JPS5986263A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5986263A
JPS5986263A JP19623082A JP19623082A JPS5986263A JP S5986263 A JPS5986263 A JP S5986263A JP 19623082 A JP19623082 A JP 19623082A JP 19623082 A JP19623082 A JP 19623082A JP S5986263 A JPS5986263 A JP S5986263A
Authority
JP
Japan
Prior art keywords
film
nitride film
region
etching
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19623082A
Other languages
Japanese (ja)
Inventor
Takaaki Kuwata
孝明 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19623082A priority Critical patent/JPS5986263A/en
Publication of JPS5986263A publication Critical patent/JPS5986263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form the insulation isolating region of an MOS transistor in which the displacement from the designing size of the width of a diffused layer is suppressed to the minimum limit without producing an irregularity on the surface of a substrate by etching by utilizing the difference of the etching velocity. CONSTITUTION:An oxidized film 23 is formed on the surface of a substrate 21, and a photoresist 24 is patterned on a region to become a diffused layer region. The film 23 of the region to become a field region and the substrate 21 are etched to remove the photoresist 24, and the film 23 is formed in a groove. A nitrided film 28 is grown by a reduced pressure CVD method and a nitrided film 29 is grown by a plasma CVD method, the resist 24 is patterned, and the films 28, 29 are removed by isotropic plasma etching. Since the etching in a horizontal direction precedes in a vertical direction, the nitrided films are completely buried into the grooves without an irregularity. A polycrystalline silicon 26 to become a gate electrode and wirings is grown, an ion implantation is performed to form source and drain 27.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に、ゲート電
極に多結晶シリコンを用いた電界効果半導体装置の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a field effect semiconductor device using polycrystalline silicon for a gate electrode.

従来、M2S)ランジスタの絶縁分離は選択酸化により
形成した埋設杷縁膵による分離法が用いられて来た。上
記選択酸化法をMO8ICの製造工程に適応した場合を
第1図(a)〜(d)[従って、説明する。
Conventionally, insulation isolation of M2S) transistors has been carried out by a method of isolation using a buried lobe pancreas formed by selective oxidation. The case where the above selective oxidation method is applied to the manufacturing process of MO8IC is shown in FIGS. 1(a) to 1(d).

第1図(a)二手導体基板11の表面層に約500A程
度の酸化膜13を形成した後、約1500A程度の窒化
膜12を成長させ、絶縁分離領域(以後フィールド領域
と呼ぶ)となるべき、領域の上記窒化膜12が除去され
るようにホトレジスト14をパターンニングする。
FIG. 1(a) After forming an oxide film 13 of about 500 A on the surface layer of the two-handed conductor substrate 11, a nitride film 12 of about 1500 A is grown to form an insulating isolation region (hereinafter referred to as a field region). , the photoresist 14 is patterned so that the nitride film 12 in the region is removed.

第1図(b)二上記窒化膜12@:エッチングした後、
フィールド領域に於いて、チャンネルの形成を防止する
ため、チャンネルスト、パとなるベキ、半導体基板と同
−伝導型の不純物15をイオン注入する。
FIG. 1(b) Second nitride film 12@: After etching,
In the field region, in order to prevent the formation of a channel, an impurity 15 having the same conductivity type as the semiconductor substrate is ion-implanted to serve as a channel striker.

第1図(C):ホトレジスト14を除去した後、長時間
の選択酸化全行ない、フィールド領域に厚い酸化膜を形
成する。この時、窒化膜12の端の方では、酸化膜が窒
化膜12の下方にまで形成されてしまい、拡散層幅が設
計値に比べ、著しく狭くなる。この酸化膜の喰い込みは
フィールドFv化膜厚が厚い程大きく、フィールド部の
酸化膜厚を1μmとした場合には喰い込みは0.8〜1
.0μm にも達する。
FIG. 1(C): After removing the photoresist 14, selective oxidation is performed for a long time to form a thick oxide film in the field region. At this time, at the end of the nitride film 12, the oxide film is formed even below the nitride film 12, and the width of the diffusion layer becomes significantly narrower than the designed value. The penetration of this oxide film increases as the thickness of the field Fv film becomes thicker, and when the thickness of the oxide film in the field part is 1 μm, the penetration of the oxide film is 0.8 to 1 μm.
.. It even reaches 0 μm.

第11菌/d) :窒化膜12及びその下の酸化膜13
をエツチングし、拡散層領域にゲート酸化膜となるべき
酸化Wを形成する。然る後、ゲート雷、極及び配線とな
るべき多結晶シリコン16を成長させ、そのパターンニ
ングを行ない、ゲート多結晶シリコンをマスクとして、
セルファラインで基板上逆伝導型の不純物をイオン注入
し、ソース、ドレイン17を形成する。以後は通常の製
造方法により、層間膜としてのリンガラス層を成長させ
、所定の位置にコンタクへ孔を開孔し、金属配jlil
Jを施す。
No. 11 bacteria/d): Nitride film 12 and oxide film 13 below it
is etched to form W oxide, which is to become a gate oxide film, in the diffusion layer region. After that, polycrystalline silicon 16 that will become the gate electrodes, poles, and wiring is grown, patterned, and using the gate polycrystalline silicon as a mask,
A source and a drain 17 are formed by ion-implanting impurity of a reverse conduction type onto the substrate using a self-alignment line. Thereafter, a phosphorus glass layer as an interlayer film is grown using a normal manufacturing method, holes are drilled into the contact at predetermined positions, and metal contacts are formed.
Apply J.

上記の如く、従来技術によるトランジスタ間の絶縁分離
法では、拡散層の挟まりを考慮し、予め、拡散層幅を広
く設計しておく必要があり、MO8集積回路の高集積化
を行なうことは困難である。
As mentioned above, in the conventional insulation isolation method between transistors, it is necessary to design the diffusion layer width wide in advance in consideration of the sandwiching of the diffusion layer, making it difficult to achieve high integration of MO8 integrated circuits. It is.

また、設計時に於ける拡散層幅が狭い場合には、上記選
択酸化により、拡散層幅が著しく挟まり、狭チャンネル
効果によるトランジスタの特性悪化全党れない。
Furthermore, if the width of the diffusion layer is narrow at the time of design, the width of the diffusion layer is significantly narrowed due to the selective oxidation, and the characteristics of the transistor are not deteriorated at all due to the narrow channel effect.

本発明の目的は、ゲート電極に多結晶シリコンを用いた
電界効果半導体装置の製造工程のうち。
An object of the present invention is to provide a method for manufacturing a field effect semiconductor device using polycrystalline silicon for a gate electrode.

トランジスタ間の絶縁分離、領域を形成するに当っ′C
1半導体基板表面に凹凸を生じることなく、かつ、拡散
層幅の設計寸法からのずれを最小限に抑えたMOS)ラ
ンジスタの絶縁分離領域を形成することが可能であり、
従来技術では形成することのできない設計値2μm以下
の拡散層幅を持った高密度のMUS集積回路を提供する
ものである。
When forming the insulation isolation and regions between transistors,
1. It is possible to form an insulating isolation region of a MOS transistor without creating irregularities on the surface of a semiconductor substrate and minimizing deviation from the design dimension of the diffusion layer width,
The present invention provides a high-density MUS integrated circuit having a diffusion layer width of 2 μm or less, which cannot be formed using conventional techniques.

上記目的を達成するための本発明の構成を次に説明する
The structure of the present invention for achieving the above object will be explained next.

本発明はMUD)ランジスタ間の絶縁分離を行なう場合
、異方性ドライエツチングにより、フィールド領域とな
るべき領域の半導体基板を垂直にエツチングして、所定
の深さの溝を堀す、上記溝中に減圧CVD窒化膜を上記
溝の深さまで成長させた後、プラズマCVD法にょシ、
上記輩化膜の表面に薄く窒化膜を成長させ、高精度百合
せ露光装置により、上記溝中の上記窒化膜がエツチング
されないように、ホトレジストをパターンニンクする。
In the present invention, when performing insulation isolation between transistors (MUD), the semiconductor substrate in a region to be a field region is vertically etched by anisotropic dry etching, and a trench of a predetermined depth is excavated in the trench. After growing a low-pressure CVD nitride film to the depth of the groove, a plasma CVD method was applied.
A thin nitride film is grown on the surface of the nitride film, and a photoresist is patterned using a high-precision Yuri exposure device so that the nitride film in the groove is not etched.

然る後、等方性プラズマエツチングに於ける、上記減圧
CVD法による窒化膜と、上記プラズマCVD法による
窒化膜のエツチング速度の差を利用してエツチングを行
なうことによって、拡散層上の窒化膜を除去するととも
に、拡散層領域との間で段差のない、また、フィールド
領域においても凹凸なく、上記溝中への窒化膜の埋込を
行なう。上記の一連の技術により、拡散層幅の設計値と
半導体基板上の拡散層幅との差1最小限に抑え、MOS
)ランジスタの高集積化を行なった場合における拡散層
幅の減少によるMOS)ランジスタの狭チャンネル効果
を生じ難くシ、高集積度のMO8集積回路を可能にする
ことを特徴とする半導体装置の製造方法である。
After that, the nitride film on the diffusion layer is etched using the difference in etching speed between the nitride film formed by the low pressure CVD method and the nitride film formed by the plasma CVD method in isotropic plasma etching. At the same time, a nitride film is buried in the trench without a difference in level from the diffusion layer region and without unevenness in the field region. By using the above series of technologies, the difference 1 between the design value of the diffusion layer width and the diffusion layer width on the semiconductor substrate is minimized, and the MOS
) A method for manufacturing a semiconductor device, which is characterized in that it does not easily cause the narrow channel effect of transistors due to a reduction in the width of the diffusion layer when transistors are highly integrated, and enables a highly integrated MO8 integrated circuit. It is.

これ7に第2図により具体的に説明すれば、下記のとお
りである。
A detailed explanation of this 7 with reference to FIG. 2 is as follows.

第zr’a(a):半導体基板21表面に約1000λ
程度の酸化膜23を形成し、拡散層領域となるべき領域
上にホトレジスト24に−残すように、パターンニング
する。
No. zr'a (a): Approximately 1000λ on the surface of the semiconductor substrate 21
An oxide film 23 of about 100 mL is formed and patterned so that it remains on the photoresist 24 over the region to become the diffusion layer region.

1!2図(b)=フィールド領域となるべき領域の上記
酸化膜23vf−エツチングした後、異方性プラズマエ
ツチングにより、垂直に所定の深さまで上記半導体基板
21のエツチングを行なう。然る後、拡散層領域上のホ
トレジストi残した状態で、フィールド領域に、チャン
ネルスト、パとして、上記半導体基板21と同−伝導型
の不純物のイオン注入を行なう。
1!2 (b) = After etching the oxide film 23vf in the region to become the field region, the semiconductor substrate 21 is vertically etched to a predetermined depth by anisotropic plasma etching. Thereafter, while leaving the photoresist i on the diffusion layer region, impurity ions of the same conductivity type as the semiconductor substrate 21 are implanted into the field region as a channel resist.

第2図(C):拡散層上のホトレジス) 24 t−除
去し、上記溝中に約500λ程度の酸化膜を形成する。
FIG. 2(C): Photoresist on the diffusion layer) 24 is removed, and an oxide film of about 500λ is formed in the groove.

このとき、拡散層上では付は足し酸化となるため酸化膜
が厚くなるが、これは後に窒化膜のプラズマエツチング
を行なう時点で拡散層上を厚い酸化膜によって保護する
働きをする。然る後、減圧CVD法により、上記溝の深
さと同一膜厚の窒化膜28を成長させる。さらに、上記
窒化膜28の表面にプラズマCVD法によム窒化膜29
を薄く成長させる。
At this time, since additional oxidation occurs on the diffusion layer, the oxide film becomes thick, but this serves to protect the diffusion layer with a thick oxide film when plasma etching of the nitride film is performed later. Thereafter, a nitride film 28 having the same thickness as the depth of the groove is grown by low pressure CVD. Further, a nitride film 29 is formed on the surface of the nitride film 28 by plasma CVD.
grow thin.

次に、拡散層上の上記窒化膜28.2Ft等方性プラズ
マエ、チングにより除去するためのホトレジスト24の
パターンニングを行なう。このノ(ターンニングは上記
溝の両端よりレジスト端が0.2〜0.3μmだけ幅広
くなる様に行なう。この目合せは0.1〜0.2μm程
度の精度が要求されるが、現在の縮小投影露光装置(又
は、電子ビーム露光装置)を使用すれば可能である。
Next, the photoresist 24 is patterned to remove the nitride film 28.2 Ft on the diffusion layer by isotropic plasma etching. This (turning) is performed so that the resist edge is 0.2 to 0.3 μm wider than both ends of the groove. This alignment requires an accuracy of about 0.1 to 0.2 μm, but the current This is possible by using a reduction projection exposure apparatus (or an electron beam exposure apparatus).

@2図(d):’I方性プラズマエ、チングにより、拡
散層上の上記窒化膜28.29の除去を行なう。
@2 (d): 'I The nitride films 28 and 29 on the diffusion layer are removed by directional plasma etching.

等方性プラズマエツチングでは、減圧CV D法11C
よV成長させた窒化膜28より、プラズマCVD法によ
り成長させた窒化膜29の方がエツチングされ易く、水
平方向へのエツチングが垂直方向へのエツチングより先
行するために、上記窒化膜28のエツチングを拡散層表
面の酸化膜に洟するまで行なった場合には、拡散層表面
に対して、段差なく、かつ、フィールド領域となるべき
上記溝上においても凹凸なく、上記溝中への窒化膜の埋
込みが完了する。次に拡散層上の酸化膜全エツチングし
、ゲート酸化膜となるべき酸化膜を拡散層上に形成する
。さらに、必要な場合には、闇値電圧調御のためのイオ
ン注入を行なう。このイオン注入工程は、上記半導体基
板210表面不純物濃度がすでに期待すべき閾1[電圧
を与えうる値である場合は除く。
In isotropic plasma etching, low pressure CVD method 11C
The nitride film 29 grown by the plasma CVD method is more easily etched than the nitride film 28 grown by V-grown, and since etching in the horizontal direction precedes etching in the vertical direction, the nitride film 28 is etched. When the nitride film is applied to the oxide film on the surface of the diffusion layer, the nitride film is buried in the groove without any steps on the surface of the diffusion layer, and without any unevenness on the groove that is to become the field region. is completed. Next, the entire oxide film on the diffusion layer is etched, and an oxide film to be a gate oxide film is formed on the diffusion layer. Furthermore, if necessary, ion implantation is performed for dark value voltage control. This ion implantation process is performed except when the impurity concentration on the surface of the semiconductor substrate 210 is already at a value that can provide the expected threshold 1 voltage.

第2図(e):ゲート電極及び配線となるべき多結晶シ
リコン26を成長させ、そのパターンニングを行ない、
ゲート多結晶シリコンをマスクとしてセルファラインに
よりソース・ドレイン27形成のための基板伝導型と逆
伝導型の不純物のイオン注入を行なう。以後は通常の製
造方法によシ、層間膜としてのリンガラス層全成長させ
、所定の位置にコンタクト孔を開孔し、金属配線管はど
こす。
FIG. 2(e): Growing polycrystalline silicon 26 that will become the gate electrode and wiring, and patterning it.
Using the gate polycrystalline silicon as a mask, ion implantation of impurities of a conductivity type opposite to that of the substrate for forming the source/drain 27 is performed using a self-alignment line. Thereafter, a normal manufacturing method is used to fully grow the phosphorus glass layer as an interlayer film, to form contact holes at predetermined positions, and to place metal wiring pipes.

以上の製造方法によJ、MUS)ランジスタ間の他線分
離を行なった場合、設計上の拡散層幅(又はマスク上の
拡散層幅)と半導体基板上の拡散層幅との差を最小限に
抑えることができるだけで力<、従来技術を使用する場
合と同じ拡散層幅の設計では、上記選択酸化による拡散
層幅の減少が生シないため、M(JS)ランジスタの狭
チャンネル効果によるMusトランジスタ特性の悪化を
低減できる。さらに、フィールド領域上、及び、フィー
ルド領域と拡散層領域の境界に於ける凹凸を極めて小さ
くすることが可能であり、ゲート電極及び、配線となる
べき多結晶シリコンのノくターンニングが容易となり、
高密度のMUS集積回路の製造が可能となるという効果
がある。
When using the above manufacturing method to separate J, MUS) transistors by other lines, the difference between the designed diffusion layer width (or the diffusion layer width on the mask) and the diffusion layer width on the semiconductor substrate is minimized. If the diffusion layer width is designed to be the same as when using the conventional technology, the reduction in the diffusion layer width due to the selective oxidation will not occur, so the Mus due to the narrow channel effect of the M(JS) transistor Deterioration of transistor characteristics can be reduced. Furthermore, unevenness on the field region and at the boundary between the field region and the diffusion layer region can be made extremely small, making it easy to turn the polycrystalline silicon that will become the gate electrode and wiring.
This has the effect of making it possible to manufacture high-density MUS integrated circuits.

本発明の実施例として、上記半導体装置の築造方法全相
補型MO8(以後CMO8)の製造工程に適用した場合
について、wI3図に従りて説明する。
As an embodiment of the present invention, a case in which the above semiconductor device construction method is applied to a manufacturing process of fully complementary MO8 (hereinafter referred to as CMO8) will be described with reference to Fig. wI3.

第3図(a):半導体基板31内に所定の深さのPウェ
ル311とNウェル310を形成する。この両ウェルの
不純物濃度は、フィールド領域において、チャンネルの
形成を防止しうる程度の高い濃度に設定する。これは絶
縁分離領域を微細化した場合、フィールド領域部分に行
なうチャンネルスト、パとなるべき不純物のイオン注入
を行なう時点に於いて、P−N切換部で正確に、おのお
ののウェルの伝導型と同一伝導型の不純物をおのおのの
ウェルに対して、イオン注入を行なわなければならない
という困難を避けるためである。
FIG. 3(a): A P well 311 and an N well 310 are formed in a semiconductor substrate 31 to a predetermined depth. The impurity concentrations in both wells are set to a high enough concentration to prevent channel formation in the field region. This is because when the insulation isolation region is miniaturized, the conductivity type of each well is accurately determined by the P-N switching section at the time of channel strike and impurity ion implantation into the field region. This is to avoid the difficulty of having to ion-implant impurities of the same conductivity type into each well.

然る後、基板表面に第2図(a)と同様に約1000A
程度の酸化膜33を形成した後、n−ah、p−ah側
の拡散層領域となるべき、領域上にホトレジスト34を
残すように、そのパターンニング+行すう。
After that, approximately 1000A was applied to the surface of the substrate as shown in Fig. 2(a).
After forming the oxide film 33 of about 100 mL, patterning is performed so as to leave the photoresist 34 on the regions that are to become the diffusion layer regions on the n-ah and p-ah sides.

8g3図(b):本発明の詳細な説明に於いて述べた如
く、フィールド領域となるべき領域の酸化膜33をエツ
チングし、異方性プラズマエツチングにより、上記フィ
ールド領域となるべき領域全首足の深さまで垂直にエツ
チングを行ない、ホトレジスト34を除去した後、上記
溝中に約500λの酸化膜を形成する。ここでは既に述
べた理由により、チャンネルストッパのイオン注入を除
く。然る後、減圧CVD法によ、す、上記溝の深さと同
一膜厚の窒化膜38を成長させ、さらに、上記窒化膜3
8上にプラズマCVD法により薄い窒化膜39全成長さ
せた後、拡散層上の窒化膜のエツチングを行なうための
、ホトレジストのパターンニング+行なう。本工程に於
ける手順は既に本発明の詳細な説明で述べたとおりであ
る。
Figure 8g3 (b): As described in the detailed explanation of the present invention, the oxide film 33 in the area to be the field area is etched, and the entire neck area to be the field area is etched by anisotropic plasma etching. After removing the photoresist 34 by etching vertically to a depth of , an oxide film having a thickness of about 500λ is formed in the trench. For the reasons already mentioned, the ion implantation of the channel stopper is excluded here. Thereafter, a nitride film 38 having the same thickness as the depth of the groove is grown by low pressure CVD, and then the nitride film 38 is
After a thin nitride film 39 is entirely grown on 8 by plasma CVD, photoresist patterning is performed to etch the nitride film on the diffusion layer. The procedure in this step has already been described in the detailed description of the present invention.

第3(9)(C):減圧CVD法とプラズマCVD法に
よる窒化膜のプラズマエツチングにょるエツチング速度
の差を利用し、等方性プラズマエツチングにより、拡散
層上の上記窒化膜全除去するとともに、フィールド領域
の上記窒化膜38を平担化し、かつ、拡散層領域とフィ
ールド領域との境界部分に段差が生じないようにエツチ
ングを行なうことにより、上記溝への窒化膜の埋込が完
了する。然る後、上記拡散層上の酸化膜33全工、チン
グし。
3rd (9) (C): Utilizing the difference in etching speed between plasma etching of the nitride film by low pressure CVD method and plasma CVD method, the nitride film on the diffusion layer is completely removed by isotropic plasma etching. The filling of the nitride film into the trench is completed by flattening the nitride film 38 in the field region and performing etching so that no step is formed at the boundary between the diffusion layer region and the field region. . After that, the entire oxide film 33 on the diffusion layer is etched.

ゲート酸化膜となるべき酸化膜を形成する。次に閾値制
御のため、それぞれのウェルの伝導型と逆伝導型の不純
物を、おのおののウェル表面にイオン注入する。このイ
オン注入により、Nウェル表面付近ではn一層312が
、Pウェル表面ではp一層313が形成される。これに
より、おのおののウェル濃度が高いにもかかわらず、表
面層が低濃度となるために、MOS)ランジスタの相互
コンダクタンスが低下しない。またウェルの下方で濃度
が高くなっているため、MOSトランジスタのパンチス
ルーが生じi(、MOS)ランジスタの短チャンネル化
を行なうことが可能である。
An oxide film to become a gate oxide film is formed. Next, in order to control the threshold value, impurities of conductivity type opposite to that of each well are ion-implanted into the surface of each well. By this ion implantation, an n-layer 312 is formed near the N-well surface, and a p-layer 313 is formed near the P-well surface. As a result, although each well has a high concentration, the surface layer has a low concentration, so that the mutual conductance of the MOS transistor does not decrease. Furthermore, since the concentration is high below the well, punch-through of the MOS transistor occurs, making it possible to shorten the channel of the i(MOS) transistor.

第3図(d):ゲート電極及び配線となるべき多結晶シ
リコン36を成長し、そのパターンニングを行なう。次
にゲート多結晶シリコンをマスクとL7て、セルファラ
インにより、ソース・ドレイン37の形成のための、イ
オン注入を、おのおののウェルの伝導型と逆伝導型の不
純物で行なう。
FIG. 3(d): Polycrystalline silicon 36 to become the gate electrode and wiring is grown and patterned. Next, using the gate polycrystalline silicon as a mask L7, ion implantation for forming the source/drain 37 is performed using an impurity of a conductivity type opposite to that of each well using a self-alignment line.

第3図(e):通常の調造方法により1層間膜としての
リンガラス層314vr−成長させ、所定の位置にコン
タクト孔全開孔し、金属配線315t−,7mこす。図
は、本発明による製造方法を0MO8ICに適用した場
合の最終工程断面図である。
FIG. 3(e): A phosphorus glass layer 314vr- is grown as an interlayer film by a normal preparation method, contact holes are fully opened at predetermined positions, and metal wiring 315t-, 7m is rubbed. The figure is a sectional view of the final process when the manufacturing method according to the present invention is applied to 0MO8IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は各々従来技術によるMOS)ラ
ンジスタの絶縁分離法を適用した場合の製造工程順断面
図、第2図(a)〜(e)は各々本発明実施例によるM
(J8)ランジスタの絶縁分離法を適用した場合の製造
工程順断(111図、第3図(a)〜(e)は各々本発
明を0MO8IC構造を得ることに適用した場合の製造
工程順断面図である。 なお図において。 11.21.31・・・・・・半導体基板、12・・・
・・CVD窒化膜、13,23.33・・・・・熱酸化
膜、14゜24.34・・・・・・ホトレジスト、15
.25・・・・・・チャンネルストッパとなるべき不純
物、16,26゜36・・・・・・多結晶シリコン% 
17,27.37・・・・・・ソース・ドレイン、28
.38・・・・・・減圧CVD窒化膜、29.39・・
・・・・プラズマCVD窒化膜。 310・・・・・・Nウェル、311・・・・・・Pウ
ェル、312・・・・・・n″″層、313・・・・・
・p″″層、314・・・・・・リンガラス層、315
・・・・・・金属配線、である。 梁2図 31θ
FIGS. 1(a) to (d) are cross-sectional views in the order of the manufacturing process when the insulation isolation method of MOS transistors according to the prior art is applied, and FIGS. 2(a) to (e) are respectively according to the embodiments of the present invention. M
(J8) Manufacturing process sequence when applying the transistor insulation isolation method (Figure 111 and Figures 3 (a) to (e) are the manufacturing process sequence cross sections when the present invention is applied to obtain a 0MO8IC structure, respectively) In the figure: 11.21.31... Semiconductor substrate, 12...
...CVD nitride film, 13,23.33...Thermal oxide film, 14°24.34...Photoresist, 15
.. 25... Impurity to become a channel stopper, 16,26° 36... Polycrystalline silicon%
17, 27. 37... Source/drain, 28
.. 38...Low pressure CVD nitride film, 29.39...
...Plasma CVD nitride film. 310...N well, 311...P well, 312...n'''' layer, 313...
・p″″ layer, 314... Phosphorus glass layer, 315
・・・・・・Metal wiring. Beam 2 figure 31θ

Claims (1)

【特許請求の範囲】[Claims] ゲート電極に多結晶シリコンを用いた電界効果半導体装
置の製造方法に於いて、特にトランジスタ間の絶縁分t
1i−行なうに当り、半導体基板上のフィールド領域と
なるべき領域の上記半導体基板金型ii!に所足の深さ
までエツチングする工程と、チャンネルストッパとなる
べき、上記半導体基板と逆伝導型の不純物をイオン注入
する工程と、上記溝の閑さまで窒化膜を、上記半導体基
板上に成長する工程と、上記窒化膜上に、上記窒化膜よ
りエツチング速度の大なる窒化膜を成長する工程と、上
記祷上にレジス)kパターンニングする工程と、等方性
プラズマエツチングにより、上記2種の窒化膜のエツチ
ング速度の差を利用し、拡散層上の窒化膜を除去すると
供に、フィールド領域と拡散層領域との境界に段差のな
い、絶縁分離領域全形成する工程を含むことを特徴とす
る半導体装置の製造方法。
In the method of manufacturing a field effect semiconductor device using polycrystalline silicon for the gate electrode, in particular the insulation t between transistors is
1i- When performing the above semiconductor substrate mold ii! of the area to be the field area on the semiconductor substrate! a step of etching to a sufficient depth, a step of ion-implanting an impurity of a conductivity type opposite to that of the semiconductor substrate, which is to serve as a channel stopper, and a step of growing a nitride film on the semiconductor substrate in the gap of the groove. , a step of growing a nitride film having a higher etching rate than the nitride film on the nitride film, a step of resist patterning on the above film, and an isotropic plasma etching process. It is characterized by including the step of removing the nitride film on the diffusion layer by utilizing the difference in etching speed of the film, and forming the entire insulation isolation region without a step at the boundary between the field region and the diffusion layer region. A method for manufacturing a semiconductor device.
JP19623082A 1982-11-09 1982-11-09 Manufacture of semiconductor device Pending JPS5986263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19623082A JPS5986263A (en) 1982-11-09 1982-11-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19623082A JPS5986263A (en) 1982-11-09 1982-11-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5986263A true JPS5986263A (en) 1984-05-18

Family

ID=16354358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19623082A Pending JPS5986263A (en) 1982-11-09 1982-11-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5986263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338251A (en) * 1985-08-05 1988-02-18 ゼネラル・エレクトリック・カンパニイ Cmos intergrated circuit
JPS6467939A (en) * 1987-09-08 1989-03-14 Nec Corp Formation of isolation of semiconductor device
JPH0199233A (en) * 1987-10-13 1989-04-18 Fujitsu Ltd Semiconductor device and manufacture thereof
DE10209334A1 (en) * 2002-03-02 2003-10-09 Infineon Technologies Ag Filling process for troughs on a semiconductor wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338251A (en) * 1985-08-05 1988-02-18 ゼネラル・エレクトリック・カンパニイ Cmos intergrated circuit
JPS6467939A (en) * 1987-09-08 1989-03-14 Nec Corp Formation of isolation of semiconductor device
JPH0199233A (en) * 1987-10-13 1989-04-18 Fujitsu Ltd Semiconductor device and manufacture thereof
DE10209334A1 (en) * 2002-03-02 2003-10-09 Infineon Technologies Ag Filling process for troughs on a semiconductor wafer
US6716720B2 (en) 2002-03-02 2004-04-06 Infineon Technologies Ag Method for filling depressions on a semiconductor wafer

Similar Documents

Publication Publication Date Title
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
JP3271453B2 (en) Method for forming element isolation region in semiconductor device
JPS5933880A (en) Semiconductor device
JP3358611B2 (en) Method for manufacturing semiconductor device
JPS5986263A (en) Manufacture of semiconductor device
US5705440A (en) Methods of fabricating integrated circuit field effect transistors having reduced-area device isolation regions
JPS6143477A (en) Manufacture of mos transistor
JPS6251216A (en) Manufacture of semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPS59119870A (en) Manufacture of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH02196434A (en) Manufacture of mos transistor
JPS6119111B2 (en)
US6580088B2 (en) Semiconductor devices and methods for manufacturing the same
JPS60226168A (en) Complementary mos semiconductor device
KR100250686B1 (en) Manufacturing method of a semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS5940563A (en) Manufacture of semiconductor device
KR100608384B1 (en) Method of manufacturing semiconductor device
JPH05144839A (en) Manufacturing method of semiconductor device
KR100448591B1 (en) Method of manufacturing a transistor in a semiconductor
KR0130626B1 (en) Structure and fabrication of mosfet
KR100511095B1 (en) Method for forming source/drain structure of semiconductor
KR0135670B1 (en) Method of manufacturing semiconductor device
KR100260488B1 (en) Method of manufacturing a field effect transistor