JPS59177941A - Manufacture of element isolation region - Google Patents
Manufacture of element isolation regionInfo
- Publication number
- JPS59177941A JPS59177941A JP5183183A JP5183183A JPS59177941A JP S59177941 A JPS59177941 A JP S59177941A JP 5183183 A JP5183183 A JP 5183183A JP 5183183 A JP5183183 A JP 5183183A JP S59177941 A JPS59177941 A JP S59177941A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- silicon dioxide
- dioxide film
- groove
- moreover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は素子間分離用二酸化珪素膜層の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a silicon dioxide film layer for isolation between elements.
現在、半導体デバイスの高集積化が進む中でMOS I
Cにおいてはゲート寸法、アルミニウム配線幅等デバイ
ス寸法は微細化の一途をたどっている。これに伴い素子
間分離領域の幅も微細化が要求されている。Currently, as semiconductor devices become more highly integrated, MOS I
In C, device dimensions such as gate dimensions and aluminum wiring widths are becoming increasingly finer. Accordingly, the width of the isolation region between elements is also required to be miniaturized.
従来MO8ICにおける素子分離技術として1,0CO
8法がよく知られている。1,0CO as element isolation technology in conventional MO8IC
The 8th method is well known.
第1図はこのLOGO8構造の断面を模式的に示した図
であり、11はp型のシリコン単結晶基板、12は二酸
化珪素膜、13は耐熱酸化膜としての窒化珪素膜、I4
ハチヤンネルストッパとしてのボロン拡散層、15はフ
ィールドに形成された厚い二酸化珪素膜、15Aはバー
ズビークを各々表わしている。FIG. 1 is a diagram schematically showing a cross section of this LOGO8 structure, in which 11 is a p-type silicon single crystal substrate, 12 is a silicon dioxide film, 13 is a silicon nitride film as a heat-resistant oxide film, and I4 is a silicon nitride film as a heat-resistant oxide film.
A boron diffusion layer is used as a channel stopper, 15 is a thick silicon dioxide film formed in the field, and 15A is a bird's beak.
このような従来のLOCO8法では1)バーズビークが
生じる、2)チャンネル幅が狭くなるとチャンネルスト
ッパボロンの素子領域へのしみ出しによる狭チャンネル
効果が現われる、という欠点を有している。バーズビー
クとはLOCO8構造を形成する際に生じる二酸化珪素
膜の素子領域へのしみ込み部分を指し、この大きさは横
方向に0.5μm程度となる。Such conventional LOCO8 method has the disadvantages that 1) bird's beak occurs, and 2) when the channel width becomes narrow, a narrow channel effect appears due to seepage of channel stopper boron into the device region. Bird's beak refers to a portion of the silicon dioxide film that occurs when forming the LOCO8 structure and penetrates into the element region, and its size is approximately 0.5 μm in the lateral direction.
このため実際に出来上った素子寸法はマスクする量を見
込んで寸法を設計しなくてはならない。For this reason, the dimensions of the actually completed element must be designed taking into account the amount of masking.
さらに狭チャンネル効果はしきい値電圧の増加電流駆動
能力の低下をもたらす。このよ5にLOCO8構造は高
集積化にとっては非常に大きな問題点を有している。Furthermore, the narrow channel effect results in an increase in threshold voltage and a decrease in current drive capability. 5. The LOCO8 structure has a very large problem in terms of high integration.
本発明は、バーズビークをなくすことにより、マスク寸
法と実際に出来上ったものの間の寸法変換差を極力小さ
く抑え、かつチャンネルストッパボ四ンの影響をなくす
ことにより高集積化に適した素子分離領域の製造方法を
提供することを目的としている。The present invention eliminates the bird's beak, suppresses the difference in dimension conversion between the mask dimension and the actually completed product, and eliminates the influence of the channel stopper box, thereby making element isolation suitable for high integration. The purpose is to provide a manufacturing method for the area.
本発明によれば、シリコン結晶基板上に溝を設ける工程
、前記シリコン基板上全面に二酸化珪素膜を堆積して前
記溝を完全に埋める工程、多結晶シリコンを全面に形成
した後スパッタエッチ技術を用いて表面より前記多結晶
シリコンを除去して前記溝上部のみに前記多結晶シリコ
ンを残す工程前記多結晶シリコンをマスクとして全面に
リン拡散を行い、前記溝の内部以外に形成されている前
記二酸化珪素膜のみに選択的にリンを拡散する工程、前
記リンを拡散した二酸化珪素膜を選択的にエツチング除
去して前記溝内部に前記二酸化珪素膜を残す工程、とを
有することを特徴とする素子分離領域の製造方法が得ら
れる。According to the present invention, a step of forming a groove on a silicon crystal substrate, a step of depositing a silicon dioxide film on the entire surface of the silicon substrate to completely fill the groove, and a step of forming polycrystalline silicon on the entire surface and then performing a sputter etching technique. phosphorous diffusion to the entire surface using the polycrystalline silicon as a mask to remove the polycrystalline silicon from the surface and leaving the polycrystalline silicon only in the upper part of the groove, and remove the dioxide formed in areas other than the inside of the groove. A device comprising the steps of selectively diffusing phosphorus only into a silicon film, and selectively etching away the silicon dioxide film into which the phosphorus has been diffused, leaving the silicon dioxide film inside the groove. A method for manufacturing a separation region is obtained.
以下、本発明の典型的な一実施例について第2図を用い
て詳述する。Hereinafter, a typical embodiment of the present invention will be described in detail using FIG. 2.
第2図(alは、p型シリプン単結晶基板21表面に熱
酸化法により二酸化珪素膜22を形成し、さらにその表
面にCVD法により窒化珪素膜23を形成した後、溝部
形成領域以外の表面をホトレジスト24で被りた状態を
示している。FIG. 2 (al) shows that a silicon dioxide film 22 is formed on the surface of a p-type silicon single crystal substrate 21 by a thermal oxidation method, and a silicon nitride film 23 is further formed on that surface by a CVD method. It shows the state covered with photoresist 24.
第2Hblは、前記ホトレジスト24を耐エツチングマ
スクとして前記窒化珪素膜23.二酸化珪素膜22を各
々エツチング除去し、さらに前記シリコン単結晶基板2
1をエツチング除去して溝Aを設けた後、前記ホトレジ
ス)Uを除去し、さらに前記溝Aの側面および底面に熱
酸化法;;より二酸化珪素膜25を形成し、次に前記窒
化珪素膜23Aをイオン注入のマスクとしてイオン注入
法により前記溝Aの底部にチャンネルストッパとしての
ボロン拡散層26を形成した状態を示している。The second Hbl is formed by etching the silicon nitride film 23. using the photoresist 24 as an etching-resistant mask. The silicon dioxide film 22 is etched away, and the silicon single crystal substrate 2
1 to form a trench A, the photoresist U is removed, and a silicon dioxide film 25 is formed on the side and bottom surfaces of the trench A by a thermal oxidation method. A boron diffusion layer 26 as a channel stopper is formed at the bottom of the trench A by ion implantation using 23A as a mask for ion implantation.
第2図+01は、前記溝Aを十分埋められるよjCVD
法により二酸化珪素膜nをウェハー全面に形成した後、
さらにCVD法により多結晶シリコン公を表面に厚く成
長して溝Bを十分に埋め、かつその表面を平坦にした状
態を示している。Figure 2 +01 is a CVD film that can sufficiently fill the groove A.
After forming a silicon dioxide film n on the entire surface of the wafer by the method,
Furthermore, a state in which polycrystalline silicon is grown thickly on the surface by the CVD method to sufficiently fill the groove B and to flatten the surface is shown.
第2図(11)は、前記多結晶シリコン四を表面よりエ
ツチング除去して前記溝Bのみに多結晶シリコン28A
を残した後、前記多結晶シリコン28Aを耐エツチング
マスクとして前記二酸化珪素膜nを途中までエツチング
して薄<シ、さらにこの薄くした二酸化珪素膜27にリ
ンを熱拡散し押し込んだ状態を示している。前記二酸化
珪素膜27Aに拡散された高濃度のリンは、前記窒化珪
素膜23A表面で止まる。一方、前記多結晶シリコン2
8Aに拡散されたリンは多結晶シリコンと二酸化珪素膜
間の憫析係数が大きいため、前記多結晶シリコン28A
から溝Bの下部に形成されている前記二酸化珪素膜27
B +=は低濃度のリンしか拡散されない。このため
溝Aの内部に形成された前記二酸化珪素膜27Bとその
他の部分に形成された二酸化珪素膜27Aとはリン拡散
のリン濃度差によりエツチングレートに大きな差(1桁
以上)が生じている。そしてこのリン拡散された二酸化
珪素膜27Aのエツチングには、フッ酸を純水で十分薄
めたエツチング溶液例えば30倍に薄めた溶液を用いて
行うと低濃度のリンが拡散されている二酸化珪素膜27
Bのエツチングレートが遅くなるのでさらに制御よく溝
A内にのみ二酸化珪素膜27Bを残すことができる。FIG. 2 (11) shows that the polycrystalline silicon 4 is etched away from the surface and only the groove B is filled with polycrystalline silicon 28A.
After leaving the polycrystalline silicon 28A as an etching-resistant mask, the silicon dioxide film n is etched halfway to make it thinner, and phosphorus is then thermally diffused and pushed into the thinner silicon dioxide film 27. There is. The highly concentrated phosphorus diffused into the silicon dioxide film 27A stops at the surface of the silicon nitride film 23A. On the other hand, the polycrystalline silicon 2
Since the phosphorus diffused into the polycrystalline silicon 28A has a large interaction coefficient between the polycrystalline silicon and the silicon dioxide film,
The silicon dioxide film 27 formed at the bottom of the trench B from
B+= only a low concentration of phosphorus is diffused. Therefore, there is a large difference (more than one order of magnitude) in etching rate between the silicon dioxide film 27B formed inside the groove A and the silicon dioxide film 27A formed in other parts due to the difference in phosphorus concentration due to phosphorus diffusion. . The silicon dioxide film 27A in which phosphorus has been diffused can be etched using an etching solution in which hydrofluoric acid is sufficiently diluted with pure water, for example, a solution diluted 30 times. 27
Since the etching rate of B becomes slower, the silicon dioxide film 27B can be left only in the groove A with better control.
第2図+e)は、前記多結晶シリコン28Aを耐エツチ
ングマスクとしてリン拡散した前記二酸化珪素膜27A
をエツチング除去した後、前記多結晶シリコン28Aお
よび前記窒化珪素膜23Aを順次エッチング除去して素
子分離領域が形成された状態を示しである。前述したよ
りに、リン拡散の有無により前記二酸化珪素膜の前記溝
B内とその他の部分の間には大きなエツチングレート差
がある。このため前記溝B内の前記二酸化珪素膜27B
を大きくオーバーエッチすることなく残すことができる
。FIG. 2+e) shows the silicon dioxide film 27A in which phosphorus is diffused using the polycrystalline silicon 28A as an anti-etching mask.
After etching away the polycrystalline silicon 28A and the silicon nitride film 23A, the element isolation region is formed. As described above, there is a large difference in etching rate between the inside of the groove B and other parts of the silicon dioxide film depending on the presence or absence of phosphorus diffusion. Therefore, the silicon dioxide film 27B in the groove B
can be left without significant over-etching.
本発明は、従来のLOCO8法に比べて次のような特長
をもつ。The present invention has the following features compared to the conventional LOCO8 method.
1)溝にCVD法により二酸化珪素膜27Cを埋め込ん
で素子分離を行っているのでバーズビークのようなもの
はなく、マスク寸法からのパターン寸法変換差は非常に
小さい。1) Since the silicon dioxide film 27C is buried in the trench by the CVD method to perform element isolation, there is no bird's beak, and the difference in pattern size conversion from the mask size is very small.
2)溝Aの下部にチャンネルストッパとしてのボロン拡
散層が形成されているので、溝を十分深くすればボロン
の素子特性への影響はほとんどなくせる。2) Since a boron diffusion layer as a channel stopper is formed at the bottom of the groove A, if the groove is made deep enough, the influence of boron on the device characteristics can be almost eliminated.
3)素子分離領域形成後のウェハー表面が平坦になるの
で、その後ホトレジストを用いてバターニングを行う際
表面の凸凹(=よるパナーン寸法の変化は起こらない。3) Since the wafer surface becomes flat after the element isolation region is formed, when patterning is subsequently performed using a photoresist, no change in the pannular dimension due to surface irregularities occurs.
4)溝にCVD法により二酸化珪素膜を埋め込んで素子
分離を行っているので高温長時間の熱処理工程がない。4) Since device isolation is performed by burying a silicon dioxide film in the trench using the CVD method, there is no need for a high-temperature, long-term heat treatment process.
このため、不純物の再分布は小さく抑えられる。Therefore, the redistribution of impurities can be kept small.
以上述べた通り本発明によれば、マスク寸法からのパタ
ーン寸法変換差が非常に小さくチャンネルストッパボロ
ンの影響を受けず、さら(二表面が平坦な高集積化に適
した素子間分離用二酸化珪素膜層の製造方法が得られる
。As described above, according to the present invention, the pattern dimension conversion difference from the mask dimension is very small and is not affected by the channel stopper boron. A method for manufacturing a membrane layer is obtained.
第1図は、従来知られているLOCO8法で形成した素
子間分離領域の模式的断面図であり、第2図(at 、
(bl 、 fol 、 (di 、 tel
+を本発明ノー実施例をプロセスを追って示し
た模式的断面図である。
図において各記号はそれぞれ次゛のものを示す。
11 、12 :シリコン基板、12,23,23A:
窒化珪素膜、13 、26 :チャンネルストッパ、1
4 、22 、2527.278.27C:二酸化珪素
膜、27Aニリン拡散された二酸化珪素膜、28,28
A:多結晶シリコン24:ホトレジスト。
、、、/ 、−−・、
代理人弁理士 向 !!Z 背 ・パ。
′−−
(9)
第1図
第2図
(aン
2べ
(b)FIG. 1 is a schematic cross-sectional view of an inter-element isolation region formed by the conventionally known LOCO8 method, and FIG.
(bl, fol, (di, tel
+ is a schematic sectional view showing a non-example of the present invention following the process. In the figure, each symbol represents the following. 11, 12: Silicon substrate, 12, 23, 23A:
Silicon nitride film, 13, 26: Channel stopper, 1
4, 22, 2527.278.27C: Silicon dioxide film, 27A Niline-diffused silicon dioxide film, 28, 28
A: Polycrystalline silicon 24: Photoresist. ,,,/ ,−−・, For patent attorneys! ! Z Back/Pa. '-- (9) Fig. 1 Fig. 2 (a and 2 b)
Claims (1)
板上全面に二酸化珪素膜を堆積して前記溝を完全に埋め
る工程、多結晶シリ;ンを全面に形成した後にスパッタ
エッチ技術を用い【表面より前記多結晶シリコンを除去
して前記溝上部のみに前記多結晶シリコンを残す工程、
前記多結晶シリコンをマスクとして全面にリン拡散を行
い前記溝の内部以外に形成されている前記二酸化珪素膜
のみに選択的にリンを拡散する工程、前記リンを拡散し
た二酸化珪素膜を選択的にエツチング除去して前記溝内
部に前記二酸化珪素膜を残す工程、とを有することを特
徴とする素子分離領域の製造方法。[Claims] A step of providing a groove on a silicon crystal substrate, a step of depositing a silicon dioxide film on the entire surface of the silicon substrate to completely fill the groove, and after forming polycrystalline silicon on the entire surface. using a sputter etching technique [removing the polycrystalline silicon from the surface and leaving the polycrystalline silicon only in the upper part of the groove;
a step of diffusing phosphorus over the entire surface using the polycrystalline silicon as a mask and selectively diffusing phosphorus only into the silicon dioxide film formed outside the trench; selectively diffusing the silicon dioxide film in which the phosphorus has been diffused; A method of manufacturing an element isolation region, comprising the step of etching away the silicon dioxide film to leave the silicon dioxide film inside the trench.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5183183A JPS59177941A (en) | 1983-03-28 | 1983-03-28 | Manufacture of element isolation region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5183183A JPS59177941A (en) | 1983-03-28 | 1983-03-28 | Manufacture of element isolation region |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59177941A true JPS59177941A (en) | 1984-10-08 |
Family
ID=12897810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5183183A Pending JPS59177941A (en) | 1983-03-28 | 1983-03-28 | Manufacture of element isolation region |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59177941A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0334268A2 (en) * | 1988-03-24 | 1989-09-27 | Motorola, Inc. | Means of forming planar isolation |
US5173439A (en) * | 1989-10-25 | 1992-12-22 | International Business Machines Corporation | Forming wide dielectric-filled isolation trenches in semi-conductors |
JP2001244328A (en) * | 2000-02-29 | 2001-09-07 | Denso Corp | Method for manufacturing semiconductor device |
-
1983
- 1983-03-28 JP JP5183183A patent/JPS59177941A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0334268A2 (en) * | 1988-03-24 | 1989-09-27 | Motorola, Inc. | Means of forming planar isolation |
US5173439A (en) * | 1989-10-25 | 1992-12-22 | International Business Machines Corporation | Forming wide dielectric-filled isolation trenches in semi-conductors |
JP2001244328A (en) * | 2000-02-29 | 2001-09-07 | Denso Corp | Method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02277253A (en) | Manufacture of semiconductor device | |
US4755863A (en) | Semiconductor device having a semiconductor substrate with a high impurity concentration | |
JPS59177941A (en) | Manufacture of element isolation region | |
JPH0555361A (en) | Semiconductor device and manufacture thereof | |
JPS5844735A (en) | Manufacture of semiconductor device | |
JPS59177940A (en) | Manufacture of element isolation region | |
JPH0536712A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS6310896B2 (en) | ||
JPH0661343A (en) | Manufacture of semiconductor device | |
JPS595645A (en) | Manufacture of semiconductor device | |
JPS6117143B2 (en) | ||
JPS5950540A (en) | Manufacture of semiconductor device | |
JPS59177939A (en) | Manufacture of element isolation region | |
JPH01223741A (en) | Semiconductor device and manufacture thereof | |
JPS61220372A (en) | Manufacture of semiconductor device | |
JPS6117144B2 (en) | ||
JPS6017929A (en) | Manufacture of semiconductor device | |
JPS61241941A (en) | Manufacture of semiconductor device | |
JPS63308932A (en) | Interelement isolating method for semiconductor device | |
JPS62291941A (en) | Method for isolating elements in semiconductor device | |
JPS59942A (en) | Manufacture of semiconductor device | |
JPH07114234B2 (en) | Manufacturing method of element isolation structure of integrated circuit | |
JPH0684889A (en) | Manufacture of semiconductor device | |
JPH04309226A (en) | Manufacture of semiconductor device | |
JPH0595045A (en) | Manufacture of semiconductor device |