JPH01315141A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01315141A
JPH01315141A JP14587788A JP14587788A JPH01315141A JP H01315141 A JPH01315141 A JP H01315141A JP 14587788 A JP14587788 A JP 14587788A JP 14587788 A JP14587788 A JP 14587788A JP H01315141 A JPH01315141 A JP H01315141A
Authority
JP
Japan
Prior art keywords
oxide film
film
cvd
thermal
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14587788A
Other languages
Japanese (ja)
Inventor
Keitarou Imai
馨太郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14587788A priority Critical patent/JPH01315141A/en
Publication of JPH01315141A publication Critical patent/JPH01315141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an insulating film whose capacitance and insulating breakdown strength are sufficient by a method wherein, when the insulating film is formed on the surface of a semiconductor such as silicon or the like, a CVD oxide film is formed and, after that, a thin nitride film is formed on the surface of the oxide film by thermal nitrification. CONSTITUTION:A CVD oxide film 3 is formed on the whole surface of a field insulating film 2 formed on a P-type silicon substrate 1; this CVD oxide film 3 is patterned; after that, a groove 4 having vertical side-walls is formed in the surface of the silicon substrate by making use of the oxide film as a mask. After that, the CVD oxide film 3 is removed; an n-type impurity layer 5 is formed on the side walls of the groove 4 and on the silicon surface in other capacitor regions; in succession, a CVD oxide film 6 is formed by, e.g., a low- pressure CVD method by thermal decomposition of TEOS (tetraethoxysilane) under a vacuum. Then, a thermal nitride film 7 of 20Angstrom is formed by thermal nitrification in NH3. By this setup, an insulating film whose insulating characteristic is excellent can be formed without lowering a capacitance of a capacitor.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体基板上の絶縁膜を改良した半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device in which an insulating film on a semiconductor substrate is improved.

(従来の技術) 従来より半導体ifの1つで、キャパシタとトランジス
タを徂み合わせて情報の記憶動作を行う装置としてD 
RA M (Dyhamic Random Acce
aaread write Memory )があろう
この装置では通常午ヤパシタ電極と半導体基板との間に
形成されるキャパシタ絶縁膜としてsio、模が用いら
れている。しかしながら、急速な素子の集積比に伴い。
(Prior art) D
RAM (Dyhamic Random Acce
In this device, a capacitor insulating film formed between a capacitor electrode and a semiconductor substrate is usually used. However, with the rapid integration ratio of devices.

bitDRAMに2いては、  100Aを切るに至り
ている・更に4MbitDRAW串)て(耳来の平面キ
ャパシタに代わりて、実効的なキャパシタ面積を稼ぐた
めに。
In 2 bit DRAM, the current consumption has reached less than 100A, and in addition, 4 Mbit DRAW is used (to replace the conventional planar capacitor, in order to increase the effective capacitor area).

例えばシリコン表面に、譚を掘るトレンチキャパシタが
用いられるうとしている。しかし、このような構造を有
するシリコン表面上に酸化膜を熱酸化法によりて形成し
た場合、例えば急峻なシリコンのコーナのために、ある
いはエツチ7グによりてシリコン表面がダメージを受け
たために酸化膜の耐圧が低下する。このため、上記の影
響を受けにくいCVDf&による絶縁pA杉形成の応用
としていわゆる三畷模(熱酸比模−CVD窒比模−熱酸
1ヒ膜)の検討がなされている。しかし、cvpu化漠
の場合、さらに微細化が進み特に嗅厚がさらに薄くなり
た場合ピンホールの著しい増大(ζよる耐圧の劣化が問
題となる。従りて、薄膜化が困雛薇こなるためキャパシ
タンスを稼ぐことが鼎しくなる。
For example, trench capacitors that dig into the silicon surface are being used. However, when an oxide film is formed by thermal oxidation on a silicon surface having such a structure, the oxide film may be damaged due to, for example, steep corners of the silicon or damage to the silicon surface due to etching. The withstand pressure of the product decreases. For this reason, a so-called Sannawate pattern (thermal acid ratio model - CVD nitrate ratio model - thermal acid 1 arsenic film) has been studied as an application of insulating pA cedar formation by CVDf&, which is less susceptible to the above-mentioned effects. However, in the case of cvpu deserts, as miniaturization progresses and the thickness becomes even thinner, the number of pinholes increases significantly (deterioration of withstand voltage due to ζ becomes a problem. Therefore, it becomes difficult to thin the film. Therefore, it becomes difficult to increase capacitance.

このため、MOSキャパシタの蓄積電荷1を十分にとる
ことができなくなり、ひいてはンフトエラー耐性が低下
するなど素子の信頼性が著しく低下すること1こなる。
As a result, it is no longer possible to sufficiently store the charge 1 stored in the MOS capacitor, and as a result, the reliability of the device is significantly lowered, such as by lowering the resistance to errors.

(発明が解決しようとする課題) 本発明は、シリコ/表面上の絶縁膜として、ピンホール
密度の小さいCVD法による酸化膜あるいは熱酸化1i
1iこ対しさらにその表面上を熱窒化を行りた模を用い
ること1こよりて、十分なキャパシタンスと十分な絶巌
耐圧を有する絶縁膜を提供することfこある。これfこ
よりで、DRAMなどの素子特性の向上を可能とした半
導体fatの製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention provides an oxide film formed by a CVD method with a low pinhole density or a thermally oxidized 1i film as an insulating film on a silicon/surface.
It is possible to provide an insulating film having sufficient capacitance and sufficient breakdown voltage by using a pattern in which thermal nitridation is further performed on the surface of the insulating film. With this, it is an object of the present invention to provide a method for manufacturing a semiconductor fat that makes it possible to improve the characteristics of devices such as DRAM.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明tこよる第1の発明は、シリコン等の半導体表面
上の絶縁膜を形成するに当たり、CVD酸化膜形成後、
この酸化膜表面上に熱望化によりて薄い窒化膜を形成す
ることを特徴とする。又、本発明による瀉2の発明は半
導体基体表面fこ熱窒化による第1の窒化膜とこの窮1
の窒化膜上にCVD法Eこよるwc2の窒化膜を形成す
ることを特徴とする。
(Means for Solving the Problems) A first invention according to the present invention provides that when forming an insulating film on the surface of a semiconductor such as silicon, after forming a CVD oxide film,
The method is characterized in that a thin nitride film is formed on the surface of this oxide film by aspiration. Further, the second aspect of the present invention is to form a first nitride film by thermal nitriding on the surface of the semiconductor substrate and this
A nitride film of wc2 is formed by CVD method E on the nitride film of .

る。Ru.

(作用) 本発明誓こよれば、シリ−コン表面上、−船釣tこは例
えばエツチングをこよりて加工されたシリコン表面上f
こ2いても十分な薄膜化が可能でかつ絶縁耐圧にすぐれ
る絶縁膜を形成することができる。本発明Eこよる第1
の発明のCVD酸化膜をこおいては。
(Function) According to the present invention, on a silicon surface, for example, on a silicon surface processed by etching,
Even in this case, it is possible to form an insulating film that can be sufficiently thinned and has excellent dielectric strength. First according to the present invention E
The CVD oxide film of the invention of .

CVD窒化膜1こ比べてピ/ホール″8!1度が小さい
ため絶縁耐圧特性にすぐれ、トラップ準位の形成が少な
いためリーク特性にすぐれる。したがりて。
Compared to a CVD nitride film, the pi/hole ratio is smaller by 8.1 degrees, so it has excellent dielectric strength characteristics, and less trap levels are formed, so it has excellent leakage characteristics.

それ目体の薄膜化がCVD1化僕fこぐらべてはるかに
専易である。さらに、このCVD酸化膜に対し直接熱窒
化ζこよりその表面に薄い窒化膜を形成することにより
て、さらにすぐれた特性を有する絶縁1莫を提供するこ
とができる。すなわち、表面に窒化膜を形成することに
よりて、より高い絶縁特性を有することができ、汚染不
純物のバリアとしても有効となる。また、窒化膜自体の
誘電率は酸化@蚤こ比べて約1.8培と大きいため窒化
、膜形成Eこよる膜厚増加によるキャパシタ容量の低下
は少ない。したがりて、本発明の嘉1の発明lこよれば
、すぐれた絶縁特性を有する絶縁膜をキャパシタ容量を
低下することなくシリコン上1こ形成することができる
It is much easier to create a thin film than with CVD1. Furthermore, by directly thermally nitriding this CVD oxide film to form a thin nitride film on its surface, an insulating film having even better characteristics can be provided. That is, by forming a nitride film on the surface, higher insulating properties can be obtained, and it is also effective as a barrier against contaminant impurities. Furthermore, since the dielectric constant of the nitride film itself is about 1.8 times higher than that of oxide film, the capacitance of the capacitor is less likely to decrease due to the increase in film thickness due to nitridation and film formation. Therefore, according to the first aspect of the present invention, an insulating film having excellent insulating properties can be formed on silicon without reducing the capacitance of the capacitor.

また、第2の発明によれば、熱酸化膜上に熱望化膜を形
成するので、その界面構造は、化学的に安定tこなる。
Further, according to the second invention, since the aspiration film is formed on the thermal oxide film, the interface structure thereof is chemically stable.

また、!l]記界面lこしてトラップも存在するが、安
定な構造であるため′シ気的lこも安定となる。さらl
こ、薄いCVD窒化@すこは多くのピアホールが存在す
るが熱雷化膜では、ピンホールが非常に少ないためリー
ク電流を低減化することができ、高耐圧、高信頼性のあ
る絶縁膜を形成できる。
Also,! There are also traps on the surface, but since the structure is stable, the gas is also stable. Sara l
This thin CVD nitrided film has many pinholes, but the thermal lightning film has very few pinholes, which reduces leakage current and forms an insulating film with high withstand voltage and high reliability. can.

(実施例) 第1図h)〜d)は%@1の発明をDRAMにおけるト
レンチキャパシタセルに適用した一実施例の!J!!造
工程全工程断面図である。先ず、第1図(al jこ示
すようをこ比抵抗5〜50Ω・cmのP型(100)シ
リコン基板(1)を用意し、フィールド絶縁膜C)を形
成した後、全面に0.8μm程度のCVD酸化・臭(3
)を形成する。このCVD酸化膜(3)をバター二/グ
したのち、これをマスクとして反応性イオンエツチング
(RIE)法により、シリコン八板表面に垂直測管を肩
する深さ3μm程度の溝(4)を形成する。
(Example) Figures 1 h) to d) show an example in which the invention of %@1 is applied to a trench capacitor cell in a DRAM! J! ! It is a sectional view of the entire manufacturing process. First, as shown in FIG. 1, a P-type (100) silicon substrate (1) with a specific resistance of 5 to 50 Ω·cm is prepared, and after forming a field insulating film C), a film of 0.8 μm is deposited on the entire surface. CVD oxidation/odor (3
) to form. After butter-coating this CVD oxide film (3), using it as a mask, a reactive ion etching (RIE) method was used to create a groove (4) approximately 3 μm deep on the surface of the eight silicon plates, covering the vertical pipe. Form.

この仮、第1図(′b)に示すようにCVD酸化膜(3
)を除去したのち、前記溝(4)のtiltliおよび
池のキャパシタンスのシリコン衆面にn型不純物rfJ
+51を形成する。続いて5例えば真空下でのTgos
 (テトラエトキシシラ7)の熱分解による減圧CVD
法によりて、厚さ80AのCVD酸化膜(6)を形成後
This tentative CVD oxide film (3
) is removed, an n-type impurity rfJ is added to the silicon surface of the tilt and pond capacitance of the groove (4).
Form +51. followed by 5 e.g. Tgos under vacuum
Low pressure CVD by thermal decomposition of (tetraethoxysila 7)
After forming a CVD oxide film (6) with a thickness of 80A by the method.

900℃tこεいてNH,中での熱望化によりて20A
の熱望化膜(7)を形成する。
NH at 900℃, 20A due to heating inside
An aspiration film (7) is formed.

つぎに、41図(C)に示すように、n型多結晶シリコ
ン模によるキャパシタ電極(8)を形成する。
Next, as shown in FIG. 41(C), a capacitor electrode (8) made of an n-type polycrystalline silicon model is formed.

この後、第1図(山ζこ示すようfこ、スイッチングM
O8FET@域にゲート酸化膜θ)を介して& nfi
多結晶シリコン膜によるゲート電極(10)を形成し。
After this, as shown in Fig. 1 (the peak ζ), switch
&nfi via gate oxide film θ) in O8FET@ area
A gate electrode (10) is formed using a polycrystalline silicon film.

さら督こンース、ドレイン頃域のn十形不純物li!(
11) 。
Furthermore, the n-type impurity in the drain region is li! (
11).

(12)を形成して、メモリセルを完成する。(12) is formed to complete the memory cell.

以上のようfこ形成した本発明の一実施例の効果を次に
説明する。L記芙施例に従りてキャ/(′シタ絶縁膜を
形成された。100000個の溝をき不随つキャパシタ
′i、t tgを共通船こしたM(1)Sキャパシタと
、従来法昏こ従りて乾燥酸素中900℃で熱酸化法でキ
ャパシタ酸化膜が形成されたMOSキャパシタの耐圧分
布を比較した。第2図はその比較データである。同図か
ら明らかなように1本実施例では従来例に比べて絶縁耐
圧が大幅に向上している。
The effects of an embodiment of the present invention formed as described above will now be described. A capacitor insulating film was formed according to the example described in Section L. An M(1)S capacitor in which 100,000 grooves were formed and capacitors 'i, t and tg were commonly used, and a conventional method. Therefore, we compared the breakdown voltage distribution of MOS capacitors whose capacitor oxide films were formed by thermal oxidation at 900°C in dry oxygen. Figure 2 shows the comparison data. As is clear from the figure, one In the example, the dielectric strength voltage is significantly improved compared to the conventional example.

こうして本実施例によれば、CVD酸化酸化熱室化膜と
を組み付わせることによりて、優れた絶縁特性をゴする
絶縁膜をキャパシタ各獣を低下することなしくこ形成す
ることができる。
In this way, according to this embodiment, by assembling the CVD oxidized oxidized thermally chambered film, an insulating film having excellent insulating properties can be formed without degrading the properties of the capacitor. .

また、本発明は、トレンチキャパシタ奢こ限らず一般的
にシリコン停の半導体基体上における絶縁膜に応用でき
ろ。また、その形成方法についても。
Furthermore, the present invention can be applied not only to trench capacitors, but also to insulating films on silicon semiconductor substrates in general. Also, how it is formed.

CVD酸化膜に3いてはTE01の熱分解に限らす膜厚
の制御性の良い池の材料を用いることも可能であり、熱
窒化膜においてはN Hm中に限らず他の窒化雰囲気を
用いることができる。
For CVD oxide films, it is possible to use materials with good controllability of film thickness limited to thermal decomposition of TE01, and for thermal nitride films, other nitriding atmospheres other than N Hm can be used. I can do it.

次に1本発明の第2の発明の詳細を図示の実施例を用い
て説明する。
Next, details of the second aspect of the present invention will be explained using illustrated embodiments.

斗3図は、トレンチキャパシタをWするDRAMRAM
セル工程を示す断面図である。
Figure 3 shows a DRAM RAM that uses a trench capacitor.
It is a sectional view showing a cell process.

先ずh ’iFG 3 A la) fこ示すようfこ
比抵抗1oΩ・cmをMし1表面が(100)面である
P担のシリコ/漬板(30)上に、素子分離を行うため
の例えば熱酸化111 (31)を選択的に形成する。
First, h'iFG 3 A la) As shown in FIG. 3, a resistivity of 10Ω·cm is set as shown in FIG. For example, thermal oxidation 111 (31) is selectively formed.

次に、全面にCVD酸化嗅を堆積した後、パターニング
サしたレジストをマスクとして、この模をさら1こバタ
ーニングし、酸化[(32)のマスクを設ける。この酸
化d (32)のマスク上から反応性イオンニッチフグ
番こより溝(33)を形成する(嬉3図+b+ ) 、
ついで酸化膜(32)を希釈弗酸によりてエツチング除
去し、さらにn′″型11 (34)を形成する(第1
図(C)〕。
Next, after CVD oxidation is deposited on the entire surface, this pattern is further patterned using the patterned resist as a mask to form an oxidation mask (32). A reactive ion niche groove (33) is formed on the mask of this oxidation d (32) (Figure 3+b+),
Next, the oxide film (32) is removed by etching with diluted hydrofluoric acid, and further an n''' type 11 (34) is formed (first
Figure (C)].

この後、800℃dryQ1中で酸化を行い厚さ60A
の熱酸化膜(35)を形成する。ついで900’C,N
H,中で熱窒化を行い、厚さ20Aの熱望化@ (36
) 5:形成Lりf!、厚さ80A(1)CVD’i化
帳(37)を形成した友、さらにn+型多結晶シリコン
を埋積し、バターニングによりてキャパシタ電極(38
)を形成する(41図(dl )。
After this, oxidation is performed in 800°C dry Q1 to a thickness of 60A.
A thermal oxide film (35) is formed. Then 900'C,N
Thermal nitriding is carried out in H, and the thickness is 20A (36
) 5: Formation Lrif! , a thickness of 80A (1) was formed using CVD'i conversion board (37), and then n+ type polycrystalline silicon was buried and the capacitor electrode (38) was formed by buttering.
) (Figure 41 (dl).

続いて、嬉1図(e) iこ示すようにキャパシタ頭載
)こ隣接する位置にゲート絶縁膜となる酸化膜(39)
を形成し、第2層多結晶シリコン模の埋積、バターニン
グによりゲートt[i4 (40)を形成し、ソース、
ドレインとなるn−型層(41)、(42)を形成して
スイッチングMO8)ランジスタを形成する。
Next, as shown in Figure 1 (e), an oxide film (39) that will become the gate insulating film is placed adjacent to the capacitor head (as shown in Figure 1).
A second layer of polycrystalline silicon is buried and patterned to form a gate t[i4 (40), a source,
A switching MO8) transistor is formed by forming n-type layers (41) and (42) which become drains.

この後(ま図示しないが、全面にCVD酸化膜8楓積し
、コンタクト孔を開けてAt配線を形成して、DRAM
を完成する。
After this (although not shown, 8 layers of CVD oxide film are deposited on the entire surface, contact holes are opened and At wirings are formed, and the DRAM is
complete.

この実施例によれば、酸化膜上に窒化模が形成される複
合模造をもつ多層絶縁膜Eこ8いて4気的安定性を著し
く向上させ、もりて素子の信頼性を大きく向上させるこ
とが可能となる。第4図は第2の発明による実施例1こ
より形成したキャパシタ+alと従来法により形成した
キャパシタiblにおけるI−V特性の比較の結果を示
す特性図である。これから本発明番こよりてリーク電流
の低減が図られていることがわかる。
According to this example, the multilayer insulating film E having a composite pattern in which a nitride pattern is formed on an oxide film significantly improves the four-dimensional stability, thereby significantly improving the reliability of the device. It becomes possible. FIG. 4 is a characteristic diagram showing the results of a comparison of the IV characteristics of the capacitor +al formed from Example 1 according to the second invention and the capacitor ibl formed by the conventional method. It can be seen from this that the present invention is more effective in reducing leakage current.

なお、上記実施例ではD RA Mfこ3けるトレンチ
セルについて述べたが、これ1こ限定されるものではな
く1例えば絶縁膜を形成するスタックドキャパシタセル
にも適用できる。或いはまたDRAM以外Eζ6プログ
ラム可能読み出し専用メそり(P ROM )にも適用
可能である。
In the above embodiment, a trench cell made of DRA Mf was described, but the present invention is not limited to this, and can also be applied to, for example, a stacked capacitor cell in which an insulating film is formed. Alternatively, it is also applicable to Eζ6 programmable read-only memory (P ROM) other than DRAM.

〔発明の効果〕〔Effect of the invention〕

本発明により酸化膜−窒化膜界面の特性が優れた絶縁膜
を含む半導体装置を提供することができる。
According to the present invention, it is possible to provide a semiconductor device including an insulating film with excellent characteristics at the oxide film-nitride film interface.

【図面の簡単な説明】[Brief explanation of the drawing]

gK1図((転)〜(6Jは第1の発明の一実施例のD
RAMセルの製造工程断面図、第2図はその実施例の効
果を説明するためのキャパシタ絶縁慣の耐圧分布を従来
例と比較して示す特性図、第3図は、第2の発明の一実
施例のDRAMセルの製造工程断面図、@4図はその実
施例の効果を示す特性図である。 1・・・P型シリコン基板、2・・・フィールド酸化膜
。 3・・・CVD酸化嘆、4・・・4.5・・・n型不純
物層。 6・・・・CVD酸化酸化7・・・熱室化模% 8・・
・キャパシタ(甑、9・・・ゲート酸化膜、10・・・
ゲート1極、11.12・・・n千成不純物1゜ 代理人 弁理士  則 近 ■ 右 向        扮  山  光  2第1図 1狽LMr/cm) 第2図 ρ     5fρ     fS 第4図 0            Φ
gK1 ((translation) to (6J is D of an embodiment of the first invention)
FIG. 2 is a cross-sectional view of the manufacturing process of a RAM cell. FIG. 2 is a characteristic diagram showing the breakdown voltage distribution of capacitor insulation in comparison with a conventional example to explain the effects of this embodiment. FIG. Figure @4, which is a sectional view of the manufacturing process of the DRAM cell of the embodiment, is a characteristic diagram showing the effects of the embodiment. 1... P-type silicon substrate, 2... Field oxide film. 3...CVD oxidation, 4...4.5...n-type impurity layer. 6...CVD oxidation 7...Heat chamber simulation% 8...
・Capacitor (Koshiki, 9... Gate oxide film, 10...
Gate 1 pole, 11.12...n Chisei impurity 1゜Representative Patent attorney Law Chika ■ Right direction Yama Hikaru 2 Fig. 1 1 狽LMr/cm) Fig. 2 ρ 5fρ fS Fig. 4 0 Φ

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基体表面にCVD法による酸化膜を形成し
た後、前記酸化膜表面に熱電化による窒化膜を形成する
工程を含む半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device, including the steps of forming an oxide film on the surface of a semiconductor substrate by CVD, and then forming a nitride film on the surface of the oxide film by thermoelectrification.
(2)半導体基体表面に熱酸化膜を形成した後、前記熱
酸化膜表面に熱望化による第1の窒化膜と、この第1の
熱窒化膜上にCVD法による第2の窒化膜を形成する工
程を含む半導体装置の製造方法。
(2) After forming a thermal oxide film on the surface of the semiconductor substrate, a first nitride film is formed on the surface of the thermal oxide film by aspiration, and a second nitride film is formed on the first thermal nitride film by CVD. A method for manufacturing a semiconductor device, including a step of:
(3)前記CVD法による第2の窒化膜上に熱酸化模を
形成することを特徴とする請求項1記載の半導体装置の
製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, further comprising forming a thermal oxidation pattern on the second nitride film by the CVD method.
JP14587788A 1988-06-15 1988-06-15 Manufacture of semiconductor device Pending JPH01315141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14587788A JPH01315141A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14587788A JPH01315141A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01315141A true JPH01315141A (en) 1989-12-20

Family

ID=15395114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14587788A Pending JPH01315141A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01315141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742593A2 (en) * 1995-05-10 1996-11-13 Nec Corporation Semiconductor device with multilevel structured insulator and fabrication method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965445A (en) * 1982-10-05 1984-04-13 Matsushita Electronics Corp Formation of semiconductor element isolation region
JPS62188375A (en) * 1986-02-14 1987-08-17 Hitachi Ltd Semiconductor integrated circuit device
JPH01293631A (en) * 1988-05-23 1989-11-27 Seiko Instr Inc Manufacture of insulating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965445A (en) * 1982-10-05 1984-04-13 Matsushita Electronics Corp Formation of semiconductor element isolation region
JPS62188375A (en) * 1986-02-14 1987-08-17 Hitachi Ltd Semiconductor integrated circuit device
JPH01293631A (en) * 1988-05-23 1989-11-27 Seiko Instr Inc Manufacture of insulating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742593A2 (en) * 1995-05-10 1996-11-13 Nec Corporation Semiconductor device with multilevel structured insulator and fabrication method thereof
EP0742593A3 (en) * 1995-05-10 1997-11-05 Nec Corporation Semiconductor device with multilevel structured insulator and fabrication method thereof
US5972800A (en) * 1995-05-10 1999-10-26 Nec Corporation Method for fabricating a semiconductor device with multi-level structured insulator

Similar Documents

Publication Publication Date Title
EP0430404B1 (en) Method of manufacturing a capacitor for a DRAM cell
KR960005245B1 (en) Method for manufacturing a capacitor having a rough electrode surface
US4742018A (en) Process for producing memory cell having stacked capacitor
KR950006473B1 (en) Semiconductor memory device and manufacturing method thereof
JP4302785B2 (en) Method of manufacturing high density integrated circuit with oxide and polysilicon spacers
JPH0294554A (en) Semiconductor storage device and manufacture thereof
KR100247603B1 (en) Method for producing semiconductor device with capacitor stacked
US5005103A (en) Method of manufacturing folded capacitors in semiconductor and folded capacitors fabricated thereby
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JP2788835B2 (en) Thin film capacitor and method of manufacturing the same
US5498561A (en) Method of fabricating memory cell for semiconductor integrated circuit
US5387533A (en) Method of making dynamic random access memory
JPH0316171A (en) Manufacture of semiconductor device
JPH0563156A (en) Manufacture of semiconductor device
JPH06216336A (en) Manufacture of semiconductor device
US5396456A (en) Fully used tub DRAM cell
JP4048514B2 (en) Semiconductor device and manufacturing method thereof
KR100326494B1 (en) Process for producing barrier-free semiconductor storage assemblies
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH01315141A (en) Manufacture of semiconductor device
JP2750159B2 (en) Method for manufacturing semiconductor device
JPH01220856A (en) Semiconductor device
JPS60113461A (en) Manufacture of semiconductor device
TW465035B (en) Manufacture method of extremely narrow bit line without sidewall spacer