JPS6040702B2 - Method for manufacturing semiconductor integrated circuit device - Google Patents

Method for manufacturing semiconductor integrated circuit device

Info

Publication number
JPS6040702B2
JPS6040702B2 JP12076976A JP12076976A JPS6040702B2 JP S6040702 B2 JPS6040702 B2 JP S6040702B2 JP 12076976 A JP12076976 A JP 12076976A JP 12076976 A JP12076976 A JP 12076976A JP S6040702 B2 JPS6040702 B2 JP S6040702B2
Authority
JP
Japan
Prior art keywords
nitride film
silicon nitride
film
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12076976A
Other languages
Japanese (ja)
Other versions
JPS5345974A (en
Inventor
勉 田代
洋示 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12076976A priority Critical patent/JPS6040702B2/en
Publication of JPS5345974A publication Critical patent/JPS5345974A/en
Publication of JPS6040702B2 publication Critical patent/JPS6040702B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路の製造方法に関し、特に好まし
くは微細加工技術を必要とする半導体集積回路の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit, and particularly preferably to a method for manufacturing a semiconductor integrated circuit that requires microfabrication technology.

一般に行なわれている選択酸化法は侍公昭50−137
9に述べられているように、熱酸化のマスクとして窒化
桂素膜を活性領域に選択的に被覆し、引き続き熱酸化を
行なう。
The generally practiced selective oxidation method is Samurai Ko 50-137
9, a silicon nitride film is selectively applied to the active region as a mask for thermal oxidation, followed by thermal oxidation.

この酸化によって不活性領域に酸化膜を形成し、その後
活性領域上の窒化珪素膜を除去し、選択酸化を完成させ
る。しかしながら窒化樟素膜を選択的に熱リン酸でエッ
チング除去するために窒化珪素膜上に二酸化珪素膜を選
択的に形成することが必要となる。この二酸化珪素膜は
熱酸化あるいは気相成長法によって形成されるが熱酸化
で行なうと数百オングストロームの酸化膜を形成するの
に1000q0で8〜lq時間もの酸化を行なわなくて
はならない。また高温長時間の酸化によって半導体基板
中に歪が生じ素子の特性上好ましくない。他方気相成長
によって二酸化桂素膜を形成した場合、ピンホールを防
止するため約0.5ミクロン以上の濃厚を必要とする。
従って、この厚さの二酸化珪素膜を写真蝕刻法によって
選択的にエッチングを行なうとその膜厚さ分だけアンダ
ーカットが生じる。その結果例えば膜厚0.5ミクロン
の二酸化珪素膜を使用すると設計直に対して約1ミクロ
ン縮小されてしまい、微細パタンに対して極めて不利と
なる。本発明の目的は高精度パタンを有し、かつ製造工
程を簡略化した半導体集積回路装置の製造方法を提供す
ることにある。
This oxidation forms an oxide film in the inactive region, and then the silicon nitride film on the active region is removed to complete the selective oxidation. However, in order to selectively remove the camphor nitride film by etching with hot phosphoric acid, it is necessary to selectively form a silicon dioxide film on the silicon nitride film. This silicon dioxide film is formed by thermal oxidation or vapor phase growth, but if thermal oxidation is used, oxidation must be carried out at 1000q0 for 8 to 1q hours to form an oxide film of several hundred angstroms. Further, oxidation at high temperature and for a long period of time causes distortion in the semiconductor substrate, which is unfavorable in terms of device characteristics. On the other hand, when a boron dioxide film is formed by vapor phase growth, it needs to be thicker than about 0.5 microns to prevent pinholes.
Therefore, if a silicon dioxide film of this thickness is selectively etched by photolithography, an undercut will occur by the thickness of the film. As a result, for example, if a silicon dioxide film with a thickness of 0.5 microns is used, the thickness will be reduced by about 1 micron compared to the original design, which is extremely disadvantageous for fine patterns. An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit device having a highly accurate pattern and simplifying the manufacturing process.

本発明は−導電型半導体の主表面に窒化珪素膜を用いた
選択酸化法で設けた活性領域と不活性領域とを有する半
導体集積回路装置において、前記不活性領域上の窒化珪
素膜を通して該不活性領域にイオン注入する工程と該不
活性領域上の窒化蛙素膜をエッチング除去する工程と、
該イオン注入した不活性領域に二酸化桂素膜を形成する
工程とを含むことによって構成される。
The present invention provides - a semiconductor integrated circuit device having an active region and an inactive region formed by a selective oxidation method using a silicon nitride film on the main surface of a conductive type semiconductor; a step of implanting ions into the active region; and a step of etching away the frog nitride film on the inactive region;
and forming a boron dioxide film in the ion-implanted inactive region.

本発明はイオン注入によって生じる増速エッチングを利
用し、不活性領域上の窒化珪素膜をアンダーカットなし
で選択的にエッチングできるという原理に基づく。
The present invention is based on the principle that a silicon nitride film on an inactive region can be selectively etched without undercutting by using accelerated etching caused by ion implantation.

本発明の一般的な効果としては窒化狂素膜や二酸化桂秦
膜の気相成長などの工程が省略でき、製造工程が簡略化
できることがあげられる。
A general effect of the present invention is that steps such as vapor phase growth of the rabies nitride film and Katsuhide dioxide film can be omitted, and the manufacturing process can be simplified.

ざらに窒化膜酸化に伴なう歪の発生が減少でき、素子特
性の向上が計れ、また他方二酸化珪素膜の気相成長を使
用することによる微細加工の制限などが除くことができ
る。即ち高精度の微細パタンを有する高信頼性の素子を
形成できる効果がある。次に図面を用いて本発明の実施
例を説明する。第1図は本発明の第一の実施例の主たる
工程における断面図であり、nチャンネルシリコンゲー
ト型トランジスタの製造に本発明を適用したものである
。初めに第1図Aに示すようにP型半導体基板101上
に二酸化桂秦膜102を100ぴ0で約1000A成長
させ、引き銃き窒化珪素膜103を1000△程度形成
する。その後第1図Bに示すように写真蝕刻法によりフ
オトレジスト104を選択的に被覆し、引き続きボロン
を5皿eVで1×1び5肌‐2の条件下でイオン注入す
る。このイオン注入はいわゆるチャンネルストッパー1
05(第1図C)形成のための不純物導入と、後の窒化
珪素膜の増速エッチングの効果を果す。その後第1図C
に示すようにフッ酸水溶液中で不活性領域上の窒化桂素
膜103をエッチング除去する。このときイオン注入さ
れた不活性領域の窒化珪素膜103はイオン注入されて
いない活性領域上の窒化珪素膜106より、そのエッチ
ング速度が約3倍程度早いため横方向へのエッチング、
すなわちアンダーカットなしで選択的にエッチングでき
る。
In addition, the generation of strain caused by oxidation of the nitride film can be reduced, the characteristics of the device can be improved, and on the other hand, restrictions on microfabrication due to the use of vapor phase growth of the silicon dioxide film can be removed. That is, there is an effect that a highly reliable element having a highly accurate fine pattern can be formed. Next, embodiments of the present invention will be described using the drawings. FIG. 1 is a sectional view of the main steps of a first embodiment of the present invention, in which the present invention is applied to the manufacture of an n-channel silicon gate transistor. First, as shown in FIG. 1A, on a P-type semiconductor substrate 101, a katane dioxide film 102 is grown to a thickness of about 1000A at 100 mm, and a silicon nitride film 103 of about 1000 mm is formed. Thereafter, as shown in FIG. 1B, a photoresist 104 is selectively coated by photolithography, and boron ions are subsequently implanted at 5 platens eV under conditions of 1×1 and 5 skins-2. This ion implantation is called channel stopper 1.
This is effective for introducing impurities for forming 05 (FIG. 1C) and for later accelerated etching of the silicon nitride film. Then Figure 1C
As shown in FIG. 3, the boron nitride film 103 on the inactive region is removed by etching in a hydrofluoric acid aqueous solution. At this time, the etching rate of the ion-implanted silicon nitride film 103 in the inactive region is about three times faster than that of the silicon nitride film 106 in the active region that has not been ion-implanted, so the etching rate in the lateral direction is
That is, selective etching can be performed without undercutting.

その後はフオトレジストジスト104を除去した後第1
図Dのように通常に行なわれている電界効果型トランジ
スタの製法に基づき選択的酸化によって100ぴ○で約
1ミクロンの二酸化桂膿107を形成する。この酸化に
よって形成される活性領域上の二酸化珪素膜108およ
び窒化珪素膜106と二酸化珪素膜102とを順次エッ
チング除去する。その後は第1図Eの如くゲィト酸化膜
109及び多結晶珪素110を形成した後ソース111
、及びドレィン112、を形成し引き続き所定の開孔を
施し、アルミニウム配線113,114,115を行な
って完成する。第2図は本発明の第2の実施例を説明す
るための図であり本発明をバィポーラ型トランジスタに
適用したものである。
After that, after removing the photoresist 104, the first
As shown in FIG. D, about 1 micron of cinnamon dioxide 107 is formed at 100 pi by selective oxidation based on the conventional manufacturing method of field effect transistors. The silicon dioxide film 108, silicon nitride film 106, and silicon dioxide film 102 on the active region formed by this oxidation are sequentially etched away. After that, as shown in FIG. 1E, after forming a gate oxide film 109 and polycrystalline silicon 110,
, and a drain 112 are formed, followed by predetermined openings, and aluminum interconnections 113, 114, 115 are completed. FIG. 2 is a diagram for explaining a second embodiment of the present invention, in which the present invention is applied to a bipolar transistor.

まず第2図Aに示すようにP型半導体基板201上にn
型半導体202をェピタキシャル成長させその表面に1
00び○の熱酸化によって約1000Aの二酸化珪素膜
203を形成し、引き競き窒化桂素膜204を約100
0A成長させる。
First, as shown in FIG. 2A, an n
A type semiconductor 202 is epitaxially grown and 1
A silicon dioxide film 203 of about 1000 A is formed by thermal oxidation of 00 and ○, and a silicon nitride film 204 of about 100 A is formed by
Grow 0A.

その後第2図Bに示すようにフォトレジスト205,2
06,207、を選択的に被覆し、ボロンをイオン注入
する。このイオン注入は第1の実施例と同様に20皿e
Vでlxlび5瓜‐2の濃度を注入し素子間分離のため
の不純物導入と窒化珪素膜の増速エッチングに利用する
。第2図Cはイオン注入によってP+拡散層208が形
成されている図を示している。なおP+拡散層208上
の二酸化珪素膜209及び窒化珪素膜210はイオン注
入によってエッチングされ易い性質となってる。次に第
2図Dに示すように不活性領域上の二酸化珪素膜209
及び窒化珪素膜210をフツ酸水溶液中でエッチング除
去する。
Thereafter, as shown in FIG. 2B, the photoresist 205, 2
06 and 207, and boron ions are implanted. This ion implantation was carried out in 20 plates as in the first embodiment.
The impurity is implanted with V at a concentration of 1 x 1 and 5 - 2 and used for introducing impurities for isolation between elements and for accelerated etching of the silicon nitride film. FIG. 2C shows a P+ diffusion layer 208 formed by ion implantation. Note that the silicon dioxide film 209 and silicon nitride film 210 on the P+ diffusion layer 208 are easily etched by ion implantation. Next, as shown in FIG. 2D, a silicon dioxide film 209 is formed on the inactive region.
Then, the silicon nitride film 210 is removed by etching in a hydrofluoric acid aqueous solution.

このとき上述の二酸化珪素膜209と窒化珪素膜210
はフオトレジスト205,206,207下にある二酸
化桂素膜及び窒化珪素膜より約3倍エッチング速度が早
いため横方向へのエッチングがほとんど無視できる程度
しか行なわれない。
At this time, the above-mentioned silicon dioxide film 209 and silicon nitride film 210
Since the etching rate is about three times faster than that of the boron dioxide film and silicon nitride film underlying the photoresists 205, 206, and 207, the lateral etching is almost negligible.

その後フオトレジスト205,206,207を除去し
たのち、100ぴ○約5時間酸化を行なってP十拡散層
208を基板201に到達するまで押し込むのと同時に
その上に約1ミクロンの酸化膜211を形成し、素子間
の絶縁分離を完成する。こうして形成されたェピタキシ
ャル層内の分離領域202′内に第2図Eに示すように
通常のバィポーラ型ランジスタの製法に基づきトランジ
スタ素子を形成する。すなわち二酸化珪素膜203、及
び窒化桂素膜204を除去した後P型ベース領域212
コレクコンタクト用n+領域213、n+型ェミッタ領
域214を形成し、最後にこれら領域に接続する配線2
15,216,217を形成して完成する。第一及び第
二の実施によって得られる効果は先に一般的な効果とし
て述べたように製造工程が簡略化できたことがあげられ
る。
Thereafter, after removing the photoresists 205, 206, and 207, oxidation is performed for about 5 hours to push the P diffusion layer 208 until it reaches the substrate 201, and at the same time, an oxide film 211 of about 1 micron is formed on it. and complete insulation isolation between elements. As shown in FIG. 2E, a transistor element is formed in the isolation region 202' in the epitaxial layer thus formed based on a normal bipolar transistor manufacturing method. That is, after removing the silicon dioxide film 203 and the boron nitride film 204, the P-type base region 212
An n+ region 213 for collector contact, an n+ type emitter region 214 are formed, and finally a wiring 2 connected to these regions.
15, 216, and 217 to complete the process. The effect obtained by the first and second implementations is that the manufacturing process can be simplified, as described above as a general effect.

すなわち従来の方法に比べ窒化膜酸化、あるいは酸化膜
気相成長などの工程が不要となり歩蟹りが向上する。ま
た素子特性上も半導体中の歪が減少することによってI
Jーク電流や少なく信頼性も高くなる。さらにまた従来
は窒化珪素膜のパタンを形成するために、二酸化珪素膜
を媒介としていたが本発明によってフオトレジストから
直接パタンが形成でき、しかも二酸化珪素膜及び窒化珪
素膜を残留せしめる領城とエッチング除去する領域とで
そのエッチング速度が異なるため、横方向へのエッチン
グが無視でき、従って高精度の微細加工が可能となった
。なお第1の実施例においてはP型桂素板を用いたがn
型珪素基板を用いてPチャンネル型電界効果トランジス
タ的に使用してもよいし、また第二の実施例をP岬型バ
ィポーラトランジスタやダイオード、抵抗素子等の形成
に使用してもよい。またイオン注入によって増速エッチ
ングされる二酸化桂素膜及び窒化蛙素膜をエッチングす
る際、フオトレジストを除去した後にエッチングを行な
っても同様の効果がある。
That is, compared to conventional methods, steps such as nitride film oxidation or oxide film vapor phase growth are not necessary, and the processing speed is improved. In addition, in terms of device characteristics, I
J-ke current is reduced and reliability is increased. Furthermore, in the past, a silicon dioxide film was used as a medium to form a pattern of a silicon nitride film, but with the present invention, a pattern can be formed directly from a photoresist, and moreover, it is possible to form a pattern directly from a photoresist, and it is also possible to form a pattern using a silicon dioxide film and a silicon nitride film. Since the etching rate differs depending on the area to be removed, lateral etching can be ignored, making highly accurate microfabrication possible. Note that in the first embodiment, a P-type Katsura blank plate was used, but n
A type silicon substrate may be used to form a P-channel type field effect transistor, or the second embodiment may be used to form a P-type bipolar transistor, a diode, a resistance element, etc. Further, when etching a boron dioxide film and a carbon nitride film which are etched at an accelerated rate by ion implantation, the same effect can be obtained even if the etching is performed after removing the photoresist.

【図面の簡単な説明】 第1図AないしEは本発明の第一の実施例によつてシリ
コンゲート型MOS集積回路を製造する方法の主要工程
の断面図、第2図AないしEは本発明の第二の実施例に
よってバィポーラ型集積回路を製造する方法の主要工程
の断面図である。 図中、101,201は珪素基板、102,107,1
08,109,203,21 1は二酸化珪素膜、10
3,204の窒化珪素膜、104,205,206,2
07はフオトレジスト、113,114,115,21
5,216,217はアルミニウム膜、111,112
,105,208,212,213,214は不純物拡
散層である。髪1図 黍2図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1A to 1E are cross-sectional views of the main steps of a method for manufacturing a silicon gate type MOS integrated circuit according to a first embodiment of the present invention, and FIGS. FIG. 3 is a cross-sectional view of the main steps of a method for manufacturing a bipolar integrated circuit according to a second embodiment of the invention; In the figure, 101, 201 are silicon substrates, 102, 107, 1
08,109,203,21 1 is silicon dioxide film, 10
3,204 silicon nitride film, 104,205,206,2
07 is photoresist, 113, 114, 115, 21
5, 216, 217 are aluminum films, 111, 112
, 105, 208, 212, 213, and 214 are impurity diffusion layers. Hair 1 diagram Millet 2 diagrams

Claims (1)

【特許請求の範囲】[Claims] 1 −導電型半導体の主表面に窒化硅素膜を用いた選択
酸化法で活性領域と不活性領域とを設ける工程を有する
半導体集積回路装置の製造方法において、前記不活性領
域上の窒化硅素膜を通して前記不活性領域にイオン注入
する工程と、前記不活性領域上の窒化硅素膜をエツチン
グ除去する工程と、該イオン注入した不活性領域に二酸
化硅素膜を形成する工程とを含むことを特徴とする半導
体集積回路装置の製造方法。
1 - In a method for manufacturing a semiconductor integrated circuit device, which includes the step of providing an active region and an inactive region on the main surface of a conductive semiconductor by a selective oxidation method using a silicon nitride film, through the silicon nitride film on the inactive region. The method is characterized by comprising the steps of implanting ions into the inactive region, etching away the silicon nitride film on the inactive region, and forming a silicon dioxide film in the inactive region into which the ions have been implanted. A method for manufacturing a semiconductor integrated circuit device.
JP12076976A 1976-10-07 1976-10-07 Method for manufacturing semiconductor integrated circuit device Expired JPS6040702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076976A JPS6040702B2 (en) 1976-10-07 1976-10-07 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076976A JPS6040702B2 (en) 1976-10-07 1976-10-07 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5345974A JPS5345974A (en) 1978-04-25
JPS6040702B2 true JPS6040702B2 (en) 1985-09-12

Family

ID=14794535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076976A Expired JPS6040702B2 (en) 1976-10-07 1976-10-07 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6040702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856491A (en) * 2011-06-29 2013-01-02 中芯国际集成电路制造(上海)有限公司 Method for forming bottom electrode and phase-change resistor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197832A (en) * 1981-05-29 1982-12-04 Nec Corp Manufacture of semiconductor device
JPS6074640A (en) * 1983-09-30 1985-04-26 Toshiba Corp Manufacture of semiconductor device
US4741964A (en) * 1986-07-17 1988-05-03 International Business Machines Corporation Structure containing hydrogenated amorphous silicon and process
JP2576513B2 (en) * 1987-07-03 1997-01-29 ソニー株式会社 Method for manufacturing bipolar transistor
JPH01122887A (en) * 1987-11-06 1989-05-16 Takenaka Komuten Co Ltd Composite building
US4956314A (en) * 1989-05-30 1990-09-11 Motorola, Inc. Differential etching of silicon nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856491A (en) * 2011-06-29 2013-01-02 中芯国际集成电路制造(上海)有限公司 Method for forming bottom electrode and phase-change resistor

Also Published As

Publication number Publication date
JPS5345974A (en) 1978-04-25

Similar Documents

Publication Publication Date Title
JPH09181316A (en) Manufacture of collapsed channel mosfet using inverted sidewall
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH03129818A (en) Manufacture of semiconductor device
JPH09289323A (en) Manufacture of semiconductor device
JPS6231507B2 (en)
JPH03191529A (en) Manufacture of semiconductor device
JPH0366815B2 (en)
JPH02142117A (en) Manufacture of semiconductor integrated circuit
JPS63122156A (en) Manufacture of semiconductor integrated circuit
JP2517380B2 (en) Method for manufacturing semiconductor integrated circuit
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS6011463B2 (en) Manufacturing method of semiconductor device
JP3241363B2 (en) Method for manufacturing BiCMOS integrated circuit device
JP3142303B2 (en) Manufacturing method of high-speed bipolar transistor
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPH06188259A (en) Manufacture of semiconductor device
JPH04216651A (en) Manufacture of semiconductor device
JPH0235465B2 (en)
JPS60128633A (en) Semiconductor device and manufacture thereof
JPS5834951B2 (en) Manufacturing method of semiconductor device
JPH05343515A (en) Semiconductor device and its manufacture
JPH0766214A (en) Manufacture of bi-polar semiconductor integrated circuit device
JPS62193281A (en) Manufacture of semiconductor device
JPH0480927A (en) Manufacture of semiconductor device
JPS61204972A (en) Manufacture of mis transistor