JPS594048A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPS594048A
JPS594048A JP57112972A JP11297282A JPS594048A JP S594048 A JPS594048 A JP S594048A JP 57112972 A JP57112972 A JP 57112972A JP 11297282 A JP11297282 A JP 11297282A JP S594048 A JPS594048 A JP S594048A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor layer
recess
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112972A
Other languages
Japanese (ja)
Inventor
Masamizu Konaka
小中 雅水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57112972A priority Critical patent/JPS594048A/en
Publication of JPS594048A publication Critical patent/JPS594048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Abstract

PURPOSE:To obtain excellent element isolation characteristic and element characteristic by forming the stripe or grid type element isolation insulating film at the bottom part of recess formed in the predetermined element forming region of semiconductor substrate. CONSTITUTION:An SiO2 film 22 is formed on the surface of an Si substrate 21 and a recess part 24 is also formed with a resist pattern 23 used as the mask. Next, an SiO2 film 25 for element isolation is formed on the surface. Then, stripe or grid type SiO2 film pattern is formed at the bottom of recess part using a resist pattern 26 as the mask. After removing the pattern 26, silicon Si 27 adding impurity in the conductivity type opposing to that of the substrate is formed deeper than the recess 24 on the entire part of substrate. Then, a fluid substance film 28 is applied to the entire part in order to make flat the surface. The layer 27 is buried in flat in the recess 24 by uniformly etching the film 28 and film 27. After removing the exposed film 22, the layer 27 is single-crystallized. At this time, the n-channel MOSFETQn is formed on the layer 27 while the p-channel MOSFETQp on the substrate region adjacent thereto.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に係シ、特に素子分離
技術の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and particularly to improvements in element isolation technology.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、相補型MO8(以下CMO8と呼ぶ)牛導体装置
は同一基板上に形成するnチャネルMO8トランジスタ
とpチャネルMO8)ランジスタを電気的に分離する必
要性から、例えば、それらの素子をl Oltm以上離
して形成している。このため、高集積度を目指す超LS
Iにおいて、極めて不都合であった。この欠点を改善す
る試みとして、MOSトランジスタの周辺に深い溝を形
成し、その溝を酸化物等の絶縁性物質を埋め込んで囲う
技術がある。以下、この技術について、第1図を用いて
説明する。例えば、N型シリコン基板11上にレジスト
12を塗布し、通常の写真蝕刻法により、そのレゾスト
12をパターニングする(8)。そのノfターニングさ
れたレジスト12をマスクとして、反応性イオンエツチ
ング(以下RIgと呼ぶ)技術を用いて、nチャネルM
O8)ランジスタが形成される領域の周辺部をエツチン
グし、@〜1.5μm、深さ〜5μmの溝13を形成す
る(b)。そしてレジスト12を除去後、CVD技術を
用いて例えば、シリコン酸化膜14を堆積し、更に、そ
の上に流動性物質膜15として例えばフォトレノストを
塗布−する(e)。次にこの流動性物質膜15と前記シ
リコン酸化膜14のエツチング速度が等しくなる条件で
、RIE技術を用いてエツチングし、シリコン基板11
の表面を平坦化する(d)。さらに、nチャネルMOS
トランジスタが形成される領域に、通常の写真蝕刻法で
パターニングし得られたフォトレジスト16をマスクと
して、p型不純物をイオン注入し、pウェル17を形成
する(e)。以降は通常の工程によ#)pウェル中にn
チャネルMO8)ランジスタQnを、また、これに隣接
して、pチャネルMO8)ランジスタQpを形成する(
f)。
Conventionally, complementary MO8 (hereinafter referred to as CMO8) conductor devices require electrical separation of n-channel MO8 transistors and p-channel MO8) transistors formed on the same substrate, for example, when these elements are separated by more than 1 Oltm. They are formed apart. For this reason, ultra-LS aiming for high integration
I was extremely inconvenient. As an attempt to improve this drawback, there is a technique of forming a deep trench around the MOS transistor and surrounding the trench by filling it with an insulating material such as oxide. This technique will be explained below using FIG. 1. For example, a resist 12 is coated on the N-type silicon substrate 11, and the resist 12 is patterned by ordinary photolithography (8). Using the no-f turned resist 12 as a mask, n-channel M etching is performed using reactive ion etching (hereinafter referred to as RIg) technology.
O8) Etch the periphery of the region where the transistor is to be formed to form a groove 13 of ~1.5 μm and depth of ~5 μm (b). After removing the resist 12, a silicon oxide film 14, for example, is deposited using the CVD technique, and then photorenost, for example, is applied thereon as a fluid material film 15 (e). Next, under the conditions that the etching rate of this fluid material film 15 and the silicon oxide film 14 are equal, RIE technology is used to etch the silicon substrate 11.
flatten the surface (d). Furthermore, n-channel MOS
Using a photoresist 16 patterned by ordinary photolithography as a mask, p-type impurity ions are implanted into a region where a transistor is to be formed to form a p-well 17 (e). From then on, follow the normal steps.
A channel MO8) transistor Qn is formed adjacent to this, and a p-channel MO8) transistor Qp is formed (
f).

しかし、この方法では素子分離のための絶縁物が埋め込
まれる溝14がRIE技術で形成されるため、その幅は
例えば1μm以下にすることは極めて困難であり、素子
分離領域にとられる面積が大きく、高集積度、高密度化
を目指す超LSIでは極めて不都合である。また、溝1
4はその深さに較べ、幅が狭いので絶縁物を溝に児全に
埋め込めず、巣が生じ、素子の信頼性の低Fを招く結果
となる。更に、CMO8半導体装置においてはnチャネ
ルMO3FFTとpヂャネルMO8FFT間でのラッチ
アップ現象が起こシ易い等の不都合があった・ 〔発明の目的〕 本発明は素子分離用絶縁膜の膜厚を薄いものとして高集
積化を図り、しかも優れた素子分離特性と素子特性を得
ることを可能とした半導体装置の製造方法を提供するこ
とを目的とする。
However, in this method, the groove 14 in which the insulator for element isolation is buried is formed by RIE technology, so it is extremely difficult to reduce the width to 1 μm or less, and the area taken up by the element isolation region is large. This is extremely inconvenient for VLSIs aiming for high integration and high density. Also, groove 1
Since the width of the groove 4 is narrow compared to its depth, the insulator cannot be completely buried in the groove, resulting in formation of cavities and a low F of the reliability of the element. Furthermore, in the CMO8 semiconductor device, there are disadvantages such as a latch-up phenomenon easily occurring between the n-channel MO3FFT and the p-channel MO8FFT. It is an object of the present invention to provide a method for manufacturing a semiconductor device that achieves high integration and also makes it possible to obtain excellent device isolation characteristics and device characteristics.

〔発明の概要〕[Summary of the invention]

本発明においては、半導体基板の所定の素子形成予定領
域に四部を形成し、この凹部内面に素子分離用絶縁膜を
形成する。このとき、素子分離用絶縁膜は、四部の11
11I面には全面に、底面にはストライプ状あるいは格
子状に配設する。
In the present invention, four portions are formed in a predetermined region of a semiconductor substrate where an element is to be formed, and an insulating film for element isolation is formed on the inner surface of the recess. At this time, the element isolation insulating film is
They are arranged on the entire surface of the 11I surface, and in a stripe or grid pattern on the bottom surface.

そして、この凹部に半導体層を埋込み、この半導体層領
域およびこれと前記絶縁膜により分離された基板領域に
それぞれ所望の素子を形成する0 〔発明の効果〕 本発明によれば、基板四部の側面および底面に形成する
素子分離用絶縁膜は、例えば熱酸化により1μm以下の
極めて薄い厚さでも容易に実現できるため、素子分離領
域の幅が狭く、従って高集積化が図れる。また基板四部
底面の絶縁膜をストライプ状又は格子状に形成すること
によ多、例えばレーザーアニールに・よる凹部内の半導
体層の単結晶化が容易となり、易にCMO8半導体装置
においては、ラッチアップ現象を効果的に防止出来るた
め、素子特性および外部特性が向上する。
Then, a semiconductor layer is buried in this recess, and desired elements are respectively formed in this semiconductor layer region and a substrate region separated from this by the insulating film. Since the element isolation insulating film formed on the bottom surface can be easily realized with an extremely thin thickness of 1 μm or less by, for example, thermal oxidation, the width of the element isolation region is narrow, and therefore high integration can be achieved. In addition, by forming the insulating film on the bottom surface of the four parts of the substrate in a striped or lattice shape, it becomes easy to single-crystallize the semiconductor layer in the recessed part by laser annealing, for example, and latch-up is easily caused in CMO8 semiconductor devices. Since the phenomenon can be effectively prevented, device characteristics and external characteristics are improved.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を、第2図(、)〜(h)を用い
て説明する。まずn型シリコン基板21の基板表面に熱
酸化あるいはCVDによる5102膜22を形成し、写
真蝕刻法によシ得られ/こレジスト・ぞターン23をマ
スクにして、前記s+o2IN 2.?をエツチングし
た後、続いて異方性ドライエツチング例えばRIEによ
シリコン基板2ノを深さ約5μmエツチングし四部24
を形成する(a)。レジス) i4ターン23を除去後
、露出した凹部24のシリコン表面に熱酸化あるいはC
VD法によル〜5ooo1の素子分離用の850282
5を形成する(b)。次に通常の写真蝕刻法にょ多形成
したレジス) iJ?ターン26をマスクとして、凹部
底面の5I02膜25を例えば弗化アンモニウム液でエ
ツチングして、底面にストライプ状または格子状の5I
02膜・リーンを形成する(c)。このとき、上面から
みたパターンは第3図(、)または(b)のようになる
。レジストノやターン26を除去後、エビタキャル気相
成長法あるいはCVD法にょシ全面に基板と反対の導電
型不純物を添加したシリコン27を凹部24の深さよシ
厚く形成する(d)。図中、271はエピタキシャル気
相成長法で単結晶が成長された部分を意味し、272は
多結晶シリコンが形成されたことを意味する。
Examples of the present invention will be described below with reference to FIGS. 2(,) to (h). First, a 5102 film 22 is formed on the surface of an n-type silicon substrate 21 by thermal oxidation or CVD, and is obtained by photolithography. ? After etching, the silicon substrate 2 is etched to a depth of approximately 5 μm by anisotropic dry etching, such as RIE, to form four parts 24.
(a). After removing the i4 turn 23, thermal oxidation or carbon is applied to the silicon surface of the exposed recess 24.
850282 for element isolation of 5ooo1 by VD method
5 (b). Next, a resist layer was formed using a conventional photolithography method (iJ?). Using the turn 26 as a mask, the 5I02 film 25 on the bottom of the recess is etched with, for example, ammonium fluoride solution to form a striped or grid-like 5I film on the bottom.
02 film/lean is formed (c). At this time, the pattern seen from the top becomes as shown in FIG. 3(,) or (b). After removing the resist layer and turns 26, silicon 27 doped with an impurity of the conductivity type opposite to that of the substrate is formed on the entire surface using Evitacal vapor phase epitaxy or CVD to a thickness equal to the depth of the recess 24 (d). In the figure, 271 means a part where a single crystal is grown by epitaxial vapor phase growth, and 272 means a part where polycrystalline silicon is formed.

CVD法を用いた場合は全て、多結晶シリコンが形成さ
れることになる。この後、流動性物質膜28として例え
ば、フォトレジストを全面に塗布し、表面を平坦にする
(、)。この時1回の塗布で平坦化されない場合には、
もう一度全面に塗布し完全に平坦化される様にする。つ
いで、酌記流動性物質膜28とシリコン層27とが同一
エツチング速度となる条件でaN&Aドライエツチング
法によりこれらを均一にエツチングしてシリコン層27
を凹部24内に平坦に埋込む(f)。そしてシリコン基
板表面に派出している5102膜22をエツチングして
除去した後、シリコン基板表面をレーザーアニールする
ことによって埋込まれたシリコンHazyをその単結晶
領域271を核として単結晶化する(g)。こうしてn
型シリコン基板21から薄い5I02膜25で分離され
たp型シリコン層27が得られる。また、CVD法によ
シ多結晶シリコン層を形成した場合−には、上記のよう
な単結晶の核は存在しないが、単結晶基板21と接して
いる部分が核となシ、やはシ単結晶化が可能である。こ
の後、通常の素子形成工程によシ、例えばp型シリコン
層27にnチャネルMO8)ランジスタQnを、これに
隣接するn型基板領域にpチャネルMOSトランジスタ
Q、をそれぞれ形成する(h)。
In all cases where the CVD method is used, polycrystalline silicon will be formed. Thereafter, a photoresist, for example, is applied to the entire surface as the fluid material film 28 to make the surface flat. At this time, if it is not flattened with one application,
Apply it again to the entire surface and make sure it is completely flat. Next, the fluid material film 28 and the silicon layer 27 are uniformly etched by the aN&A dry etching method under conditions that the etching rate is the same for the silicon layer 27.
is buried flatly in the recess 24 (f). After etching and removing the 5102 film 22 exposed on the silicon substrate surface, the silicon substrate surface is laser annealed to single-crystallize the embedded silicon hazy using the single-crystal region 271 as a nucleus (g ). Thus n
A p-type silicon layer 27 separated from the type silicon substrate 21 by a thin 5I02 film 25 is obtained. In addition, when a polycrystalline silicon layer is formed by the CVD method, there are no single crystal nuclei as described above, but there are cases where the portion in contact with the single crystal substrate 21 is not a nucleus, or a silicon layer is formed. Single crystallization is possible. Thereafter, by a normal device forming process, for example, an n-channel MOS transistor Qn is formed on the p-type silicon layer 27, and a p-channel MOS transistor Q is formed on the n-type substrate region adjacent thereto (h).

この実施例によれば、基板表面に形成された四部の内面
に形成した5IO2膜によシ素子分離を行うから、素子
分離領域の占有面積が従来に比べてはるかに小さくなシ
、従って素子の高集積化が図られる。また、凹部底面に
5I02膜をストライプ状または格子状をなして配設す
るため、この凹部に埋込んだシリコン層の単結晶化が容
易であシ、良質のシリコン層を形成して素子特性を図る
ことができる。更にCMO8半導体装置を構成した場合
、凹部底面に残した。5102膜によってラッチアップ
現象が効果的に防止される。
According to this embodiment, since element isolation is performed using the 5IO2 film formed on the inner surface of the four parts formed on the substrate surface, the area occupied by the element isolation region is much smaller than in the conventional case. High integration is achieved. In addition, since the 5I02 film is arranged in a stripe or lattice pattern on the bottom of the recess, the silicon layer buried in the recess can be easily made into a single crystal, forming a high-quality silicon layer to improve device characteristics. can be achieved. Furthermore, when a CMO8 semiconductor device was constructed, it was left on the bottom of the recess. The latch-up phenomenon is effectively prevented by the 5102 film.

なお、上記実施例においてはシリコン基板の凹部側面全
面に絶縁膜を形成し、その底面においてはストライプ状
、あるいは格子状に絶縁膜を形成してお)、これによ、
9 CMO8半導体装置に見られる特有のう、チアッゾ
現象を抑制できるのであるが、この四部底面に基板と逆
導電型の不純物を例えば第2図(c)の段階でイオン注
入を行うとよりラッチアップ現象の抑制がよシ効果的と
なる。また、上記実施例ではシリコン基板上の凹部に8
102膜を形成し基板と分離したが、素子分離用絶縁膜
としてCVD法あるいは直接窒化による8 13N4膜
を使用しても、以降の工程を多少変更するだけで同様の
効果が得られる。
Note that in the above embodiment, an insulating film is formed on the entire side surface of the recessed part of the silicon substrate, and an insulating film is formed on the bottom surface in a striped or lattice pattern).
9 It is possible to suppress the characteristic carbo-chiazo phenomenon observed in CMO8 semiconductor devices, but latch-up can be further suppressed by ion-implanting impurities of the opposite conductivity type to the substrate into the bottom surfaces of these four parts, for example at the stage shown in FIG. 2(c). Suppression of the phenomenon becomes more effective. In addition, in the above embodiment, 8
Although a 102 film was formed and separated from the substrate, the same effect can be obtained by using an 813N4 film produced by CVD or direct nitridation as an element isolation insulating film with only slight changes in the subsequent steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(&)〜(f)は従来の素子分離CMO8半導体
装置の製造工程を説明するだめの図、第2図(a)〜(
h)は本発明の一実施例のCMO8半導体装置の製造工
程を説明するための図、第3図(a) t (b)は第
2図(C)で5i02膜をパターニングした状態の凹部
上面図である。 21・・・n型シリコン基板、22・・・8102膜、
23・・・レジストパターン、24・・・凹部、25・
・・5in2膜(素子分離用絶縁膜)、26・・・レジ
ストパターン、27・・・p型シリコン層、2B・・・
流動性物質膜。 出願人代理人  弁理士 鈴 江 武 彦第1図 第1図 14            14 第2図 第2図 フ7
Figures 1(&) to (f) are schematic diagrams for explaining the manufacturing process of a conventional element isolation CMO8 semiconductor device, and Figures 2(a) to (
h) is a diagram for explaining the manufacturing process of a CMO8 semiconductor device according to an embodiment of the present invention, and FIG. It is a diagram. 21... N-type silicon substrate, 22... 8102 film,
23...Resist pattern, 24...Concave portion, 25.
...5in2 film (insulating film for element isolation), 26... resist pattern, 27... p-type silicon layer, 2B...
Fluid substance membrane. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 1 14 14 Figure 2 Figure 2 F7

Claims (5)

【特許請求の範囲】[Claims] (1)  半導体基板の所定の素子形成予定領域に凹部
を形成する工程と、この凹部の側面には全面に底面には
ストライブ状または格子状に素子分離用絶縁膜を配設す
る工程と、この絶縁膜が配設された凹部に選択的に半導
体層を埋込む工程と、この埋込まれた半導体層領域およ
びこれと前記絶縁膜にょシ分離された基板領域に所望の
素子を形成する工程とを備えたことを特徴とする半導体
装置の製造方法。
(1) A step of forming a recess in a predetermined element formation area of a semiconductor substrate, and a step of disposing an insulating film for element isolation in a stripe or lattice shape on the entire side surface of the recess and the bottom surface of the recess, A step of selectively embedding a semiconductor layer in the recessed portion where the insulating film is provided, and a step of forming a desired element in the buried semiconductor layer region and a substrate region separated from this by the insulating film. A method for manufacturing a semiconductor device, comprising:
(2)  凹部を形成する工程は異方性ドライエ。 チングによる特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) The process of forming the recesses is an anisotropic dryer. A method of manufacturing a semiconductor device as claimed in claim 1, according to Pat.
(3)素子分離用絶縁膜は熱酸化またはCVDによる8
102膜である特許請求の範囲第1項記載の半導体装置
の製造方法。
(3) The insulating film for element isolation is made by thermal oxidation or CVD.
10. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a 102 film.
(4)凹部に選択的に半導体層を埋込む工程は、基板全
面に凹部の閉さよシ厚い半導体層をエピタキシャル成長
法またはCVD法により堆積する工程と、この堆積され
た半導体層表面を流動性物質膜で平坦化する工程と、こ
れら流動性物質膜と半導体層を等しいエツチング速度で
均一にエツチングして凹部にのみ半導体層を残す工程と
、この残された半導体層をアニール処理して結晶化する
工程とからなる特許請求の範囲第1項記載の半導体装置
の製造方法。
(4) The process of selectively embedding a semiconductor layer in the recesses involves depositing a thicker semiconductor layer on the entire surface of the substrate by epitaxial growth or CVD to close the recesses, and covering the surface of the deposited semiconductor layer with a fluid material. A process of flattening with a film, a process of uniformly etching the fluid material film and the semiconductor layer at the same etching rate, leaving the semiconductor layer only in the recessed parts, and annealing and crystallization of the remaining semiconductor layer. A method for manufacturing a semiconductor device according to claim 1, comprising the steps of:
(5)凹部に埋込む半導体層は基板と反対導電型であシ
、この埋込まれた半導体層領域とこれ以外の基板領域に
形成する素子は互いに異なる導電チャネルのMOS )
ランジスタである特許請求の範囲第1項記載の半導体装
置の製造方法。
(5) The semiconductor layer buried in the recess has a conductivity type opposite to that of the substrate, and the elements formed in this buried semiconductor layer region and other substrate regions are MOSs with different conduction channels.
A method for manufacturing a semiconductor device according to claim 1, which is a transistor.
JP57112972A 1982-06-30 1982-06-30 Fabrication of semiconductor device Pending JPS594048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112972A JPS594048A (en) 1982-06-30 1982-06-30 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112972A JPS594048A (en) 1982-06-30 1982-06-30 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPS594048A true JPS594048A (en) 1984-01-10

Family

ID=14600164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112972A Pending JPS594048A (en) 1982-06-30 1982-06-30 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPS594048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639963A (en) * 1986-06-30 1988-01-16 Nec Corp Complementary mos type semiconductor device
JP2017511610A (en) * 2014-04-13 2017-04-20 日本テキサス・インスツルメンツ株式会社 Isolated semiconductor layers in bulk wafers by localized silicon epitaxial seed formation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639963A (en) * 1986-06-30 1988-01-16 Nec Corp Complementary mos type semiconductor device
JP2017511610A (en) * 2014-04-13 2017-04-20 日本テキサス・インスツルメンツ株式会社 Isolated semiconductor layers in bulk wafers by localized silicon epitaxial seed formation
US10516019B2 (en) 2014-04-13 2019-12-24 Texas Instruments Incorporated Isolated semiconductor layer in bulk wafer by localized silicon epitaxial seed formation
JP2019220696A (en) * 2014-04-13 2019-12-26 日本テキサス・インスツルメンツ合同会社 Isolated semiconductor layer in bulk wafer by localized silicon epitaxial seed formation
JP2020061577A (en) * 2014-04-13 2020-04-16 日本テキサス・インスツルメンツ合同会社 Isolated semiconductor layer in bulk wafer by localized silicon epitaxial seed formation
EP3132468B1 (en) * 2014-04-13 2024-04-10 Texas Instruments Incorporated Isolated semiconductor layer in bulk wafer by localized silicon epitaxial seed formation

Similar Documents

Publication Publication Date Title
JPS6254936A (en) Separation structure of mos device and manufacture thereof
JPH0355984B2 (en)
JPH0348656B2 (en)
JPS594048A (en) Fabrication of semiconductor device
JPH0974189A (en) Manufacture of semiconductor device
JPH01307241A (en) Manufacture of semiconductor device
JPH0348657B2 (en)
JPH0661343A (en) Manufacture of semiconductor device
JPH0729971A (en) Manufacture of semiconductor device
JP3190144B2 (en) Manufacturing method of semiconductor integrated circuit
JP2800692B2 (en) Method for manufacturing semiconductor device
JPS594046A (en) Semiconductor device and fabrication thereof
JPH02174140A (en) Manufacture of semiconductor device
JPS5986263A (en) Manufacture of semiconductor device
JPS60226168A (en) Complementary mos semiconductor device
JPS62120040A (en) Manufacture of semiconductor device
JPS62213258A (en) Manufacture of semiconductor device
JPH0335534A (en) Manufacture of semiconductor device
JPS60150642A (en) Complementary semiconductor device and manufacture thereof
JPS59177941A (en) Manufacture of element isolation region
JPS61220372A (en) Manufacture of semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH0595043A (en) Manufacture of semiconductor device
JPS60218854A (en) Element isolating method of semiconductor device
JPS5882530A (en) Element isolation of complementary type semiconductor device