JPS5950540A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5950540A
JPS5950540A JP16084282A JP16084282A JPS5950540A JP S5950540 A JPS5950540 A JP S5950540A JP 16084282 A JP16084282 A JP 16084282A JP 16084282 A JP16084282 A JP 16084282A JP S5950540 A JPS5950540 A JP S5950540A
Authority
JP
Japan
Prior art keywords
film
chemical vapor
vapor deposition
silicon substrate
deposition film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16084282A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshioka
献太郎 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16084282A priority Critical patent/JPS5950540A/en
Publication of JPS5950540A publication Critical patent/JPS5950540A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To attain high integration without generating the difference of conversion by a method wherein a groove serving as an element isolation region is provided in a substrate, a chemical vapor deposition film is formed therein and flatted by heat treatment, and the deposition film is left only in above-mentioned groove by etching. CONSTITUTION:A thermal oxide film 31 is formed on an Si substrate 30, and photo resists 32 and 33 are so patterned that the element isolation region 34 is bored. Next, etching is performed, with oxide films 36 and 37 as the mask, by removing the film 31, resulting in the formation of the groove 38. Then, a channel stopping layer 40 is formed by ion implantation, and the chemical vapor deposition film 41 is formed. Channel stopping layers 42, 43 and 44 are formed by heat treatment. An oxide film 50 is formed by removing the films 36, 37 and 41. A phosphorus glass film 52 is deposited and made to flow, resulting in flatness, and a resin material 58 is spin-coated thereon. It is flatted by etching down to the substrate 30.

Description

【発明の詳細な説明】 この発明は、シリコン基板内に分離領域となる溝を形成
した後、溝の側面、底面にチャンネルス↓ トップ層を形成し、溝部に稠密化(Densficat
ionさせたリンを含む化学気相蒸着膜を残存させるこ
とにより、分離特性を向上させるとともに、平坦化を実
現するようにした半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, after forming a trench to serve as an isolation region in a silicon substrate, a channel top layer is formed on the side and bottom surfaces of the trench, and densification is applied to the trench.
The present invention relates to a method of manufacturing a semiconductor device in which isolation characteristics are improved and planarization is achieved by leaving a chemical vapor deposition film containing ionized phosphorus.

従来、半導体集積回路においては、素子分1ζO法とし
て、いわゆるLOCO8法(Local 0xidat
ipnof 5ilicon  選択酸化)が主であっ
た。しかし、このLOCO8法ではバースビーク、チー
1′ンネルストツプ層の横方向への拡散により、・ぐタ
ーンの変換差(シリコンを酸化し−C8iO2に変換す
るとき、シリコン基板内に形成されるSin、  と表
面上に形成される5in2の厚さの差)が大きいなど、
高集積化が困難でめった。
Conventionally, in semiconductor integrated circuits, the so-called LOCO8 method (Local Oxidat
ipnof5ilicon (selective oxidation) was the main method. However, in this LOCO8 method, due to the lateral diffusion of the birthbeak and the channel stop layer, a conversion difference between -G and (Sin formed in the silicon substrate when silicon is oxidized and converted to -C8iO2, and the surface For example, the difference in thickness of 5in2 formed on the top is large, etc.
High integration was difficult and rare.

第1図に従来のLOCO8法のイ既略をボす。斗ず、第
1図(a)に示すように、ンリコン基板1上の能動領域
となる部分に窒化膜3、酸化膜2を中20−〇形成する
Figure 1 shows the conventional LOCO8 method. Next, as shown in FIG. 1(a), a nitride film 3 and an oxide film 2 are formed on the silicon substrate 1 in a portion that will become an active region.

その後、第1図(b)のごとく、シリコン基板1と同−
導電型のチャンネルストップ層4,5を形成する。
Thereafter, as shown in FIG. 1(b), the silicon substrate 1 is
Conductive type channel stop layers 4 and 5 are formed.

さらに、第1図(C)のように、窒化膜3をマスクとし
て、酸化処理を実施することによシ、厚いフィールド酸
化膜6,7で形成された分離頭載が得られる。
Furthermore, as shown in FIG. 1C, by performing oxidation treatment using the nitride film 3 as a mask, an isolated head formed of thick field oxide films 6 and 7 can be obtained.

このとき、符号8,9で示すように、酸素の拡散によυ
、窒化膜3の端部が押し上げられ、フィールド酸化膜の
喰い込み領域が発生するとともに、酸化処理時の熱処理
でチャンネルストップ層4゜5も横方向へ拡散する。次
に、第1図(d)のごとく、窒化膜3を除去し、能動領
域4,5を巾21で得る。
At this time, as shown by symbols 8 and 9, υ
, the edge of the nitride film 3 is pushed up, a biting region of the field oxide film is generated, and the channel stop layer 4.5 is also diffused in the lateral direction due to the heat treatment during the oxidation process. Next, as shown in FIG. 1(d), the nitride film 3 is removed to obtain active regions 4 and 5 having a width of 21.

以上のLOCO8法によると、第1図に示したように、
酸化膜の喰い込みによυ最終的に得られる能動領域の巾
に大きい変換差が生じ、微細化が困難であるほか、ナヤ
ン不ルストップ層4,5の横方向の拡散による狭チャン
ネル効果もあり、尚密度が”4fJ Lい状況であった
According to the above LOCO8 method, as shown in Figure 1,
A large conversion difference occurs in the width of the ultimately obtained active region due to the digging of the oxide film, making it difficult to miniaturize it.In addition, the narrow channel effect due to the lateral diffusion of the Nayant stop layers 4 and 5 also occurs. However, the density was still 4fJL.

この発明は、前述したLOCO8法の欠点を除去するた
めになされたもので、変換差がlよとんど発生せず、昼
集積化が達成されるほか、平用化が1月能となるととも
に、歪などの発生も少なく、良効な分離特性が得られる
半導体装lぽ(7)製造方法を提供することを目的とす
る。
This invention was made in order to eliminate the drawbacks of the LOCO8 method mentioned above, and the conversion difference hardly occurs, daytime integration is achieved, and normalization can be done in January. Another object of the present invention is to provide a method for manufacturing a semiconductor device (7) that produces less distortion and provides good isolation characteristics.

以下、この発明の半導体装置の製迫方法の実施例につい
て図面に基づき説明する。第2図(a)ないし第2図(
j)はその一実施例の製iホ工程を示す図である。
Embodiments of the semiconductor device manufacturing method of the present invention will be described below with reference to the drawings. Figure 2(a) to Figure 2(
j) is a diagram showing the i-ho manufacturing process of one embodiment.

まず、第2図(a)に示すように、シリコy J、i 
& 3()上に薄い熱酸化[31を形成する。その後、
公知のホトリソグラフィ技術により、素子分離領域34
が開孔されるごとく、ホトレジスト32 、33ヲノぐ
ターニングする。
First, as shown in FIG. 2(a), silico y J, i
& 3() to form a thin thermal oxide [31]. after that,
The element isolation region 34 is formed using known photolithography technology.
The photoresists 32 and 33 are turned so that the holes are opened.

次いで、ホトレジスト32.33+cマスクとして、熱
酸化膜31をエツチングして除去し)こ俊、第2図(l
〕)に示すように、酸化)俣36.37ケマスクとして
シリコン基板30を反応性イン/エッチ法により、エツ
チングを行い、?fIf38を形成する。
Next, the thermal oxide film 31 is etched and removed using the photoresist 32,33+c mask as shown in FIG.
As shown in ), the silicon substrate 30 is etched using a reactive in/etch method using an oxidized mask. Form fIf38.

次いで、第2図(c)に示すように、イオン:l]込み
法によシチャンネルストップ層4りを/リコン基板30
の溝38の底部に形成する。
Next, as shown in FIG. 2(c), a channel stop layer 4 is formed on the silicon substrate 30 by an ion implantation method.
is formed at the bottom of the groove 38.

その後、第2図(由のように、化学気相蒸気法により、
このシリコン基板30の導電性を形成する不純物と同一
の不純物をドーパントする化学気相蒸気膜41を形成す
る。
After that, as shown in Figure 2 (Yu), by chemical vapor vapor method,
A chemical vapor film 41 doped with the same impurity as that which forms the conductivity of this silicon substrate 30 is formed.

次いで、熱処理を実施し、同相拡散法によシ、シリコン
基板30内の溝38の側壁および底部にチャンネルスト
ップ層42.43.44を形成する。
Next, a heat treatment is performed to form channel stop layers 42, 43, and 44 on the side walls and bottom of the trench 38 in the silicon substrate 30 by an in-phase diffusion method.

その後、酸化膜36.37、化学気相蒸着膜41を全面
エツチング除去し、鵠2図(e)のような構造を イ:
す る 。
After that, the oxide films 36 and 37 and the chemical vapor deposition film 41 are removed by etching the entire surface to form a structure as shown in Figure 2(e).
do .

さらに、第2図(f)に示すように、前記シリコン基板
30を酸化処理し、薄い酸化膜50を形成する。
Furthermore, as shown in FIG. 2(f), the silicon substrate 30 is oxidized to form a thin oxide film 50.

次いで、第2図(g)に示すように、化学気相蒸着法に
より、リンガラス膜(SiO,/P、O,) 52を堆
λ貴させる。このとき、溝38の中央にリンガラス膜5
2の四部53が形成される。
Next, as shown in FIG. 2(g), a phosphorus glass film (SiO,/P, O,) 52 is deposited by chemical vapor deposition. At this time, the phosphor glass film 5 is placed in the center of the groove 38.
2 four parts 53 are formed.

さらに、上記リンガラス膜52が不純物としてリンを含
むことを利用して、高温算囲気で流動を生じさせる。な
お、このとさ、同時にリンガラス膜52は熱処理によシ
、稠簡化烙れ、R密性のすぐれた絶縁膜となるほか、リ
ンを含むことによシ、イオン不純物のゲッタリング効果
も期待される。
Further, by utilizing the fact that the phosphorus glass film 52 contains phosphorus as an impurity, flow is caused in the high temperature surrounding atmosphere. At the same time, the phosphorus glass film 52 becomes an insulating film with excellent heat treatment, simplification, and R density, and is also expected to have a gettering effect on ionic impurities due to the inclusion of phosphorus. be done.

また、この流動により、リンガラス膜52が平坦化され
、第2図(h)に示すように、リンガラス膜52上に樹
脂系の材料58をスピン塗布し、iA 2図(i)のよ
うに表向を完全平坦化する。
Also, due to this flow, the phosphor glass film 52 is flattened, and as shown in FIG. 2(h), a resin-based material 58 is spin-coated on the phosphor glass film 52, and as shown in FIG. 2(i). The surface is completely flattened.

その後、樹脂系の材料58とソー/ガラス膜52におい
て、等速のエツチング特性をイJfるエツチング材料に
よシリコン基板3oの上面にいたるまで、全面エツチン
グを実施し、第21’J(j)にボすように、平坦化素
子分離構造を1ネる。
Thereafter, the entire surface of the resin material 58 and the saw/glass film 52 is etched up to the upper surface of the silicon substrate 3o using an etching material that has uniform etching characteristics. A planarized element isolation structure is formed so that it is exposed.

以上説明した第1の実施例では−F記に列挙するごとき
利点を有する。
The first embodiment described above has the advantages listed in -F.

(1)LOCO8法のごとき選択酸化法を用いないため
、変換差が小さい素子分NJ+tが達成みれ、半導体装
置を製作するうえで、高力1積化が内部となあ。
(1) Since a selective oxidation method such as the LOCO8 method is not used, NJ+t can be achieved for elements with a small conversion difference, making it possible to integrate high strength internally when manufacturing semiconductor devices.

(2)チャンネルストップ層を形成できる不純物を含む
化学気相蒸着膜よシの同相拡散を用いるため、シリコン
基板の溝の側壁へのチャンネルストップ層の形ル3cか
り能となり、分離特性が向上する。
(2) Since the in-phase diffusion of a chemical vapor deposition film containing impurities that can form a channel stop layer is used, the channel stop layer can be formed on the sidewalls of the trench in the silicon substrate, improving isolation characteristics. .

(3)シリコン基板30の溝38への埋込み方法として
、化学気相蒸着法によυ形成されるリンガラス膜52の
流動を利用するため、パッシベーション効果などにすぐ
れ、緻密性のよい膜が埋込みOf能となり、素子分離特
性が大幅に向上する。
(3) The method of filling the grooves 38 of the silicon substrate 30 utilizes the flow of the phosphor glass film 52 formed by chemical vapor deposition, so a film with excellent passivation effect and good density is filled. The element isolation characteristics are greatly improved.

(4)桐脂系材料とリンガラス膜の等速エツチング法を
用いて、平坦化を実施するため、素子分離領域と能動領
域面がほぼ同一面となり、集積度が大幅に向上される。
(4) Since planarization is performed using a constant-speed etching method of a tung resin material and a phosphorus glass film, the element isolation region and the active region surface are almost on the same plane, and the degree of integration is greatly improved.

また、上記第1の実施例では、チャンネルストップ層と
なる不純物を含む化学気相蒸着膜を堆積した後、同相拡
散を実施し、その後化学気相蒸着法を全面除去したが、
化学気相蒸着膜を形成f茨、連続してリンガラス膜を堆
積し、高温の熱処理を行うことにより、流動し、チャン
ネルストップ層形成のための同相拡散な同時に実施して
も同等の効果が得られるものである。
In addition, in the first embodiment, after depositing a chemical vapor deposition film containing impurities to serve as a channel stop layer, in-phase diffusion was performed, and then the chemical vapor deposition was completely removed.
By forming a chemical vapor deposition film, successively depositing a phosphorus glass film and performing high-temperature heat treatment, the same effect can be achieved even when the in-phase diffusion for forming a channel stop layer is performed at the same time. That's what you get.

以上のように、この発明の半導体46) Id (1)
!1造方法によれば、シリコン基板に素子分離′1頁域
となる溝を形成し、この溝の側面および底部にチャンネ
ルストップ層を形成した後、リンを含む化学気相蒸着膜
を形成して平坦化した裳、シリコン基板の溝内にのみ化
学気相蒸着膜を残存させるよりにしたので、変換差がほ
とんと発生せJ゛、i1′]弔積化が達成できるばかり
か、歪の発生も少なく、良好な分離特性が得られるもの
である。
As described above, the semiconductor of the present invention 46) Id (1)
! According to the 1 manufacturing method, a trench is formed in a silicon substrate to serve as an element isolation region, a channel stop layer is formed on the sides and bottom of this trench, and then a chemical vapor deposition film containing phosphorus is formed. Since the chemical vapor deposition film is left only in the grooves of the silicon substrate on the flattened substrate, not only is it possible to achieve capacitance with almost no conversion difference, but also to reduce the occurrence of distortion. The separation characteristics are small and good separation characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないし第1図(d)はそれぞれ従来の半2
J・6体装置の製造方法を説明するだめの図、第2図(
a)ないし第2図(j)はそれぞれこの発明の半導体、
4.、6zの製造方法の一実施例を説明するための図で
りる。 30・・・シリコン基板、38・・・r/り、40.4
2〜44・・・チャンネルストップ層、50・・・酸化
膜、52・・・リンガラス膜。 第1図 第2図 4°4
FIGS. 1(a) to 1(d) each show a conventional half-two
Figure 2 is a diagram explaining the manufacturing method of the J-6 body device (
a) to FIG. 2(j) respectively show semiconductors of the present invention;
4. , 6z is a diagram for explaining an embodiment of the manufacturing method. 30...Silicon substrate, 38...r/ri, 40.4
2 to 44... Channel stop layer, 50... Oxide film, 52... Phosphorus glass film. Figure 1 Figure 2 4°4

Claims (1)

【特許請求の範囲】 +IJシリコン基板に素子分離領域となる溝を形成する
第1の工程と、上記シリコン基板の溝の底部および側面
にチャンネルストップ層を形成する第2の工程と、上記
ナヤンネルストップ層の形成後上記シリコン基板上にリ
ンを含む化学気相蒸着膜を形成して熱処理により平坦化
する第3の工程と、上記化学気相蒸着膜をさらに平坦化
する処」」を行った故上記シリコン基板の上記溝内にの
み上記化学気相蒸着膜を残存させる第4の工程とよシな
る半導体装置の製造方法。 (2)チャンネルストップ層を形成づ−る第2の工程は
化学気相蒸着膜の堆積および同相拡散によることを特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。
[Claims] A first step of forming a trench to serve as an element isolation region in the +IJ silicon substrate, a second step of forming a channel stop layer on the bottom and side surfaces of the trench of the silicon substrate, and a second step of forming a channel stop layer on the bottom and side surfaces of the trench of the silicon substrate; After forming the stop layer, a third step of forming a chemical vapor deposition film containing phosphorus on the silicon substrate and flattening it by heat treatment, and further flattening the chemical vapor deposition film. Therefore, the method for manufacturing a semiconductor device is different from the fourth step in which the chemical vapor deposition film is left only in the groove of the silicon substrate. (2) The method of manufacturing a semiconductor device according to claim 1, wherein the second step of forming the channel stop layer is by depositing a chemical vapor deposition film and in-phase diffusion.
JP16084282A 1982-09-17 1982-09-17 Manufacture of semiconductor device Pending JPS5950540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16084282A JPS5950540A (en) 1982-09-17 1982-09-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16084282A JPS5950540A (en) 1982-09-17 1982-09-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5950540A true JPS5950540A (en) 1984-03-23

Family

ID=15723581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16084282A Pending JPS5950540A (en) 1982-09-17 1982-09-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5950540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571819A (en) * 1984-11-01 1986-02-25 Ncr Corporation Method for forming trench isolation structures
US5459096A (en) * 1994-07-05 1995-10-17 Motorola Inc. Process for fabricating a semiconductor device using dual planarization layers
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571819A (en) * 1984-11-01 1986-02-25 Ncr Corporation Method for forming trench isolation structures
US5459096A (en) * 1994-07-05 1995-10-17 Motorola Inc. Process for fabricating a semiconductor device using dual planarization layers
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness
US6103595A (en) * 1995-08-11 2000-08-15 Micron Technology, Inc. Assisted local oxidation of silicon

Similar Documents

Publication Publication Date Title
GB2128400A (en) Isolation and wiring of a semiconductor integrated circuit device and method of manufacturing the same
JPS6072268A (en) Method of producing bipolar transistor structure
JPH02156552A (en) Semiconductor device and manufacture thereof
JPH0427702B2 (en)
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPH03101147A (en) Manufacture of semiconductor device
JPS61214446A (en) Manufacture of semiconductor device
US6103581A (en) Method for producing shallow trench isolation structure
JPS5950540A (en) Manufacture of semiconductor device
JPH05849B2 (en)
JPH0555361A (en) Semiconductor device and manufacture thereof
JP2757358B2 (en) Method for manufacturing semiconductor device
KR20010107707A (en) Method for manufacturing semiconductor device having a sti structure
JPH04209534A (en) Manufacture of semiconductor device
JPH0729971A (en) Manufacture of semiconductor device
JPH06177351A (en) Manufacture of semiconductor device
JPH0661343A (en) Manufacture of semiconductor device
JP3190144B2 (en) Manufacturing method of semiconductor integrated circuit
JP2786259B2 (en) Method for manufacturing semiconductor device
JPH01114042A (en) Manufacture of semiconductor device
JPH1126569A (en) Manufacture of semiconductor device
JPH0834241B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS59177941A (en) Manufacture of element isolation region
JPH07245402A (en) Manufacture of semiconductor device
JPH05343515A (en) Semiconductor device and its manufacture