JPS61220372A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61220372A
JPS61220372A JP6148585A JP6148585A JPS61220372A JP S61220372 A JPS61220372 A JP S61220372A JP 6148585 A JP6148585 A JP 6148585A JP 6148585 A JP6148585 A JP 6148585A JP S61220372 A JPS61220372 A JP S61220372A
Authority
JP
Japan
Prior art keywords
film
gate electrode
source
drain
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6148585A
Other languages
Japanese (ja)
Inventor
Itaru Kanbara
蒲原 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6148585A priority Critical patent/JPS61220372A/en
Publication of JPS61220372A publication Critical patent/JPS61220372A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form source-drain regions by doping an impurity by shaping a gate electrode through a gate insulating film, forming a semiconductor film to the side section of te gate electrode on source-drain forming prearranged regions and using the gate electrode as a mask. CONSTITUTION:A field insulating film 2 is shaped to a p<-> type Si substrate 1, and a gate electrode 4 by a polycrystalline silicon film is formed through a gate oxide film 3. An SiO2 film 7 is deposited on the whole surface, the SiO2 film 7 is left only on the side wall of the gate electrode 4 through etching, an Si3N4 film 8 is deposited on the whole surface, and the film 8 is etched to leave the Si3N4 film 8 only on the outside of the SiO2 film 7. An SiO2 film 9 is shaped, the Si3N4 film 8 is removed selectively, and openings are bored where adjacent to the gate electrode 4 in sourcedrain forming prearranged regions. Si films 10 are grown selectively on the substrates exposed to the opening sections, the SiO2 film 9 is removed, and n<+> type layers 11, 12 are formed in source-drain regions through the implantation of As ions and heat treatment.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、絶縁ゲート型(MOS型)半導体装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing an insulated gate type (MOS type) semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

MO3集積回路は、素子の微細化が進むにつれて、いわ
ゆる比例縮小剤に則った浅い接合を持つ拡散層によりソ
ース、ドレインを形成することが難しくなってきている
。このため、チャネル長の減少とともにしきい値が低下
する短チヤネル効果が問題になっている。また素子を微
細化したときに、ドレイン近傍の高電界領域でインパク
ト・アイオニゼーションによるホット・エレクトロンが
生成され、これが素子特性に悪影響を及ぼす。このよう
な高電界を緩和するために、いわゆるLDD(Liah
tly  Dot)ed  Drain)構造が使われ
るが、微細素子においてこのLDD構造を比例縮小して
用いることは回能である。
In MO3 integrated circuits, as elements become smaller, it is becoming difficult to form sources and drains using diffusion layers having shallow junctions based on so-called proportional shrinkage agents. Therefore, the short channel effect, in which the threshold value decreases as the channel length decreases, has become a problem. Furthermore, when devices are miniaturized, hot electrons are generated due to impact ionization in a high electric field region near the drain, which adversely affects device characteristics. In order to alleviate such high electric fields, so-called LDD (Liah
However, it is possible to scale down and use this LDD structure in a microscopic device.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題を解決したMO8型半導体装置
の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing an MO8 type semiconductor device that solves the above-described problems.

〔発明の概要〕[Summary of the invention]

本発明は、基板の半導体表面上にゲート絶縁膜を介して
ゲート電極を形成した後、ソース、ドレイン形成予定領
域上におけるゲート電極の側方部分に、例えば選択CV
D技術により半導体膜を形成させ、この後従来と同様に
ゲート電極をマスクとして不純物をドープしてソース、
ドレイン領域を形成することを特徴とする。
In the present invention, after forming a gate electrode on the semiconductor surface of a substrate via a gate insulating film, for example, selective CV
A semiconductor film is formed using D technology, and then impurities are doped using the gate electrode as a mask to form the source,
It is characterized by forming a drain region.

(発明の効果) 本発明によれば、ソース、ドレイン形成予定領域上のう
ちゲート電極の側方位置に半導体膜を選択的に形成させ
てソース、ドレイン領域を形成するため、例えばソース
、ドレイン領域の接合面がゲート電極に隣接する部分で
はゲート絶縁膜と半導体基板の界面位置とほぼ同じ位置
にするか、あるいはそれより上に位置するように制御す
ることが可能である。この結果ゲート電極近傍では実効
的に極めて浅いソース、ドレイン接合深さが得られる。
(Effects of the Invention) According to the present invention, the semiconductor film is selectively formed on the side of the gate electrode on the region where the source and drain are to be formed to form the source and drain regions. In the portion where the bonding surface of the gate electrode is adjacent to the gate electrode, it is possible to control the bonding surface so that it is located at approximately the same position as the interface between the gate insulating film and the semiconductor substrate, or located above it. As a result, an effectively extremely shallow source/drain junction depth can be obtained in the vicinity of the gate electrode.

従って本発明によれば、チャネル長の減少に伴う短チヤ
ネル効果を緩和することができる。
Therefore, according to the present invention, it is possible to alleviate the short channel effect caused by a decrease in channel length.

またゲート電極の側方部分に選択的に半導体膜を形成し
てソース、ドレインを形成する結果、ソース、ドレイン
の接合面をLDD構造と同様の形状とすることができ、
LDD構造と同様に微細素子でのドレイン近傍でのイン
パクト・アイオニゼーションによるホット・エレクトロ
ン効果を効果的に抑制することができる。
In addition, as a result of selectively forming a semiconductor film on the side portions of the gate electrode to form the source and drain, the junction surface of the source and drain can be made to have the same shape as the LDD structure.
Similar to the LDD structure, it is possible to effectively suppress the hot electron effect caused by impact ionization near the drain of a microscopic element.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第7図は一実施例のMoSトランジスタの製造
工程断面図である。
1 to 7 are cross-sectional views of the manufacturing process of an MoS transistor according to an embodiment.

先ず、p−型3i基板1に選択酸化法等によりフィール
ド絶縁wA2を形成し、素子領域に通常の工程に従いゲ
ート酸化膜3を介して多結晶シリコン膜によるゲート電
極4を形成する。ソース、ドレイン形成予定領域には、
ゲート電極4をマスクとしてAS等のイオン注入により
極く浅く低濃度のn−型層5,6を形成する(第1図)
。フィールド絶縁vA2は埋め込み法により形成しても
よい3次いで全面にSiO2膜7をCVD法により堆積
し、反応性イオンエツチング(RIE>によりこれをエ
ツチングしてゲート電極4の側壁にのみSiO2膜7を
残す。更に全面にSi3N+膜8をCVD法により堆積
し、これをRIEによりエツチングしてSiO2膜7の
外側にのみ5iiN+膜8を残す(第2図)。
First, a field insulation wA2 is formed on a p-type 3i substrate 1 by selective oxidation or the like, and a gate electrode 4 made of a polycrystalline silicon film is formed in an element region via a gate oxide film 3 according to a normal process. In the regions where the source and drain are to be formed,
Using the gate electrode 4 as a mask, ultra-shallow, low-concentration n-type layers 5 and 6 are formed by ion implantation such as AS (Fig. 1).
. The field insulation vA2 may be formed by the burying method.3 Next, the SiO2 film 7 is deposited on the entire surface by the CVD method, and this is etched by reactive ion etching (RIE) to form the SiO2 film 7 only on the side walls of the gate electrode 4. Furthermore, a Si3N+ film 8 is deposited on the entire surface by CVD, and this is etched by RIE, leaving the 5iiN+ film 8 only on the outside of the SiO2 film 7 (FIG. 2).

この後ゲート電極4及びソース、ドレイン形成予定領域
の表面に熱酸化によりSiO2膜9を形成する(第3図
)。そしてSi3N4膜8をリン酸またはCF3と02
とN2を含むガスを用いたCDE法により選択的に除去
し、ソース、ドレイン形成予定領域のゲート電極4に隣
接する位置に開口を設ける(第4図)。
Thereafter, a SiO2 film 9 is formed by thermal oxidation on the surface of the regions where the gate electrode 4 and the source and drain are to be formed (FIG. 3). Then, the Si3N4 film 8 is coated with phosphoric acid or CF3 and 02
This is selectively removed by a CDE method using a gas containing N2 and N2, and an opening is provided at a position adjacent to the gate electrode 4 in the region where the source and drain are to be formed (FIG. 4).

次に開口部に露出した基板上に選択エピタキシャル法に
より3i膜10を選択成長させる(第5図)。そして弗
化アンモニウム液を用いてゲート電極4上及びソース、
ドレイン形成予定領域上のS f 02 g!9を除去
し、Asのイオン注入と900℃、60分程度の熱処理
によりソース、ドレイン領域にn4型層11.12を形
成する(第6図)。
Next, a 3i film 10 is selectively grown on the substrate exposed in the opening by selective epitaxial method (FIG. 5). Then, using ammonium fluoride solution, the gate electrode 4 and the source,
S f 02 g on the region where the drain is to be formed! 9 is removed, and n4 type layers 11 and 12 are formed in the source and drain regions by ion implantation of As and heat treatment at 900° C. for about 60 minutes (FIG. 6).

以下通常の工程により、全面に8102膜13をCVD
法により堆積し、これにコンタクトホールを開口してA
J2膜によるソース、ドレイン電極14.15を形成す
る(第7図)。
8102 film 13 is deposited on the entire surface by CVD using the normal process.
A contact hole is opened in this deposited by
Source and drain electrodes 14 and 15 are formed using the J2 film (FIG. 7).

この実施例によれば、ゲート電極に隣接する位置に81
膜を選択成長させてイオン注入を行ってソース、ドレイ
ン領域を形成しているから、第6図あるいは第7図に示
すようにゲート電極に隣接する位置で実効的に極めて浅
いソース、ドレイン接合を形成することができる。即ち
、ゲート電極に隣接する部分でソース、ドレイン領域の
接合面位置をゲート絶縁膜と基板の界面とほぼ同じ位置
に、場合によってはこの界面より上に位置するように、
制御性よく形成することができる。従ってチャネル長が
1μm程度あるいはサブミクロンという微細MO3FE
Tであっても、短チヤネル効果によるしきい値電圧の低
下を抑制することができる。
According to this embodiment, 81 is located adjacent to the gate electrode.
Since the source and drain regions are formed by selectively growing the film and performing ion implantation, it is possible to form extremely shallow source and drain junctions adjacent to the gate electrodes, as shown in Figures 6 and 7. can be formed. That is, in the portion adjacent to the gate electrode, the junction surface of the source and drain regions is located at approximately the same position as the interface between the gate insulating film and the substrate, or in some cases above this interface.
It can be formed with good controllability. Therefore, a fine MO3FE with a channel length of about 1 μm or submicron
Even if T, a decrease in the threshold voltage due to the short channel effect can be suppressed.

また選択エピタキシャル法による3i膜の厚みを制御す
ることにより、ソース、ドレイン領域の接合面形状を任
意に制御することができ、チャネル領域での電界分布形
状を好ましいものにすることができる。この結果、LD
D構造と同様にドレイン領域近傍での高電界を緩和して
、微細MO3FETでのホットエレクトロン効果を抑制
することができる。
Furthermore, by controlling the thickness of the 3i film by selective epitaxial method, the shape of the junction surface of the source and drain regions can be arbitrarily controlled, and the shape of the electric field distribution in the channel region can be made preferable. As a result, L.D.
Similar to the D structure, it is possible to reduce the high electric field near the drain region and suppress the hot electron effect in the fine MO3FET.

また極めて浅いイオン注入により浅い接合面を持つソー
ス、ドレイン領域を形成する場合に比べて、工程制御も
容易であり、従って信頼性の高い微細MO5FETを歩
留りよく製造することができる。
Furthermore, process control is easier than in the case where source and drain regions with shallow junction surfaces are formed by extremely shallow ion implantation, and therefore highly reliable and fine MO5FETs can be manufactured with a high yield.

なお本発明は上記実施例に限られるものではなく、例え
ばSO8半導体装置にも適用できる。また選択的に3i
膜10を形成する方法として基板の全面にSi膜を形成
し、これをエツチングにより選択部分のみ残すようにす
ることもできる。その池水発明は種々変形して実施する
ことが可能である。
Note that the present invention is not limited to the above-mentioned embodiments, but can also be applied to, for example, SO8 semiconductor devices. Also selectively 3i
As a method of forming the film 10, it is also possible to form a Si film on the entire surface of the substrate and to leave only selected portions by etching it. The pond water invention can be implemented with various modifications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明の一実施例によるMOSF
ETの製造工程を説明するための断面図である。 1・・・p−型Si基板、2・・・フィールド絶縁膜、
3・・・ゲート絶縁膜、4・・・ゲート電極、5,6・
・・n−型層、7・・・SiO2膜、8−8−3i+膜
、9・・・SiO2膜、10・・・Si膜(選択成長膜
)、11.12・・・O4型層、13・・・SiO2膜
、14゜15・・・ソース、ドレイン電極。 出願人代理人 弁理士 鈴江武彦 第5図 第6図 第7図
1 to 7 are MOSFETs according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view for explaining the manufacturing process of ET. 1...p-type Si substrate, 2...field insulating film,
3... Gate insulating film, 4... Gate electrode, 5, 6...
... n- type layer, 7... SiO2 film, 8-8-3i+ film, 9... SiO2 film, 10... Si film (selective growth film), 11.12... O4 type layer, 13...SiO2 film, 14°15...source, drain electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)基板の半導体表面上にゲート絶縁膜を介してゲー
ト電極を形成する工程と、前記ゲート電極の側方でソー
ス、ドレイン形成予定領域上に部分的に半導体膜を形成
させる工程と、前記ゲート電極をマスクとして不純物を
ドープしてソース、ドレイン領域を形成する工程とを備
えたことを特徴とする半導体装置の製造方法。
(1) a step of forming a gate electrode on the semiconductor surface of the substrate via a gate insulating film; a step of partially forming a semiconductor film on the region where the source and drain are to be formed on the side of the gate electrode; 1. A method of manufacturing a semiconductor device, comprising the step of doping impurities using a gate electrode as a mask to form source and drain regions.
(2)半導体膜の形成は選択CVD法による特許請求の
範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, in which the semiconductor film is formed by selective CVD.
(3)ゲート電極の側方でソース、ドレイン形成予定領
域上に部分的に半導体膜を選択成長させる工程は、ソー
ス、ドレイン形成予定領域のゲート電極側壁部に選択的
にSiO_2膜を形成する工程と、SiO_2膜が形成
されたゲート電極側壁部に選択的にSi_3N_4膜を
形成する工程と、ソース、ドレイン形成予定領域の残り
の部分にSiO_2膜を形成する工程と、前記Si_3
N_4膜を選択的にエッチング除去する工程と、Si_
3N_4膜が除去された開口部に選択的に半導体膜をエ
ピタキシャル成長させる工程とからなる特許請求の範囲
第1項記載の半導体装置の製造方法。
(3) The step of selectively growing a semiconductor film on the side of the gate electrode on the region where the source and drain are to be formed is the step of selectively forming a SiO_2 film on the sidewalls of the gate electrode in the region where the source and drain are to be formed. a step of selectively forming a Si_3N_4 film on the sidewalls of the gate electrode on which the SiO_2 film is formed; a step of forming the SiO_2 film on the remaining portions of the regions where the source and drain are to be formed;
A process of selectively etching the N_4 film and removing the Si_4 film.
2. The method of manufacturing a semiconductor device according to claim 1, comprising the step of selectively epitaxially growing a semiconductor film in the opening from which the 3N_4 film has been removed.
JP6148585A 1985-03-26 1985-03-26 Manufacture of semiconductor device Pending JPS61220372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148585A JPS61220372A (en) 1985-03-26 1985-03-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148585A JPS61220372A (en) 1985-03-26 1985-03-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61220372A true JPS61220372A (en) 1986-09-30

Family

ID=13172430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148585A Pending JPS61220372A (en) 1985-03-26 1985-03-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61220372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186257A (en) * 1995-01-04 1996-07-16 Nec Corp Field effect type transistor and its production
JP2008053349A (en) * 2006-08-23 2008-03-06 Elpida Memory Inc Mos transistor, semiconductor device, and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186257A (en) * 1995-01-04 1996-07-16 Nec Corp Field effect type transistor and its production
JP2008053349A (en) * 2006-08-23 2008-03-06 Elpida Memory Inc Mos transistor, semiconductor device, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3029653B2 (en) Method for manufacturing semiconductor device
US6184155B1 (en) Method for forming a ultra-thin gate insulator layer
JP2007088138A (en) Method for manufacturing semiconductor device
JPH05267331A (en) Manufacture of mos semiconductor device
JPH06310718A (en) Preparation of mosfet element
JPS61220372A (en) Manufacture of semiconductor device
JP2000040826A (en) Semiconductor device
JP3455742B2 (en) Semiconductor device
JP2000306991A (en) Fabrication of semiconductor device
JP3373839B2 (en) Semiconductor device
JP2001119016A (en) Metal oxide film semiconductor field effect transistor
JPS6237543B2 (en)
KR0130626B1 (en) Structure and fabrication of mosfet
JPS60134473A (en) Manufacture of semiconductor device
JPS6370458A (en) Manufacture of semiconductor device
JPS6251261A (en) Manufacture of semiconductor device
JPS61212067A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPH05343703A (en) Manufacture of nonvolatile memory
JPH02304931A (en) Semiconductor device and manufacture thereof
JPS594048A (en) Fabrication of semiconductor device
JPH02135738A (en) Manufacture of semiconductor device
JPH04321233A (en) Manufacture of semiconductor device
JPH01304783A (en) Manufacture of semiconductor device