JPS5844748A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5844748A
JPS5844748A JP14329981A JP14329981A JPS5844748A JP S5844748 A JPS5844748 A JP S5844748A JP 14329981 A JP14329981 A JP 14329981A JP 14329981 A JP14329981 A JP 14329981A JP S5844748 A JPS5844748 A JP S5844748A
Authority
JP
Japan
Prior art keywords
film
active region
si3n4
insulating film
field insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14329981A
Other languages
Japanese (ja)
Other versions
JPH0117256B2 (en
Inventor
Masataka Shinguu
新宮 正孝
Hideo Monma
門馬 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14329981A priority Critical patent/JPS5844748A/en
Publication of JPS5844748A publication Critical patent/JPS5844748A/en
Publication of JPH0117256B2 publication Critical patent/JPH0117256B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the integration of a semiconductor device by specifying the active region of a semiconductor substrate through an SiO2 film by an Si3N4 film, thereby preventing the variation in the area based on the error or displacing the position of patterning. CONSTITUTION:An Si3N4 mask 11 is formed at a thin SiO2 film 2 on an Si substrate 1. An SiO2 film 12 and an Si3N4 film 13 are laminated, a resist mask 14 is performed, the film 14 is etched, and a field oxidized film forming region is exposed. The mask 14 is removed, is oxidized at a high temperature, and an SiO2 film 15 is formed. Subsequently, the remaining Si3N4 13 is etched, is again oxidized at a high temperature, thereby forming an SiO2 film 16. According to the structure, the variation in the area of the active region can be prevented, and since it is not necessary to provide the margin in the active region, the integration can be improved.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法のうち、特にツーイール
ド絶縁膜の改曽された形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a modified method for forming a two-yield insulating film.

集積回路(IC)などの半導体装置を製造するに際し、
半導体素子・抵抗素子などを形成する活性領域を窒化シ
′リコン(5iaN* )膜のような異種絶縁膜で被覆
し、その素子分離用として厚い酸化シリコン(Sing
 )#からなるフィールド絶縁膜を形成するL OCt
) s (局所酸化)方式が知られている。
When manufacturing semiconductor devices such as integrated circuits (ICs),
Active regions forming semiconductor elements, resistance elements, etc. are covered with a different type of insulating film such as silicon nitride (5iaN*) film, and thick silicon oxide (Sing) is used for element isolation.
)# to form a field insulating film consisting of L OCt
) s (local oxidation) method is known.

このようなフィールド絶tSは通常高温酸化して1度に
形成するが、例えば513N4膜で被覆した活性領域の
周縁(こP+型をよびN + mのチャネルカット層を
形成する場合などは、製造工程の簡素′化も考慮してチ
ャネルカット層の注入と同じマスクパターンでフィール
ド絶msを形成し、その是形成される。例えばアルミニ
ウムゲートC−MO8で#4成されるICでは、このよ
うなフィールド絶縁膜の形成方法が採られている。
Such field isolation tS is usually formed at one time by high-temperature oxidation, but for example, when forming a channel cut layer of P+ type and N+m at the periphery of the active region covered with a 513N4 film, it is necessary to Considering the simplification of the process, the field isolation ms is formed using the same mask pattern as the implantation of the channel cut layer. A method of forming a field insulating film is adopted.

第1図ないし第5図に、かような従来の製造方法の工程
順図を示しており、これを概略説明すると先づ第1図の
ように半導体基板1上に薄い5XO2膜2を介して膜厚
tooo〜2000人の513N、膜8を形成する0次
いで第2図に示すようにフォトプロセスによりレジスト
膜4をパターンニングして、最初にフィールド絶縁膜を
形成せんとする領域の5iaN4111を露出させ、次
いで第8図に示すようにその露出した5iaN4111
f8をエツチング除去した僅、前記レジス)81I4を
も溶解除去し、次に高温酸化処理により厚い5108膜
5からなるフィールド絶縁膜を形成する。次いで、第4
図に示すように再びフォトプロセスによりレジスト11
6をパターンユングして残りのフィールド絶縁膜を形成
せんとする領域のSi8N4膜8を露出させ、次いで第
5図に示すように露出した513N4膜をエツチング除
去した後、レジストII6をも溶解除去し、再び高温酸
化処理によりsIcの厚いSiO、膜7を形成する。
FIGS. 1 to 5 show process steps of such a conventional manufacturing method. To briefly explain this, first, as shown in FIG. Form a film 8 with a film thickness of 513N of 2,000 to 0. Next, as shown in FIG. and then remove the exposed 5iaN4111 as shown in FIG.
After removing f8 by etching, the resist 81I4 is also dissolved and removed, and then a field insulating film consisting of a thick 5108 film 5 is formed by high temperature oxidation treatment. Then the fourth
As shown in the figure, the resist 11 is removed by photoprocessing again.
6 to expose the Si8N4 film 8 in the region where the remaining field insulating film is to be formed, and then remove the exposed 513N4 film by etching as shown in FIG. 5, and then dissolve and remove the resist II6. Then, a thick SiO film 7 of sIc is formed by high-temperature oxidation treatment again.

本工程では、例えば前記したチャネルカット層の形成は
本発明に関係しないため省略しているが、チャネルカッ
ト層の不純物注入は同じ513N4膜パターンを用いて
高温酸化処理の直前すなわち第4図のような段階になさ
れるものである。
In this step, for example, the formation of the channel cut layer described above is omitted because it is not related to the present invention, but the impurity implantation of the channel cut layer is performed using the same 513N4 film pattern immediately before the high temperature oxidation treatment, ie, as shown in FIG. This is done in stages.

ところで、このようにして厚いSi、O,膜5,7から
なるフィールド絶縁膜を゛形成すると、レジスト膜4.
6のパターンユング位置ずれによって活性wA域の面積
が変動することになる。即ち第6図における寸beが一
定しない。しかし、素子を形成する活性領域が一定しな
いことは甚だ都合が悪く、その変動IIkを見込んでそ
れだけ余裕ある活性領域を設けなければならない。余裕
ある活性領域を設けることは、それだけ高集積化・高密
度化を阻害し、延いてはiCの特性向上にも悪い影響を
与える。
By the way, when the field insulating film made of the thick Si, O, films 5 and 7 is formed in this way, the resist film 4.
The area of the active wA region changes due to the pattern Jung position shift of No. 6. That is, the dimension be in FIG. 6 is not constant. However, it is very inconvenient that the active region forming the element is not constant, and it is necessary to provide an active region with a sufficient margin in consideration of the fluctuation IIk. Providing a generous active region hinders higher integration and higher density, which in turn has a negative effect on improving the characteristics of the iC.

本究明はこのような間趙を解決させることを目的として
おり、その特徴は半導体基板上にS10g膜を介して活
性領域を被覆する第1のSi3N4膜をパターンユング
し、その上面に更にSin、膜を介して第2の513N
4膜を全面に被覆する工程、次いで第2の5iaNid
をパターンユングし、露出部分に厚い5i02 fii
fからなるフィールド絶縁膜を形成する工程、次いで残
存せる第2の513N4膜をエツチング除去し、残りの
フィールド絶縁膜を形成する工程が含まれる製造方法を
提案するもので、以下図面を参照して詳細に説明する。
The purpose of this research is to solve this problem, and its feature is that the first Si3N4 film covering the active region is patterned on the semiconductor substrate via the S10g film, and the upper surface is further coated with Si, second 513N through the membrane
4 film covering the entire surface, then a second 5ia Nid
Pattern Jung and thick 5i02 fii on the exposed part
This paper proposes a manufacturing method that includes the steps of forming a field insulating film consisting of 513N4, followed by etching away the remaining second 513N4 film and forming the remaining field insulating film. Explain in detail.

第6図ないし第10図は本発明にか−る実施例の工程順
断面図を示しており、第1図に示すように半導体基板l
上に膜厚600人の薄い5i02膜2を高温酸化して形
成し、その上面に気相成長法によって膜厚1000人程
度の5j−3N4111を**L、次に第6図のように
フォトプロセスによってレジスト膜lOをパターンユン
グした後、フレオン(CF4)ガスをエツチング剤とし
てプラズマエツチングにより513N4膜をエツチング
して、図示のような第1の5iaN4膜11のパターン
を形成する。この514N4膜11のパターンは活性領
域をすべて被覆するマスクである。又、薄い8102膜
2は直接半一体基板上にSi8N4膜を被着すると結晶
構造に歪を与えるため、これを避ける緩衝層であシ、一
般にこのようにSin、膜を介在させることは公知とな
っている。
6 to 10 show cross-sectional views of the embodiment according to the present invention in the order of steps, and as shown in FIG.
A thin 5i02 film 2 with a film thickness of 600 films is formed on top by high-temperature oxidation, and a 5j-3N4111 film with a film thickness of about 1000 films is formed on the top surface by vapor phase epitaxy. After the resist film IO is patterned by the process, the 513N4 film is etched by plasma etching using Freon (CF4) gas as an etching agent to form a pattern of the first 5iaN4 film 11 as shown in the figure. The pattern of this 514N4 film 11 is a mask that covers the entire active region. In addition, the thin 8102 film 2 is a buffer layer to avoid distortion of the crystal structure when directly depositing the Si8N4 film on the semi-integrated substrate, and it is generally known to interpose a Si film in this way. It has become.

次いで第7図に示すようにその上面に気相成長法によっ
て膜厚数100〜2000人のSin、 $ 12を被
着し、更にその上に同じく気相成長法によって膜厚10
00〜8000Aの第2の5iaN4膜18を被着する
。次いで、第8図に示すようにフォトプロセスによって
レジスト膜14をパターンユングし、最初にフィールド
絶縁St−形成せんとする領域を含む領域上の518N
、映18を前記のSi8N4膜11形成と同様にCF、
−ガスによるプラズマエツチングによって除去する。
Next, as shown in FIG. 7, a film of several 100 to 2,000 layers of Sin, $12, is deposited on the top surface by a vapor phase growth method, and then a film of 100 nm thick is deposited on top of it by the same vapor growth method.
Deposit a second 5iaN4 film 18 of 00-8000A. Next, as shown in FIG. 8, the resist film 14 is patterned by a photo process, and a 518N layer is formed on the region including the region where the field insulation St- is to be formed.
, film 18 is CF,
- Removal by plasma etching with gas.

次いで、第9図に示すようにレジスト膜14を除去した
後、約1000℃の高温酸化雰囲気中で8時間な−し4
時間熱処理して膜厚8000A程度の510g @ 1
6からなるフィールド絶縁膜を生成させる。この場合、
図示のように活性領域は第1の5iaN4膜11によシ
完全に保護されている。次いで、第10図に示すように
残存している5iaN4膜18を前記と同様のCF4ガ
スによるプラズマエツチングによって完全に除去し、再
度前記と同じ様に高温酸化処理して膜厚8000人の5
ins $ 16からなるフィールド絶縁膜を生成させ
る。以上が実施例であるが、5iaN4映は説明中では
OF、ガスによるプラズマエツチングによりエツチング
除去したが、かようなドライエツチングの代りに熱燐酸
によるウェットエツチングを行なうこともてきる。むし
ろ、ウェットエツチングの方が5i02幌を侵蝕するこ
とがない利点もある。また1紀の実施例では第2の5i
aN4膜1Bは全面エツチングとしたが、この際フォト
レジストを用いて部分エツチングしてもよい。即ち、厚
いフィールド酸化膜16を形成して、例えばC−MOS
領域を画定した後、硼素(B+)をイオン注入したい部
分だけSi3N4膜1Bを除去して、硼素のイオン注入
を行なってフィールド絶縁膜を形成し、更に残粉の51
8N4膜18を除去して燐[F]をイオン注入し不フィ
ールド絶縁膜を形成することによって、フィールド絶縁
膜の下に戸型領域およびN+型領領域例えばチャネルカ
ット領域)を形成することができる。
Next, after removing the resist film 14 as shown in FIG.
510g with a film thickness of about 8000A after time heat treatment @ 1
A field insulating film consisting of 6 is produced. in this case,
As shown, the active region is completely protected by the first 5iaN4 film 11. Next, as shown in FIG. 10, the remaining 5iaN4 film 18 was completely removed by plasma etching using CF4 gas as described above, and then subjected to high temperature oxidation treatment again in the same manner as described above to obtain a film thickness of 8,000 mm.
A field insulating film consisting of ins $ 16 is produced. The above is an example. In the explanation, the 5iaN4 film was etched away by plasma etching using OF and gas, but instead of such dry etching, wet etching using hot phosphoric acid may be performed. In fact, wet etching has the advantage of not corroding the 5i02 top. Also, in the first generation example, the second 5i
Although the entire surface of the aN4 film 1B is etched, it may be partially etched using a photoresist. That is, by forming a thick field oxide film 16, for example, a C-MOS
After defining the area, the Si3N4 film 1B is removed only from the part where boron (B+) ions are to be implanted, boron ions are implanted to form a field insulating film, and the remaining powder 51 is removed.
By removing the 8N4 film 18 and ion-implanting phosphorus [F] to form a non-field insulating film, a door-shaped region and an N+-type region (for example, a channel cut region) can be formed under the field insulating film. .

この実施例から明らかなように、本発明は第1のSi8
N4膜11で活性領域を規制しておくため、パターンユ
ングの位置ずれ誤差によって活性領域の面積が変動する
ことがなく、したがって活性領域に余裕をもたせる必要
がなくなる。そのため、集積度向上に役立って、ICの
特性改善にも寄与するところの大きいものである。
As is clear from this example, the present invention is applicable to the first Si8
Since the active region is regulated by the N4 film 11, the area of the active region does not fluctuate due to pattern Jung misalignment errors, and therefore there is no need to provide a margin for the active region. Therefore, it is useful for increasing the degree of integration and greatly contributes to improving the characteristics of ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は従来の製造方法の工程順断面図、
第6図ないし第1θ図は本発明にか−る乃 製造寸法の工程順断面図である。 図中、lは半導体基板、2,12は薄いSin。 膜、8,11.18は、Si8N4膜、6,7.15゜
16は厚い5in2映(フィールド絶縁膜)、4Is、
to、14はレジスト膜を示す。 ;−+ j−弓 第20 第4図 第5図 第6図 第7図 第8図 第9r21 第1Q M
Figures 1 to 5 are cross-sectional views of the conventional manufacturing method in the order of steps;
FIGS. 6 to 1θ are sectional views of manufacturing dimensions according to the present invention in the order of steps. In the figure, 1 is a semiconductor substrate, and 2 and 12 are thin Sin. Film, 8, 11.18 is Si8N4 film, 6, 7.15゜16 is thick 5in2 film (field insulating film), 4Is,
to, 14 indicates a resist film. ;-+ j-Bow No. 20 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9r21 1st Q M

Claims (1)

【特許請求の範囲】[Claims] 半礪#基板上に酸化シリコン膜を介して活性領域を被覆
する第1の窒化シリコン膜をパターンニングし、その上
面に更に酸化シリコン膜を介して第2の窒化シリコン膜
を全、面に被覆する工程、次いで第2の窒化シリコン膜
をパターンニングし、露出部分に厚い酸化シリコン膜か
らなるフィールド絶縁膜を形成する工程、次いで残存せ
る第2の11化シリコン膜をエツチング除去し、残りの
フィールド絶縁膜を形成する工程、が含まれることを特
徴とする半導体装置の製造方法。
A first silicon nitride film covering the active region is patterned on a half-contained #substrate via a silicon oxide film, and a second silicon nitride film is further coated on the entire surface thereof with a silicon oxide film interposed therebetween. Next, the second silicon nitride film is patterned to form a field insulating film made of a thick silicon oxide film on the exposed portion.Then, the remaining second silicon 11ide film is etched away, and the remaining field insulating film is etched away. A method of manufacturing a semiconductor device, comprising the step of forming an insulating film.
JP14329981A 1981-09-10 1981-09-10 Manufacture of semiconductor device Granted JPS5844748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14329981A JPS5844748A (en) 1981-09-10 1981-09-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14329981A JPS5844748A (en) 1981-09-10 1981-09-10 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5844748A true JPS5844748A (en) 1983-03-15
JPH0117256B2 JPH0117256B2 (en) 1989-03-29

Family

ID=15335514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14329981A Granted JPS5844748A (en) 1981-09-10 1981-09-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5844748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057451A (en) * 1990-04-12 1991-10-15 Actel Corporation Method of forming an antifuse element with substantially reduced capacitance using the locos technique
US5780352A (en) * 1995-10-23 1998-07-14 Motorola, Inc. Method of forming an isolation oxide for silicon-on-insulator technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548950A (en) * 1978-10-03 1980-04-08 Toshiba Corp Manufacturing of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548950A (en) * 1978-10-03 1980-04-08 Toshiba Corp Manufacturing of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057451A (en) * 1990-04-12 1991-10-15 Actel Corporation Method of forming an antifuse element with substantially reduced capacitance using the locos technique
US5780352A (en) * 1995-10-23 1998-07-14 Motorola, Inc. Method of forming an isolation oxide for silicon-on-insulator technology

Also Published As

Publication number Publication date
JPH0117256B2 (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JP2519819B2 (en) Contact hole forming method
JPH0748491B2 (en) Method for manufacturing integrated circuit semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPS5844748A (en) Manufacture of semiconductor device
JPS5922344A (en) Manufacture of semiconductor device
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0210730A (en) Forming method and construction of field isolation for field effect transistor on integrated circuit chip
JPS6359538B2 (en)
JPS6231507B2 (en)
JPS5933271B2 (en) Manufacturing method of semiconductor device
JP3042804B2 (en) Element isolation method and semiconductor device
JPS6038872B2 (en) Manufacturing method of semiconductor device
JP2943855B2 (en) Method for manufacturing semiconductor device
JPH0547921A (en) Manufacture of semiconductor device
JPS58170012A (en) Manufacture of semiconductor device
JPS582047A (en) Manufacture of semiconductor device
JPS59177941A (en) Manufacture of element isolation region
JPH04216651A (en) Manufacture of semiconductor device
JPH0576769B2 (en)
JPH04129275A (en) Semiconductor device
JPH08213450A (en) Manufacture of semiconductor device
JPS5950087B2 (en) Manufacturing method of semiconductor device
JPH0480927A (en) Manufacture of semiconductor device
JPS60193358A (en) Manufacture of semiconductor device
JPS60128663A (en) Manufacture of semiconductor device