JPS5965445A - Formation of semiconductor element isolation region - Google Patents

Formation of semiconductor element isolation region

Info

Publication number
JPS5965445A
JPS5965445A JP17507182A JP17507182A JPS5965445A JP S5965445 A JPS5965445 A JP S5965445A JP 17507182 A JP17507182 A JP 17507182A JP 17507182 A JP17507182 A JP 17507182A JP S5965445 A JPS5965445 A JP S5965445A
Authority
JP
Japan
Prior art keywords
oxide film
film
si3n4
semiconductor substrate
isolation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17507182A
Other languages
Japanese (ja)
Other versions
JPH0516173B2 (en
Inventor
Hideaki Takahashi
秀明 高橋
Ginjiro Kanbara
神原 銀次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP17507182A priority Critical patent/JPS5965445A/en
Publication of JPS5965445A publication Critical patent/JPS5965445A/en
Publication of JPH0516173B2 publication Critical patent/JPH0516173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Abstract

PURPOSE:To realize micro-miniaturization of element isolating region through suppression of lateral oxidation in the selective oxidation by executing heat treatment under the NH3 ambient after forming an oxide film on the semiconductor substrate. CONSTITUTION:An oxide film 5 is formed on a semiconductor substrate 1 and an Si3N4 layer 6 is formed at the interface between the oxide film 5 and the substrate 1 by the heat treatment under the NH3 ambient. Thereafter, an Si3N4 film 2 is formed by thermal decomposition of NH3 and dichlorocylane (SiH2Cl2) and a photo resist film 7 is then formed. The Si3N4 film 2 which may be used as the element isolating region is removed and a diffusion layer 3 for channel stop is formed by injecting impurity in the same conductivity type as a semiconductor substrate 1. The photo resist 7 is removed, the selective oxide film 4 is formed, and the oxide film 5, Si3N4 films 2, 6 are removed. Since oxidation of semiconductor substrate 1 just under the oxide film 5 is suppressed by the thin Si3N4 film 6, bird beak of selective oxidation can remarkably be suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、大規模集積回路等の微細化アクティブ領域の
形成に有効な素子間分離のための選択酸化による半導体
素子分離領域の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming semiconductor element isolation regions by selective oxidation for isolation between elements, which is effective for forming miniaturized active regions of large-scale integrated circuits, etc. be.

従来例の構成とその問題点 大規模集積口□路(以下、LSIという)、例えば、M
OS型LSIの製作においては、MOSトラ、ンジスタ
を構成するアクティブ領域、このアクティブ領域を分離
する素子間分離領域、さらには各素子を電気的に接続す
る電極配線等はそれぞれの形成時に、高密度化、高性能
化に必要な個々のプロセスによって、精度良く、かつ、
高い再現性を保ちながら微細構造を形成することが不可
欠である。
Conventional configuration and its problems Large-scale integration circuit (hereinafter referred to as LSI), for example, M
In the production of OS-type LSIs, the active regions that make up MOS transistors and transistors, the isolation regions that separate these active regions, and the electrode wiring that electrically connects each device are formed at high density. Accurately and accurately through the individual processes necessary for
It is essential to form microstructures while maintaining high reproducibility.

従来、MO8型LSIプロセスにおけるフィールド酸化
膜と呼ばれる厚い酸化シリコン層を形成する方法として
第1図示のように、半導体基板10表面にシリコンナイ
トライド膜(Si3N4)2を局部的に設け、これをマ
スクとして基板10表面を選択的に酸化して、必要に応
じ、予め、イオン注入により準備された高濃度の不純物
層3(チャネルストッパ)を形成すると同時に、フィー
ルド酸化膜4を形成する方法がよ〈用いられている。
Conventionally, as a method for forming a thick silicon oxide layer called a field oxide film in the MO8 type LSI process, a silicon nitride film (Si3N4) 2 is locally provided on the surface of a semiconductor substrate 10, and this is masked. A better method is to selectively oxidize the surface of the substrate 10 as necessary, and form a highly concentrated impurity layer 3 (channel stopper) prepared in advance by ion implantation as needed, and at the same time form the field oxide film 4. It is used.

しかしながら、この方法では、選択酸化をすることによ
り横方向の酸化が進行し、いわゆるバーズビーク(Bi
rds  Beak)4bが発生して素子分離領域の微
細化を困難としていた。
However, in this method, lateral oxidation progresses due to selective oxidation, resulting in so-called bird's beak (Bi
rds Beak) 4b occurs, making it difficult to miniaturize the element isolation region.

発明の目的 本発明は、選択酸化における横方向酸化を抑え素子分離
領域の微細化を図ることが出来る半導体素子分離領域の
形成方法を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for forming a semiconductor element isolation region that can suppress lateral oxidation in selective oxidation and miniaturize the element isolation region.

発明の構成 本発明は、半導体基板表面に酸化膜を形成した後に、ア
ンモニア(NH3)雰囲気中で高温加熱処理を行ない、
ついで、Si3N4膜を形成しホトリングラフィにより
素子分離領域を予定した部分のSi3N4膜を選択的に
除去し、必要に応じ、イオン注入で高濃度不純物のチャ
ネルストンバを素子分離領域内に形成したのち、Si3
N4膜をマスクとして酸化雰囲気中で高温加熱処理を施
し、半導体基板に選択的に酸化膜を形成することにより
、バーズビークの抑制されたフィールド酸化膜が得よう
とするものである。
Structure of the Invention The present invention involves forming an oxide film on the surface of a semiconductor substrate, and then performing high-temperature heat treatment in an ammonia (NH3) atmosphere.
Next, a Si3N4 film was formed, and the Si3N4 film was selectively removed in the portion where the element isolation region was planned by photolithography, and if necessary, a channel stone bar with high concentration impurities was formed in the element isolation region by ion implantation. Later, Si3
The present invention attempts to obtain a field oxide film in which bird's beak is suppressed by performing high-temperature heat treatment in an oxidizing atmosphere using the N4 film as a mask to selectively form an oxide film on a semiconductor substrate.

実施例の説明 本発明の方法をMO3型LSIの製造方法を例示して説
明する。第2図(a)〜(d)はその工程断面図を示す
DESCRIPTION OF EMBODIMENTS The method of the present invention will be explained by exemplifying a method for manufacturing an MO3 type LSI. FIGS. 2(a) to 2(d) show cross-sectional views of the process.

まず、第2図(a)のように、半導体基板1に1000
゛Cの酸化雰囲気中で、厚さ500人の薄い酸化膜5を
形成する。この後に、90o′CのNH3雰囲気中で熱
処理を行なう。この熱処理工程で、酸化膜5と基板1と
の界面には極く薄いSi3N4層6が形成される。その
後KNH3とシクロルミラン(S I H2CIJ 2
 ) (7)熱分解により厚さ1200への813N4
膜2を形成する。以上の処理を施した後に、第2図(b
lのように、ホトレジスト膜7を形成して、素子間分離
領域に予定するところの513N4膜2を、ホトリソグ
ラフィにより選択的に除去し、ついで、半導体基板1と
同導電型の不純物をイオン注入法で注入しチャネル・ス
ト・ンブ用拡散層3を形成する。以上の処理を施した後
にホトレジスト7を除去し第2図(C)に示すように、
1000’Cの酸化雰囲気中で選択酸化膜4を形成する
。第2図(d)は、上記処理を行なった後に酸化膜5、
Si3N4膜2,6を除去した状態の要部断面図である
First, as shown in FIG.
A thin oxide film 5 having a thickness of 500 wafers is formed in an oxidizing atmosphere of 1. After this, heat treatment is performed in an NH3 atmosphere at 90o'C. In this heat treatment step, an extremely thin Si3N4 layer 6 is formed at the interface between the oxide film 5 and the substrate 1. After that, KNH3 and cyclomirane (S I H2CIJ 2
) (7) 813N4 to thickness 1200 by pyrolysis
A film 2 is formed. After performing the above processing, Figure 2 (b
As shown in FIG. 1, a photoresist film 7 is formed, and the 513N4 film 2 intended for the isolation region between elements is selectively removed by photolithography, and then impurities of the same conductivity type as the semiconductor substrate 1 are ion-implanted. A channel strike diffusion layer 3 is formed by implantation using a method. After performing the above processing, the photoresist 7 is removed and as shown in FIG. 2(C),
A selective oxide film 4 is formed in an oxidizing atmosphere of 1000'C. FIG. 2(d) shows that after the above treatment, the oxide film 5,
FIG. 3 is a cross-sectional view of the main part with Si3N4 films 2 and 6 removed.

この第2図に示す本発明の実施例による方法では、選択
酸化によるノ(−ズビークはほとんど発生していない。
In the method according to the embodiment of the present invention shown in FIG. 2, almost no noise beak due to selective oxidation occurs.

つまり、本実施例の方法によれば、第2図(alのよう
にNH3の熱処理により、酸化膜5と半導体基板1との
界面に非常に薄い5i3N−6が形成され、第2図(C
)の選択酸化工程において酸化膜6直下の半導体基板1
の酸化がこの薄いSi  N  膜6によって抑えられ
るために素子量分 4 離領域4の横方向への広がりが小さくなると推定される
In other words, according to the method of this embodiment, a very thin 5i3N-6 is formed at the interface between the oxide film 5 and the semiconductor substrate 1 by the NH3 heat treatment as shown in FIG.
) in the selective oxidation process, the semiconductor substrate 1 directly under the oxide film 6
It is estimated that since the oxidation of the SiN film 6 is suppressed by the thin SiN film 6, the lateral spread of the isolation region 4 is reduced by the amount of the element.

本実施例で形成された素子間分離領域は第2図に概要を
示したように、従来の方法で1杉成された第1図示のも
のに比べ、選択酸化のノく一ズビークが顕著に抑制され
る。例えば従来、素子分離領域の酸化膜厚4が6000
人で素子活性領域のだめのSi  N  膜2のマスク
寸法を3.0μmとして、選 4 択酸化後の活性領域寸法は、1.8μmとなっていたが
、本発明の本実施例による方法では同じ条件で2.6μ
mであった。
As shown in the outline in Figure 2, the element isolation region formed in this example has a noticeable droplet beak due to selective oxidation compared to the one shown in Figure 1, which was formed using the conventional method. suppressed. For example, conventionally, the oxide film thickness 4 of the element isolation region was 6000 mm.
When the mask dimension of the SiN film 2 in the device active region was manually set to 3.0 μm, the active region dimension after selective oxidation was 1.8 μm, but the method according to this embodiment of the present invention had the same 2.6μ under conditions
It was m.

発明の効果 以上のように本発明の方法を用いれば、半導体基板に酸
化膜を形成してから、NH3雰囲気中で熱処理を行なう
という簡単な工程を加えるだけで選択酸化時のバースビ
ークの発生がほとんど抑制でき、超LSIのだめの素子
微細化に優れ、その効果は太きい。
Effects of the Invention As described above, if the method of the present invention is used, the generation of birth beaks during selective oxidation can be almost eliminated by adding a simple step of forming an oxide film on a semiconductor substrate and then performing heat treatment in an NH3 atmosphere. It is excellent for miniaturization of ultra-LSI devices, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の素子間分離領域の断面図、第2図(a
)〜(→は、本発明の方法を示す工程断面図である。 1・・・・・・半導体基板、2・・・・・・S 1 s
 N 4膜、3・・・・・・高濃度拡散層、4・・・・
・・選択酸化膜、6・・・・・・酸化膜、6・・・・・
・5laN4膜、6・・・・・・S 13N4膜、7・
・・・・・ホトレジスト。 代理人の氏名 弁理士 中 尾1敏 男 ほか1名第2
図 1a1 第1図 /16+ (d> 241−
FIG. 1 is a cross-sectional view of a conventional element isolation region, and FIG.
) to (→ are process cross-sectional views showing the method of the present invention. 1... Semiconductor substrate, 2... S 1 s
N4 film, 3...high concentration diffusion layer, 4...
...Selective oxide film, 6...Oxide film, 6...
・5laN4 film, 6...S 13N4 film, 7.
...Photoresist. Name of agent: Patent attorney Toshi Nakao (Male) and 1 other person (2nd)
Figure 1a1 Figure 1/16+ (d> 241-

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、シリコン酸化膜を被着した後、アンモ
ニア雰囲気中で高温加熱処理を1J[へシ、前記基板と
前記酸化膜との界面に第1のシリコンナイトライド膜を
形成する工程、前記酸化膜上に第2のシリコンナイトラ
イド膜を被覆するに程、素子間分離領域となる前記基板
上の前記第゛1.第2のシリコンナイトライド膜及び前
記酸化膜を選択的に除去する工程、酸化雰囲気中で高温
加熱を施し前記基板の選択酸化を行なう工程を含むこと
を特徴とする半導体素子分離領域の形成方法。
After depositing a silicon oxide film on the semiconductor substrate, a high-temperature heat treatment is performed in an ammonia atmosphere for 1 J [step of forming a first silicon nitride film at the interface between the substrate and the oxide film; The more the second silicon nitride film is coated on the oxide film, the more the first silicon nitride film on the substrate becomes an element isolation region. A method for forming a semiconductor element isolation region, comprising the steps of selectively removing a second silicon nitride film and the oxide film, and selectively oxidizing the substrate by heating at a high temperature in an oxidizing atmosphere.
JP17507182A 1982-10-05 1982-10-05 Formation of semiconductor element isolation region Granted JPS5965445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17507182A JPS5965445A (en) 1982-10-05 1982-10-05 Formation of semiconductor element isolation region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17507182A JPS5965445A (en) 1982-10-05 1982-10-05 Formation of semiconductor element isolation region

Publications (2)

Publication Number Publication Date
JPS5965445A true JPS5965445A (en) 1984-04-13
JPH0516173B2 JPH0516173B2 (en) 1993-03-03

Family

ID=15989717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17507182A Granted JPS5965445A (en) 1982-10-05 1982-10-05 Formation of semiconductor element isolation region

Country Status (1)

Country Link
JP (1) JPS5965445A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257538A (en) * 1984-05-29 1985-12-19 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of producing semiconductor device having silicon unitlocally provided with buried oxide layer
JPH01315141A (en) * 1988-06-15 1989-12-20 Toshiba Corp Manufacture of semiconductor device
US5260229A (en) * 1991-08-30 1993-11-09 Sgs-Thomson Microelectronics, Inc. Method of forming isolated regions of oxide
US5348910A (en) * 1991-12-24 1994-09-20 Seiko Epson Corporation Method of manufacturing a semiconductor device and the product thereby
JPH09181069A (en) * 1995-11-03 1997-07-11 Hyundai Electron Ind Co Ltd Semiconductor device element isolating method
US5834360A (en) * 1996-07-31 1998-11-10 Stmicroelectronics, Inc. Method of forming an improved planar isolation structure in an integrated circuit
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit
US5977607A (en) * 1994-09-12 1999-11-02 Stmicroelectronics, Inc. Method of forming isolated regions of oxide
US7235460B2 (en) 1993-07-30 2007-06-26 Stmicroelectronics, Inc. Method of forming active and isolation areas with split active patterning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779650A (en) * 1980-09-15 1982-05-18 Gen Electric Method of producing integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779650A (en) * 1980-09-15 1982-05-18 Gen Electric Method of producing integrated circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257538A (en) * 1984-05-29 1985-12-19 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of producing semiconductor device having silicon unitlocally provided with buried oxide layer
JPH01315141A (en) * 1988-06-15 1989-12-20 Toshiba Corp Manufacture of semiconductor device
US5260229A (en) * 1991-08-30 1993-11-09 Sgs-Thomson Microelectronics, Inc. Method of forming isolated regions of oxide
US5348910A (en) * 1991-12-24 1994-09-20 Seiko Epson Corporation Method of manufacturing a semiconductor device and the product thereby
US7235460B2 (en) 1993-07-30 2007-06-26 Stmicroelectronics, Inc. Method of forming active and isolation areas with split active patterning
US5977607A (en) * 1994-09-12 1999-11-02 Stmicroelectronics, Inc. Method of forming isolated regions of oxide
JPH09181069A (en) * 1995-11-03 1997-07-11 Hyundai Electron Ind Co Ltd Semiconductor device element isolating method
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit
US5834360A (en) * 1996-07-31 1998-11-10 Stmicroelectronics, Inc. Method of forming an improved planar isolation structure in an integrated circuit
US6046483A (en) * 1996-07-31 2000-04-04 Stmicroelectronics, Inc. Planar isolation structure in an integrated circuit

Also Published As

Publication number Publication date
JPH0516173B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
JP2521611B2 (en) Method of manufacturing CMOS having twin well
JPS5965445A (en) Formation of semiconductor element isolation region
JPS63219152A (en) Manufacture of mos integrated circuit
US4596071A (en) Method of making semiconductor devices having dielectric isolation regions
JPS6242382B2 (en)
JP2859332B2 (en) Method for manufacturing semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPS61112344A (en) Formation of semiconductor-element isolation region
JPH07321193A (en) Manufacture of semiconductor device
JPS63202055A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPS59205750A (en) Manufacture of semiconductor device
JPS6229163A (en) Semiconductor device and manufacture thereof
JPS596559A (en) Semiconductor device
JPS5844748A (en) Manufacture of semiconductor device
JPS60127741A (en) Manufacture of semiconductor device
JPH01173632A (en) Manufacture of semiconductor device
JPS61148832A (en) Manufacture of semiconductor device
JPS59204279A (en) Manufacture of metallic insulator semiconductor integrated circuit
JPH0480927A (en) Manufacture of semiconductor device
JPS62193166A (en) Formation of well of complementary mis integrated circuit
JPS58149A (en) Semiconductor device
JPS59169172A (en) Manufacture of semiconductor memory device
JPS61174647A (en) Manufacture of semiconductor device
JPS58158968A (en) Manufacture of semiconductor device