixel portion. This embodiment will be explained by taking as an example a case where an interline transfer type CCD is formed on a p-type Si substrate.

第1図はp型Si基板α)上に第1のSin、層■を形
成し、その上部にSiN層■を、さらにその上部にポリ
Si層(/4)を形成した状態を示す。第2図はポリS
 i jfl @)を写真食刻法によって1分離領域と
なる部分のポリSiが露出するようにホトレジスト(5
−a )を形成し、ポリSLをRIHなどの異方性エツ
チング法によってエツチングした状態を示す。このとき
、画素部のポリSLが露出する領域は写真食刻法によっ
て可能な最少寸法の幅になるようにする。ホトレジスト
(5−a)を剥離して後にさらに写真食刻法によってホ
トレジスト(s −b)を周辺部の分離領域となる部分
のSiN層■が露出するように形成し。
FIG. 1 shows a state in which a first Si layer (2) is formed on a p-type Si substrate (α), an SiN layer (2) is formed on top of it, and a poly-Si layer (/4) is further formed on top of that. Figure 2 is PolyS
i jfl @) was coated with photoresist (5
-a) is formed and poly SL is etched by an anisotropic etching method such as RIH. At this time, the area where the poly SL of the pixel portion is exposed is made to have the minimum width possible by photolithography. After peeling off the photoresist (5-a), a photoresist (s-b) is further formed by photolithography so that the SiN layer (2) in the peripheral separation area is exposed.

このSiNM■をエツチングし、ボロンを打込むと第3
図のようになる。さらに、ホトレジスト(5−b)を剥
離し洗浄して後に十分な熱酸化を行なうと、画素部のS
iN層(3)上のポリstM4(イ)が完全に酸化され
て第2のSin、層0となる。またこの酸化によって、
岡辺部の分離領域では第1のsio2Mが更に酸化され
て厚くなり、フィールド酸化膜層■となる。
When this SiNM■ is etched and boron is implanted, the third
It will look like the figure. Furthermore, if the photoresist (5-b) is peeled off and cleaned and then sufficiently thermally oxidized, the S of the pixel area
The polystM4 (a) on the iN layer (3) is completely oxidized to become the second Sin layer 0. Also, due to this oxidation,
In the isolation region of the Okabe part, the first sio2M is further oxidized and becomes thicker, becoming a field oxide film layer (2).

ポリSi層は酸化されてSin、になることで膨張する
ため、画素部の素子分離領域のSiNM4■の露出部の
幅は狭くなって第4図の状態になる。fl出しているS
iN層をエツチングし、 第2のS i 02層0とフ
ィールド酸化膜層■をイオン打込みのマスクとして用い
てボロンを打込むと、写真食刻法による最少寸法より幅
の狭いチャネルストップ領域が形成でき、第5図の状態
になる。この後、フィールド酸化膜層■を覆うホトレジ
スト(5−c)を形成して第2のSiO□層■とSiN
層■をエツチングして、第6図の状態が得られる。さら
に、ゲートSin、層0、 フォトダイオードやCCO
の埋込みチャンネルn一層(lO)、ポリSLの転送電
極(11)、第3のSin2層(12)、光シールドや
配線電極となるA1層(13)を所定の形状に形成する
と、第一7図にその断面図を示すインターライン転送型
CCDが得られる。第6図以後の熱工程によってチャネ
ルストップ(ハ)のボロン原子は拡散しチャネルストッ
プの幅が拡がるが、ボロンをイオン打込みした時点の幅
が写真食刻法による最少寸法より狭いので、実効的には
写真食刻法による最少寸法に近い幅に出来上がり、見か
け上、ボロンの熱拡散による有効領域の減少がほとんど
なくなる。
Since the poly-Si layer is oxidized to become Sin and expands, the width of the exposed portion of SiNM4 in the element isolation region of the pixel portion becomes narrower, resulting in the state shown in FIG. S showing fl
Etching the iN layer and implanting boron using the second Si02 layer 0 and field oxide layer 2 as an ion implant mask forms a channel stop region narrower than the minimum dimension by photolithography. This will result in the state shown in Figure 5. After this, a photoresist (5-c) is formed to cover the field oxide layer (■) and the second SiO□ layer (■) and SiN
By etching layer 1, the state shown in FIG. 6 is obtained. Furthermore, gate Sin, layer 0, photodiode and CCO
When the buried channel n single layer (lO), the polySL transfer electrode (11), the third Sin2 layer (12), and the A1 layer (13) that will serve as a light shield and wiring electrode are formed in a predetermined shape, the first seven An interline transfer type CCD whose cross-sectional view is shown in the figure is obtained. The boron atoms in the channel stop (c) are diffused by the thermal process after Figure 6, increasing the width of the channel stop, but since the width at the time of boron ion implantation is narrower than the minimum dimension by photolithography, it is not effective. The width is close to the minimum dimension obtained by photolithography, and there appears to be almost no reduction in the effective area due to thermal diffusion of boron.

上記実施例では分離領域形成後にS j、 N層(3)
と第1のSiO□層■をエツチングして除去してしまっ
たが、第1のSin、 Mj■を形成する以前にフォト
ダイオードやCCDの埋込みチャネルになるn″′層(
10)を形成しておくのであれば、SiN層0と第1の
SIO□層■をそのままゲート絶allとして用いるこ
とも可能である。ただしその場合には、第2のSin、
層(0の除去以前には画素部のSiN層をエツチングせ
ずに、ボロンのイオン打込みはSiN層を通して行なう
ようにする。
In the above embodiment, the S j, N layer (3) is formed after the isolation region is formed.
Although the first SiO□ layer ■ was removed by etching, the n''' layer (which will become the buried channel of the photodiode and CCD) was etched and removed before forming the first Sin, Mj■ layer.
10), it is also possible to use the SiN layer 0 and the first SIO □ layer ① as they are as gate isolation. However, in that case, the second Sin,
Before removing the layer (0), the SiN layer in the pixel area is not etched, and boron ions are implanted through the SiN layer.

また、上記実施例ではCCDを例に取って説明したが1
本発明はSO5+CPD等の多の固体撮像装置にも適用
可能であり、同じ効果を得ることができる。
In addition, although the above embodiment was explained using a CCD as an example, 1
The present invention can be applied to many solid-state imaging devices such as SO5+CPD, and the same effect can be obtained.

本発明は固体撮像装置の分離領域を形成する方法として
最も有用であるが、セル部の素子分離にチャネルストッ
プを用い周辺回路部の素子分離にLOCO5法を用いる
半導体装置であれば、同様の効果を得ることが可能であ
る。
Although the present invention is most useful as a method for forming isolation regions in solid-state imaging devices, similar effects can be obtained in semiconductor devices that use a channel stop for element isolation in the cell area and LOCO5 method for element isolation in the peripheral circuit area. It is possible to obtain

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図、第6図、第
7図は本発明の詳細な説明するための断面図、第8図、
第9回、第10図、第11図は従来技術であるLOCO
5法を説明するための断面図である。 1・・・p型St基板   2・・・第1のSin、層
3・・・SiN層      4・・・ポリSi層5−
a−c・・・ホトレジスト 6・・・第2のSin2層
7・・・フィールド酸化膜層 8・・・チャネルストップ  9・・・ゲート5iOz
 層10・・・n一層      11・・・転送i!
!極12・・・第3のSiO□層   13・・・A1
層14・・・厚いSiO□層 代理人 弁理士 則 近 憲 佑 同  竹花喜久男 (d)            (b)第  1 図 (aン                  (b)第
  2 図 (α)(b) 第  3 図 (α)(b) (ご2.ン                 (J)
ン第  5 図 (ご2.ン                  (b
)第  6 図 (Q)    (り) 第  7 図
1, 2, 3, 4, 5, 6, and 7 are sectional views for explaining the present invention in detail;
Part 9, Figures 10 and 11 are conventional techniques of LOCO
FIG. 5 is a cross-sectional view for explaining Method 5. 1... P-type St substrate 2... First Sin layer 3... SiN layer 4... Poly Si layer 5-
a-c...Photoresist 6...Second Sin2 layer 7...Field oxide film layer 8...Channel stop 9...Gate 5iOz
Layer 10...n layer 11...Transfer i!
! Pole 12...Third SiO□ layer 13...A1
Layer 14...Thick SiO□ layer Agent Patent attorney Nori Chika Ken Yudo Kikuo Takehana (d) (b) Figure 1 (a) (b) Figure 2 (α) (b) Figure 3 (α) (b) (Go2.n (J)
Figure 5 (see 2. (b)
) Figure 6 (Q) (ri) Figure 7

Claims (1)

【特許請求の範囲】[Claims] Si基板上に不純物層の形成を行なって固体撮像装置の
画素領域の各構成要素を分離するチャネルストップを形
成する工程と、厚い酸化膜層の形成によって周辺回路の
分離領域であるフィールド酸化膜を形成する工程とを備
えた固体撮像装置の製造方法において、Si基板上に第
1のSiO_2層を形成し、この第1のSiO_2層の
上部にSiN層を形成し、このSiN層の上部にポリS
i層を形成し、前記チャネルストップとなる領域ではポ
リSi層のみをエッチングし、前記フィールドとなる領
域ではポリSi層とSiN層とをエッチングし、この後
に酸化を行なって、前記チャネルストップとなる領域で
はSiN層上のポリSi層を酸化して第2のSiO_2
層を形成し、前記フィールド酸化膜となる領域では前記
第1のSiO_2層をさらに酸化させて厚いSiO_2
層と成し、この後、前記第2のSiO_2層をマスクと
して用いて前記チャネルストップとなる領域に不純物原
子をイオン打込み法によって打込むことによって、固体
撮像装置の画素領域の各構成要素を分離するチャネルス
トップと周辺回路の分離領域であるフィールド酸化膜を
形成することを特徴とする固体撮像装置の製造方法。
The process involves forming an impurity layer on the Si substrate to form a channel stop that separates each component of the pixel region of a solid-state imaging device, and forming a thick oxide film layer to form a field oxide film, which is an isolation region for peripheral circuits. In the method of manufacturing a solid-state imaging device, the method includes forming a first SiO_2 layer on a Si substrate, forming an SiN layer on top of the first SiO_2 layer, and forming a polyamide layer on top of the SiN layer. S
Forming an i layer, etching only the poly-Si layer in the region that will become the channel stop, etching the poly-Si layer and the SiN layer in the region that will become the field, and then performing oxidation to become the channel stop. In the region, the poly-Si layer on the SiN layer is oxidized to form a second SiO_2
In the region that will become the field oxide film, the first SiO_2 layer is further oxidized to form a thick SiO_2 layer.
Then, using the second SiO_2 layer as a mask, impurity atoms are implanted into the channel stop region by ion implantation, thereby separating each component of the pixel region of the solid-state imaging device. A method for manufacturing a solid-state imaging device, characterized in that a field oxide film is formed as an isolation region between a channel stop and a peripheral circuit.
JP61035060A 1986-02-21 1986-02-21 Manufacture of solid-state image pickup device Pending JPS62194668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035060A JPS62194668A (en) 1986-02-21 1986-02-21 Manufacture of solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035060A JPS62194668A (en) 1986-02-21 1986-02-21 Manufacture of solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62194668A true JPS62194668A (en) 1987-08-27

Family

ID=12431480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035060A Pending JPS62194668A (en) 1986-02-21 1986-02-21 Manufacture of solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62194668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466630B2 (en) 2004-05-31 2016-10-11 Sony Corporation Solid-state imaging device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109915U (en) * 1980-01-24 1981-08-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109915U (en) * 1980-01-24 1981-08-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466630B2 (en) 2004-05-31 2016-10-11 Sony Corporation Solid-state imaging device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2521611B2 (en) Method of manufacturing CMOS having twin well
JPS5965445A (en) Formation of semiconductor element isolation region
JPS62194668A (en) Manufacture of solid-state image pickup device
JPS6242382B2 (en)
JP3239911B2 (en) Method for manufacturing solid-state imaging device
JPH11186377A (en) Manufacture of semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
JP2937459B2 (en) Method for forming contact hole in semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPS6244862B2 (en)
KR100198673B1 (en) Semiconductor integrated circuit device
JP2943855B2 (en) Method for manufacturing semiconductor device
JP2602142B2 (en) Method for manufacturing semiconductor device
JPS59177941A (en) Manufacture of element isolation region
KR100382551B1 (en) Method for Forming Dual Deep Trench of a Semiconductor Device
KR100239460B1 (en) Method of manufacturing charge coupled device
JPH01223741A (en) Semiconductor device and manufacture thereof
JP2506864B2 (en) Method for manufacturing MOS semiconductor device
JP2663516B2 (en) Method for manufacturing semiconductor device
JPH02142117A (en) Manufacture of semiconductor integrated circuit
JPH06188259A (en) Manufacture of semiconductor device
JPH0480927A (en) Manufacture of semiconductor device
JPH01297837A (en) Manufacture of semiconductor device
JPS62106620A (en) Manufacture of semiconductor device
JPH04346263A (en) Manufacture of bi-cmos semiconductor device